
Ruby - Feature #16276

For consideration: "private do...end" / "protected do...end"

10/23/2019 07:49 PM - adh1003 (Andrew Hodgkinson)

Status: Open

Priority: Normal

Assignee:

Target version:

Description

Private or protected declarations in Ruby classes are problematic. The single, standalone public, private or protected statements

cause all following methods - except "private" class methods, notably - to have that protection level. It is not idiomatic in Ruby to

indent method definitions after such declarations, so it becomes at a glance very hard to see what a method's protection level is

when just diving into a piece of source code. One must carefully scroll up the code searching for a relevant declaration (easily

missed, when everything's at the same indentation level) or have an IDE sufficiently advanced to give you that information

automatically (and none of the lightweight editors I prefer personally have yet to support this). Forcibly indenting code after

declarations helps, but most Ruby developers find this unfamiliar and most auto-formatters/linters will reset it or, at best, complain.

Further, the difficulty in defining private class methods or constants tells us that perhaps there's more we should do here - but of

course, we want to maintain backwards compatibility.

On the face of it, I can't see much in the way of allowing the public, private or protected declarations to - optionally - support a

block-like syntax.

class Foo

 # ...there may be prior old-school public/private/protected declarations...

 def method_at_whatever_traditional_ruby_protection_level_applies

 puts "I'm traditional"

 end

 private do

 def some_private_instance_method

 puts "I'm private"

 end

 def self.some_private_class_method

 puts "I'm also private - principle of least surprise"

 end

 NO_NEED_FOR_PRIVATE_CONSTANT_DECLARATIONS_EITHER = "private"

 end

 def another_method_at_whatever_traditional_ruby_protection_level_applies

 puts "I'm also traditional"

 end

end

 My suggestion here confines all public do...end, protected do...end or private do...end protections strictly to the confines of the block

alone. Outside the block - both before and after - traditional Ruby protection semantics apply, allowing one to add new block-based

protection-enclosed method declarations inside any existing code base without fear of accidentally changing the protection level of

any methods defined below the new block. As noted in the pseudocode above, we can clean up some of the issues around the

special syntax needed for "private constants", too.

I see a lot of wins in here but I'm aware I may be naïve - for example, arising unanswered questions include:

Is the use of a block-like syntax making unwarranted assumptions about what the Ruby compiler can do during its various

parsing phases?

Does the use of a block-like syntax imply we should support things like Procs too? (I think probably not - I see this as just syntax

sugar to provide a new feature reusing a familiar idiom but without diving down any other rabbit holes, at least not in the first

implementation)

I've no idea how one would go about implementing this inside Ruby Core, as I've never tackled that before. If someone is keen to

05/12/2025 1/12

pick up the feature, great! Alternatively, if a rough idea of how it might be implemented could be sketched out, then I might be able to

have a go at implementation myself and submit a PR - assuming anyone is keen on the idea in the first place :-)

Related issues:

Is duplicate of Ruby - Feature #7019: allow `private` and `protected` keyword... Rejected

History

#1 - 10/23/2019 09:17 PM - shevegen (Robert A. Heiler)

In general I agree with the proposal, or at the least with the basic gist of it, e. g.:

private {

 do_stuff

}

public {

 do_stuff

}

 I do not know how old private/public distinction is in ruby but I think matz added

this very early on, perhaps even in the first public releases. I remember in the

old pickaxe, it was explained that "private" and "public" are sort of typically

used as "toggling the state" that is - you write code, and then you may add

e. g. "private", and write all the code that is, well, private.

Personally I do not use the private and public distinction. This is mostly in the

way how you (as a ruby user) may want to use ruby. Some prefer a more java-centric

OOP model; perhaps this was a use case as to why .public_send() was added by

matz at a later time (I think .send() was much older than .public_send() but

I do not know when the latter was added). In my opinion, using .send and avoiding

private, is more "idiomatic", but this depends on the point of view. Personally

I like the self/smalltalk view on OOP more than the C++/java view. Ruby has its

own view, sort of; while I think the primary focus is on OOP, ruby has always

been multi-paradigm. I think matz likes to play with ideas and concepts. :)

But anyway, back to the suggestion. The reason why I am +1 for this proposal,

even though I personally do not use that distinction really, is because I

actually would find it convenient. I don't know if this may create incompatibilites

or not, but purely from a convenience point of view, I think that would be a

good idea.

