Ruby - Feature #18809

Add Numeric#ceildiv
05/27/2022 10:23 PM - kyanagi (Kouhei Yanagita)

Status: Closed
Priority: Normal
Assignee:

Target version:

Description
pull request: https:/github.com/ruby/ruby/pull/5965

| have needed to implement "rounding up division" several times.
("rounding up division" means getting a quotient of division which is rounded up to the nearest integer.)
Typically, this is implemented as follows:
notice that b > 0 is assumed
def rounding_up_division(a, b)
(a+b-1) /b

end

But for me, this is difficult to write without careful consideration.
Every time | implement this, | need to think for a few minutes on paper.

So | propose to add a new method Numeric#ceildiv.

Typical examples where this is necessary are counting groups and pagination.

e.g. There are 123 items. If you display 10 items on each page, how many pages are there?

123.ceildiv (10) # => 13

We can find several examples of this division also in the Ruby's source code. (Try grep -r -E -e '([*]+) *- *1\) */ "\1")

./internal.h:#define roomof (x, y) (((x) + (y) — 1) / (y))

./array.c: len = (len + ustep - 1) / ustep;
./include/ruby/internal /memory.h: const size_t cnt = (total_size + sizeof (VALUE) - 1) / sizeof(
VALUE) ;

./ext/bigdecimal/missing/dtoa.c:#define PRIVATE_mem ((PRIVATE_MEM+sizeof (double)-1)/sizeof (double)
)

./ext/bigdecimal/bigdecimal.c: nc += (nc + mc - 1) / mc + 1;

./ext/bigdecimal /bigdecimal.c: mx = (mx + BASE_FIG - 1) / BASE_FIG; /* Determine allocation
unit. */

./ext/bigdecimal/bigdecimal.c: mf = (mf + BASE_FIG - 1) / BASE_FIG + 2; /* Needs 1
more for div */

./ext/bigdecimal/bigdecimal.c: nalloc = (ni + nf + BASE_FIG - 1) / BASE_FIG + 1; /* set effe
ctive allocation */

./ext/bigdecimal/bigdecimal.c: size_t const round_limit = (VpGetPrecLimit () + BASE_FIG - 1) / B
ASE_FIG;

./ext/bigdecimal/bigdecimal.c: if ((ix + BASE_FIG - 1) / BASE_FIG > ixDigit + 1) return 0;
./ext/bigdecimal/bits.h:#define roomof (x, y) (((x) + (y) - 1) / (y))

./internal/numeric.h: VALUE values|[(SIZEOF_DOUBLE + SIZEOF_VALUE - 1) / SIZEOF_VALUE];
./regcomp.c: OnigDistance str_len = (byte_len + mb_len - 1) / mb_len;

./bignum.c: size_t num_bdigits = (num_bits + BITSPERDIG - 1) / BITSPERDIG;
./missing/dtoa.c:#define PRIVATE_mem ((PRIVATE_MEM+sizeof (double)-1)/sizeof (double))

./numeric.c: char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
./gc.c:#define CEILDIV (i, mod) (((i) + (mod) - 1)/ (mod))

Naming:

| was not sure whether to name it ceildiv or divceil because there are both divmod and fdiv.
Since divmod is a method that returns two elements, the quotient and the remainder,

05/12/2025 1/3

https://github.com/ruby/ruby/pull/5965

while fdiv is a method that performs Float division, | decided to follow fdiv.

Associated revisions

Revision 0617cba197cdff626ee9c74cece480df31d384ef - 08/13/2022 02:23 AM - nobu (Nobuyoshi Nakada)
[DOC] Add the link to [Feature #18809]

Revision 0617cba197cdff626ee9c74cece480df31d384ef - 08/13/2022 02:23 AM - nobu (Nobuyoshi Nakada)
[DOC] Add the link to [Feature #18809]

Revision 0617cba1 - 08/13/2022 02:23 AM - nobu (Nobuyoshi Nakada)
[DOC] Add the link to [Feature #18809]

History

#1 - 05/28/2022 01:50 AM - nobu (Nobuyoshi Nakada)

I'm positive.
It may be nice to alias div as floordiv too?

#2 - 05/28/2022 06:26 AM - mrkn (Kenta Murata)

Julia provides cld and fld for the ceiling and flooring division, respectively. They are implemented as aliases of div with rounding mode argument, like
cld(a, b) = div(a, b, RoundUp). It may be good to introduce an optional rounding mode argument in div in addition to adding these divisions.

#3 - 06/21/2022 12:45 PM - Dan0042 (Daniel DeLorme)
Why not simply use a.fdiv(b).ceil ?

It expresses the intent of the code clearly, and | doubt there would be a measurable difference in performance except in the tightest of tight loops.

#4 - 06/21/2022 06:21 PM - sawa (Tsuyoshi Sawada)

Dan0042 (Daniel DeLorme) wrote in #note-3:

Why not simply use a.fdiv(b).ceil ?
It expresses the intent of the code clearly, and | doubt there would be a measurable difference in performance except in the tightest of tight
loops.

a = 99999999999999999

b =1

(a + b -1) / b # => 99999999999999999
a.fdiv(b) .ceil # => 100000000000000000

#5 - 07/21/2022 05:03 AM - matz (Yukihiro Matsumoto)

Let's add Integer#ceildiv.

Matz.

#6 - 07/21/2022 11:58 AM - mame (Yusuke Endoh)

Additional information.

e We do introduce only Integer#ceildiv.

e We do not introduce Numeric#ceildiv until we see the need. There is already Numeric#div, but a consistency with it is not a sufficient reason to
introduce it.

¢ We do not introduce Numeric#floordiv.

3.ceildiv(-2) should return -1, which is ceil(-(3/2)). Note that the naive implementation of (a + b - 1) / b, which returns (3 + (-2) - 1) / (-2) = 0. (As

far as we glanced at the PR, it is implemented correctly.)

#7 - 07/21/2022 10:52 PM - kyanagi (Kouhei Yanagita)
Thank you for accepting.

| updated the PR. The PR contains only Integer#ceildiv.
#8 - 08/11/2022 03:06 AM - kyanagi (Kouhei Yanagita)
Are there any blocking issues?

If exist, | will work to resolve them.

#9 - 08/13/2022 02:24 AM - nobu (Nobuyoshi Nakada)

05/12/2025 2/3

https://docs.julialang.org/en/v1/base/math/#Base.cld
https://docs.julialang.org/en/v1/base/