There are a few parts I disagree with your proposal though. For example,

you wrote:

to have that protection level

 I am not putting too emphasis here really, so excuse my nit-picking, but IMO ruby

does not have a strong "protection" level because I think it would not be completely

well aligned with ruby's philosophy of flexibility, more-than-one-way and in general

letting people decide what they want to use it, and how. (Compare this to python in

many ways, which pursues a different model.) For example, we can use .send() to

"get access" to literally anything; we can obtain instance variable and change them

if we want to. I love this dynamic nature. Others may dislike it, if they think

that ruby should be less dynamic. When you have "two sides", one saying that a

particular use case is bad, the other saying that it is good, it is difficult

to align them with the same thought, since these thoughts are orthogonal and

conflicting. I'd always reason in favour of .send() for example and never use

.public_send() myself. :)

But I am a bit nit-picking here, so don't mind this comment too much.

It is not idiomatic in Ruby to indent method definitions after such declarations

 I would not use the word "idiomatic", but I actually agree with you for another

reason. Indenting code can be a bit annoying. Typically most people may tend

to use two spaces per indent level. I actually ignore that when I define classes

in modules, e. g.:

module Foo

module Bar

 class Cat

05/12/2025 2/12

 ̂ ^^ module Bar "should" be two spaces to the right, but I much prefer it to the

very left, and then using just one indent for class. Now - I don't expect many

other people to use this, but I liked it; and while this is not completely related

to the same use case and the description of the feature here, I concur with you

here. I actually never indent when private/public is used. Actually, I do sometimes

use private, but I then use something crazy:

def foo

end; private :foo

 This is more work but ... I like that I don't have to indent to the right. :P

So for this and similar reason, I actually agree with your premise mostly,

even though I do not use the same argument(s).

so it becomes at a glance very hard to see what a method's protection level

is when just diving into a piece of source code.

 Yup - I sort of agree with you here. Even though I guess we both may write

ruby code differently. :)

Makes sense to me what you write in this context.

As noted in the pseudocode above, we can clean up some of the issues around

the special syntax needed for "private constants", too.

 I have no problem either way but I think "constants" is a bit of a misnomer

in general. The ruby philosophy here is more that ruby allows you to change

it if you want to. Which I think makes sense, oddly enough; at the same

time, I remember apeiros wondered about the name constant, and I sort of agree

because people may assume that "a constant may never change". Which is not

wrong, either. Just more-than-one-way to look at something (perhaps it should

have another name than constant, so people don't get confused).

This is also a bit strange when it comes to "private" constants in ruby. Can

these be changed? Should these be changed? Are there even really "private"

constants in ruby?

I actually really don't know. It has been rare that I used constants "dynamically"

and changed them. These days I tend to use @foo toplevel instance variable more,

like:

module Foo

 @bar = {}

 and work from here IF it has to be dynamic (aka data that is to be changed for

some reason or another).

Does the use of a block-like syntax imply we should support things like Procs too?

 Aren't blocks in ruby in general procs too? But anyway, to answer the question - I

don't think every method supports blocks uniformly strongly, meaning that some

methods make use of blocks more, and other methods don't. To me blocks are more

like an additional argument that is more flexible (usually). Sort of you can use

it if you want to - but you don't have to. So from here, I don't really see a

problem if private/public were to have a {} block variant.

There may perhaps be other issues, though, such as backwards incompatibility. I

guess this all has to be discussed and of course you have to ask matz about the

design consideration for private/public. Perhaps there was a reason why the

block variant was not considered or used or there were some other problems.

#2 - 10/23/2019 09:44 PM - shevegen (Robert A. Heiler)

Actually I should clarify some of my statements a bit more; I'll do it in a terse add-on.

I believe that many ruby users may actually NOT indent when using private/public.

They may write code like this:

class Foo

 def bla

05/12/2025 3/12

 end

 private

 def hop

 end

end

 I believe in these cases, the suggestion here may possibly be of less value to this

style, because they may prefer the current style more than any alternative.

An alternative may be:

class Foo

 def bla

 end

private

 def hop

 end

end

 This is a bit "off" because the indent to private is one level to the left, but I see

this style sometimes as well. IMO I think an additional requirement for this suggestion,

although I think it is an ok-suggestion, should be how many ruby users may want to use

e. g. private {} in the first place. If there are only a very few then perhaps this may

not be worth to add/change it (again, not assuming anything either way, but I think the

usability and practical use cases should be considered too).

I am mostly neutral on the whole issue actually, only a very slight +1 support. As

said I probably may not need this, but this of course does not exclude the possibility

that others may use/want this. :)

It may be helpful if other ruby users could comment on the issue too in the coming

days/weeks, including people from the core team if they write lots of ruby code in

general.

#3 - 10/24/2019 01:52 AM - shyouhei (Shyouhei Urabe)

- Is duplicate of Feature #7019: allow `private` and `protected` keywords to take blocks added

#4 - 10/24/2019 01:58 AM - duerst (Martin Dürst)

shevegen (Robert A. Heiler) wrote:

Actually I should clarify some of my statements a bit more; I'll do it in a terse add-on.

I believe that many ruby users may actually NOT indent when using private/public.

They may write code like this:

class Foo

 def bla

 end

 private

 def hop

 end

end

This simply is sloppy coding.

I believe in these cases, the suggestion here may possibly be of less value to this

style, because they may prefer the current style more than any alternative.

An alternative may be:

class Foo

 def bla

 end

private

 def hop

 end

end

This is what should be used, or an intermediate:

05/12/2025 4/12

 class Foo

 def bla

 end

 private

 def hop

 end

 end

 I hope rubocop (and similar tools) produces a warning fro the first example above, and allows the style in the second or third example.

#5 - 10/24/2019 02:19 AM - shyouhei (Shyouhei Urabe)

C++: There are private, but no private {}

Java: There are private, but no private {}

Scala: There are private, but no private {}

Kotlin: There are private, but no private {}

Rust: Everything are private by default, there is pub instead. But there is no pub {}

Correct me if I'm wrong. But it seems the idea of "private with a block" isn't seen anywhere.

#6 - 10/24/2019 06:29 AM - marcandre (Marc-Andre Lafortune)

FWIW, my personal style has evolved to using private inline:

class Foo

 def public

 end

 private def some_private_instance_method

 puts "I'm private"

 end

 private def also_some_private_instance_method

 puts "I'm also private"

 end

end

 I don't believe I would use private {}, but I'm not against the proposal, in particular since it doesn't add much cognitive load.

#7 - 10/29/2019 08:38 PM - adh1003 (Andrew Hodgkinson)

shevegen (Robert A. Heiler) wrote:

As noted in the pseudocode above, we can clean up some of the issues around

the special syntax needed for "private constants", too.

 I have no problem either way but I think "constants" is a bit of a misnomer

in general. The ruby philosophy here is more that ruby allows you to change

it if you want to.

 Agree with all you said and appreciate the detailed feedback - but on this, and in many ways on the use of send, those are workarounds for "I really

know what I'm doing". Private methods are not normally callable by conventional syntax, and constants pretty much are constants; attempts to

redefine them raise warnings, so although it's possible it is, again, inadvisable and private scope constants are a thing (and are useful).

The reason for public/protected/private is not just about what "can be done". It's about the contract you're drawing within your class or module, to

which clients of that class or module must adhere. Public things are for anyone; protected things for subclasses; private things are implementation.

This is vital - no mere decoration - it goes to the very core of OOP and software engineering. Calling send to hack into a private method means the

caller is breaking the contract with the target entity and thus risks its own implementation failing at any time, since the target entity is freely at liberty to

change anything in its private implementation without any prior warning.

duerst (Martin Dürst) wrote:

class Foo

 def bla

 end

 private

 def hop

 end

end

This simply is sloppy coding [...left-indent "private"...]

05/12/2025 5/12

 Coding style wars wage often. Some of it is functional and objective, but much of it is aesthetic and subjective. The complaint about the coding style

does not, I think, really change whether or not we might want to tighten the behaviour of the public/protected/private declarations using block-like

syntax in a manner that would be 100% backwards compatible with all existing code (since the no-block syntax would still be there and not be

deprecated).

shyouhei (Shyouhei Urabe) wrote:

C++: There are private, but no private {}

Java: There are private, but no private {}

Scala: There are private, but no private {}

Kotlin: There are private, but no private {}

Rust: Everything are private by default, there is pub instead. But there is no pub {}

Correct me if I'm wrong. But it seems the idea of "private with a block" isn't seen anywhere.

 In those languages it's impossible (or extremely difficult, via complex reflection programming) to call a private method as a client of the class, but in

Ruby you just use send - not that you usually should. In most of those languages it's impossible (or again extremely difficult) to redefine a constant,

but in Ruby you can do so easily (const_defined?, remove_const, const_set) - again, not that you should. All of those languages are statically,

strongly typed, but Ruby is not. Things like C++ or Java are surely (in general) bad (or at best, difficult) places to look for syntax to copy, since they're

generally hopelessly over complicated and require extremely heavy IDE support to make any kind of sense out of a typical code base. Ruby is

typically far simpler and clearer; that's part of the reason why it was made in the first place.

Ruby is its own language. Just because other languages don't do it, does not mean Ruby would not benefit. And again, this is an extension to the

existing syntax, not a replacement.

#8 - 10/29/2019 09:17 PM - Eregon (Benoit Daloze)

I kind of like this idea as it would make it clear which methods are private by indentation.

private alone is indeed hard to notice as soon as there are a few methods in the class.

OTOH, using this to change a method from private to public or vice-versa would cause a lot of indentation changes, so it's a double-edged sword.

private def moves the def, the method name and parameter definitions quite a lot on the right side, which I find not so nice.

Repeating private def often is also quite verbose.

Also worth noting that private def actually defines two methods, one public and then a copy of it as private, overriding the public one in the method

table.

#9 - 10/29/2019 09:51 PM - jeremyevans0 (Jeremy Evans)

Eregon (Benoit Daloze) wrote:

Also worth noting that private def actually defines two methods, one public and then a copy of it as private, overriding the public one in the

method table.

 I don't think this is true. private :method only adds an entry (zsuper method) to the method table if the method is not defined in the current class (i.e. it

is defined in a superclass or included module). If the method is defined directly in the class, it just updates the visibility flag on the existing method

table entry. Since def always defines in the current class, private def should not be defining two methods.

Regarding the feature, I think if we didn't have the current scope visibility behavior when calling private with no arguments, this would be a reasonable

approach for implementing the behavior. However, I don't think it is worth adding as an alternative approach.

#10 - 10/30/2019 01:42 AM - shyouhei (Shyouhei Urabe)

Yes, I agree we don't copy C++ / Java. What I wonder is any other language who have such syntax. Swift? no. Python? no. TypeScript? no. AFAIK

no one on this planet have such thing so far. It seems to me that IDEs are not the answer to this phenomena.

#11 - 10/30/2019 07:08 PM - adh1003 (Andrew Hodgkinson)

shyouhei (Shyouhei Urabe) wrote:

Yes, I agree we don't copy C++ / Java. What I wonder is any other language who have such syntax. Swift? no. Python? no. TypeScript? no.

AFAIK no one on this planet have such thing so far. It seems to me that IDEs are not the answer to this phenomena.

 And yet every language has unique syntax features that aren't in any other language, else, what would be the point of any of them.

There was a first language to implement a syntax to say "call this method, unless the target is nil, in which case return nil". Nobody else would've had

that first. And then we have Objective C sat out on its own, doing what I think is an admittedly verbose, but exceptionally readable message send (i.e.

method call - but actually messages, with Mach) using its 'square bracket' notation and named parameters, and with no need for any sort of special

syntax for "call this method, allowing target to be nil" since sending a message to a null entity always results in null by default - all of which leads to

very easy to read and write code.

05/12/2025 6/12

Procs/lambdas/closures were uncommon things indeed in many mainstream languages when Ruby came along with them all over the place. Now

most languages have something along those lines. Being a pioneer didn't stop Ruby then, and IMHO it shouldn't stop it now. There seems to be a

general agreement that this proposed extension would be a good thing, so if the best objection we can come up with is "most other languages don't

do it", we honestly might as well pack up and go home; because that would mean Ruby never again ever implements anything other languages don't

commonly do.

#12 - 10/30/2019 08:04 PM - jeremyevans0 (Jeremy Evans)

adh1003 (Andrew Hodgkinson) wrote:

There seems to be a general agreement that this proposed extension would be a good thing

 I'm not seeing general agreement that this would be a good thing to add. In this ticket:

@shevegen : mostly neutral, very slight #+1

@duerst (Martin Dürst) : no recommendation

@shyouhei (Shyouhei Urabe) : no recommendation

@marcandre (Marc-Andre Lafortune) : neither for nor against

@Eregon (Benoit Daloze) : kind of like, but double-edged sword

@jeremyevans0 (Jeremy Evans) : not worth adding

In #7019, it appeared that @shyouhei (Shyouhei Urabe), @drbrain (Eric Hodel), @headius (Charles Nutter), @ko1 (Koichi Sasada), and @mame

(Yusuke Endoh) didn't think it was worth adding.

Where are you seeing general agreement that this proposed extension would be a good thing?

#13 - 10/30/2019 09:14 PM - alanwu (Alan Wu)

For the following:

class Foo

 private do

 o = Object.new

 def o.hello; end

 end

end

 Would o.hello be private? Also, I assume you want the visibility change to

be fiber local, to follow the principle of least suprirse. Since this new form

adds no new capability and requires at least a new fiber local to implement,

I don't think it carries its weight.

#14 - 10/31/2019 05:03 AM - mame (Yusuke Endoh)

I have no strong opinion against this issue. In #7019, I just said that it was too late to introduce the feature into Ruby 2.0 because I was the release

manager for 2.0.

I'm curious about Rails developers' opinion. I hear that they are using a peculiar indent rule like:

class foo

 def foo

 end

 private

 def bar

 end

end

 Compared to this style, private do ... end is better, IMO. If they will use the new style, it might be worth considering.

Personally I like the private def style or the plain old no-indent style, though.

#15 - 10/31/2019 05:27 AM - duerst (Martin Dürst)

adh1003 (Andrew Hodgkinson) wrote:

duerst (Martin Dürst) wrote:

class Foo

 def bla

 end

 private

 def hop

 end

05/12/2025 7/12

https://redmine.ruby-lang.org/users/50
https://redmine.ruby-lang.org/users/10
https://redmine.ruby-lang.org/users/182
https://redmine.ruby-lang.org/users/772
https://redmine.ruby-lang.org/users/1604
https://redmine.ruby-lang.org/issues/7019
https://redmine.ruby-lang.org/users/10
https://redmine.ruby-lang.org/users/47
https://redmine.ruby-lang.org/users/286
https://redmine.ruby-lang.org/users/17
https://redmine.ruby-lang.org/users/18
https://redmine.ruby-lang.org/users/18
https://redmine.ruby-lang.org/issues/7019

end

This simply is sloppy coding [...left-indent "private"...]

 Coding style wars wage often. Some of it is functional and objective, but much of it is aesthetic and subjective. The complaint about the coding

style does not, I think, really change whether or not we might want to tighten the behaviour of the public/protected/private declarations using

block-like syntax in a manner that would be 100% backwards compatible with all existing code (since the no-block syntax would still be there and

not be deprecated).

 I'm not advocating any particular coding style. There are many coding styles that make it clear that private applies to a range of methods. There are

not many coding styles where that's not clear. The choice between the former and the latter is a functional choice.

The fact that the range of private and friends can be expressed with many reasonable coding styles doesn't mean that we might not want your

proposed feature, but it means that you proposed feature is far away from a "need to have", and therefore has low priority.

#16 - 10/31/2019 01:35 PM - Dan0042 (Daniel DeLorme)

I don't see why all the opposition to this. It's a very simple, very intuitive and clear syntax. It fits well with the rest of ruby and the usage of blocks in

general.

alanwu (Alan Wu) wrote:

class Foo

 private do

 o = Object.new

 def o.hello; end

 end

end

 Would o.hello be private? Also, I assume you want the visibility change to be fiber local, to follow the principle of least suprirse.

 I think @adh1003 was pretty clear in describing the feature, so that specific piece of code above is strictly equivalent to this:

class Foo

 private

 o = Object.new

 def o.hello; end

end

 Therefore o.hello is public.

Also I'd like to ask how fibers are relevant to this? When the private method toggles the visibility state of the current class/module, does that have

anything to do with fibers?

#17 - 10/31/2019 03:10 PM - jeremyevans0 (Jeremy Evans)

Dan0042 (Daniel DeLorme) wrote:

Also I'd like to ask how fibers are relevant to this? When the private method toggles the visibility state of the current class/module, does that

have anything to do with fibers?

class A

end

Thread.new do

 class A

 def pub; end

 end

end

class A

 private do

 def priv; end

 end

end

 Depending on thread timing, it is theoretically possible for pub to be private and not public if the visibility stored in the class and not in some sort of

scope. This example uses a thread, but the same basic issue applies to fibers.

#18 - 10/31/2019 05:43 PM - Dan0042 (Daniel DeLorme)

05/12/2025 8/12

Ok, but how is this different from the regular syntax? The exact same issue applies to this:

class A

end

Thread.new do

 class A

 def pub; end

 end

end

class A

 private

 def priv; end

end

 If there's no problem with the above, there's no reason why the proposed block form would have any problem either right? In other words the

thread/fiber issue is irrelevant to the current proposal.

#19 - 10/31/2019 06:08 PM - jeremyevans0 (Jeremy Evans)

Dan0042 (Daniel DeLorme) wrote:

Ok, but how is this different from the regular syntax? The exact same issue applies to this:

class A

end

Thread.new do

 class A

 def pub; end

 end

end

class A

 private

 def priv; end

end

Are you sure? You can test this by using queues to synchronize:

class A

end

Q1 = Queue.new

Q2 = Queue.new

Thread.new do

 class A

 Q2.pop

 def pub; end

 Q1.push nil

 end

end

class A

 private

 def priv; end

 Q2.push nil

 Q1.pop

end

A.public_instance_methods(false) # => [:pub]

 If there's no problem with the above, there's no reason why the proposed block form would have any problem either right? In other words the

thread/fiber issue is irrelevant to the current proposal.

 There is no problem with fibers/threads currently, because the visibility is stored in the scope (not in the class itself). You stated When the private

method toggles the visibility state of the current class/module, implying this would implemented with a visibility flag on the class/module. You cannot

have visibility stored in the class/module and handle fibers/threads properly without making the class-level visibility information fiber/thread-aware.

#20 - 10/31/2019 07:11 PM - Dan0042 (Daniel DeLorme)

05/12/2025 9/12

There is no problem with fibers/threads currently, because the visibility is stored in the scope (not in the class itself). You stated When the

private method toggles the visibility state of the current class/module, implying this would implemented with a visibility flag on the class/module.

You cannot have visibility stored in the class/module and handle fibers/threads properly without making the class-level visibility information

fiber/thread-aware.

 My apologies for the imprecise wording. I wasn't aware of the full technical details of how private/public are implemented. My point was simply that

private with block is not technically different from private without block in terms of how the visibility state is handled. The only difference is restoring

the previous state at the end of the block. Therefore there's no issue with threads/fibers.

#21 - 10/31/2019 07:30 PM - alanwu (Alan Wu)

The extra complication comes from this part of the original proposal:

private do

 def self.some_private_class_method

 puts "I'm also private - principle of least surprise"

 end

end

 This is different from the normal blockless private:

class A

 private

 def self.hello; end

 p self.singleton_class.public_instance_methods(false) # [:hello]

end

 So this block form can't be implemented in terms of the old blockless form.

This is why I asked about def o.foo; end. I don't think whether to special

case def self.foo; end inside the visibility block is a trivial decision to make.

Besides the hairy semantics problems, every time you define a method on

a singleton class, you still need to somehow remember that you are within a

private do block in a way that doesn't leak to other fibers.

All this complication for a feature that's mostly for looks doesn't seem worth it.

#22 - 11/01/2019 01:54 AM - Dan0042 (Daniel DeLorme)

Oh! Looks like I missed that part of the proposal! Now the def o.hello; end question makes a lot more sense. Sorry, Alan.

If we break this down a bit, this proposal can potentially set the visibility (within the block) for

1. instance methods: seems like an intuitive, obvious, and low-cost idea

2. constants: changes the semantics of private but seems useful enough to warrant it

3. class methods: changes the semantics of private, seems mostly intuitive, but maybe just too hard to implement to be worth it. It may be possible

if the visibility is stored in the scope as Jeremy said. Would have to check feasibility with nobu.

4. arbitrary singleton methods: like above, but it's doubtful this is desirable

#23 - 11/01/2019 02:42 AM - shyouhei (Shyouhei Urabe)

I can think of other cursed usages of private taking a block.

class Foo

 Bar = proc do

 Baz = 1

 def foo

 Baz

 end

 end

end

class Bar

 private(&Foo::Bar)

end

 Should what happen?

Possibility #1: defines Foo#foo and Foo::Baz. Easiest to implement, however very counter-intuitive because random methods of random classes

can be (re)defined at any random calls of private.

Possibility #2: defines Bar#foo and Foo::Baz. Surprisingly, this is how class_eval works today. Also very counter-intuitive.

Possibility #3: renders SyntaxError. This requires a massive rewrite of our parser. Theoretically possible but not in practice.

05/12/2025 10/12

Redefinition of an existing public method (or a constant) as a private one should break other parts of the program. I now think a private with a block,

especially those who generated elsewhere and passed as an & parameter, is dangerous.

#24 - 11/07/2019 12:02 AM - adh1003 (Andrew Hodgkinson)

shyouhei (Shyouhei Urabe) wrote:

I can think of other cursed usages of private taking a block.

 Then it is fortunate, is it not, that this is not what I am proposing. What I said was, I thought very clearly:

...support a block-like syntax...

 ...with some very specific limitations which were precisely due to the horrible rat's nest if this were truly a block, a yieldable thing, rather than just

syntax sugar.

I'm just asking for a very Ruby-like, clear, simple syntax extension that makes it obvious when a bunch of things are collected inside a specific

visibility scope, in passing cleaning up nasty messes like "private_class_method" and solving a couple of (minor) formatting wars in passing.

#25 - 11/07/2019 05:09 AM - mame (Yusuke Endoh)

adh1003 (Andrew Hodgkinson) wrote:

shyouhei (Shyouhei Urabe) wrote:

I can think of other cursed usages of private taking a block.

 Then it is fortunate, is it not, that this is not what I am proposing.

 No, not fair enough. It is what you are proposing, even if you didn't intend. We need to care about all the possibilities as far as we can. That's the

language design.

@shyouhei (Shyouhei Urabe), good catch. If I need to pick up your possibilities, I like #1 or #2. But now I'm a bit against the proposal. It brings a

small advantage and relatively larger

complexity then I expected.

#26 - 11/07/2019 02:43 PM - Dan0042 (Daniel DeLorme)

Possibility #3: renders SyntaxError. This requires a massive rewrite of our parser. Theoretically possible but not in practice.

 I'm a bit curious about this. My understanding is that a Proc object is not created for every block. So it should be possible to know that private{ } is

called with a block while private(&block) is called with a Proc (and raise an error in the latter case). In invoke_block_from_c_bh (from vm.c) I can see

switch (vm_block_handler_type(block_handler)) which seems to do exactly that: telling apart the types of block. So in the case of private, if

vm_block_handler_type returns block_handler_type_proc, it would make sense to me to raise an error. Or quite possibly I'm misunderstanding

something about how this all works.

#27 - 11/19/2019 04:27 AM - jeremyevans0 (Jeremy Evans)

Dan0042 (Daniel DeLorme) wrote:

Possibility #3: renders SyntaxError. This requires a massive rewrite of our parser. Theoretically possible but not in practice.

 I'm a bit curious about this. My understanding is that a Proc object is not created for every block. So it should be possible to know that private{ }

is called with a block while private(&block) is called with a Proc (and raise an error in the latter case).

 It may be possible to know at runtime whether a literal block is passed or not (if not, that is probably an easier change to make). However, you can't

really know at parse time (SyntaxError is raised at parse time). Example:

class A

 class << self

 alias priv private

 end

 priv do

 def

 end

05/12/2025 11/12

https://redmine.ruby-lang.org/users/10

end

 In invoke_block_from_c_bh (from vm.c) I can see switch (vm_block_handler_type(block_handler)) which seems to do exactly that: telling apart

the types of block. So in the case of private, if vm_block_handler_type returns block_handler_type_proc, it would make sense to me to raise an

error. Or quite possibly I'm misunderstanding something about how this all works.

 Since you seem to be in doubt, you should attach a debugger and call with a literal block and call with a block passed via &, and see what the

difference is.

adh1003 (Andrew Hodgkinson) wrote:

I'm just asking for a very Ruby-like, clear, simple syntax extension that makes it obvious when a bunch of things are collected inside a specific

visibility scope, in passing cleaning up nasty messes like "private_class_method" and solving a couple of (minor) formatting wars in passing.

 What you consider making obvious, others may consider clouding the difference between instance methods of the class and singleton methods on

the class.

private_class_method is just a shortcut. Calling it a nasty mess implies define_singleton_method is also a nasty mess. If you always define methods

as regular methods, you don't need private_class_method:

class A

 class << self

 def public_singleton_method

 end

 private

 def private_singleton_method

 end

 end

 def public_instance_method

 end

 private

 def private_instance_method

 end

end

Powered by TCPDF (www.tcpdf.org)

05/12/2025 12/12

http://www.tcpdf.org

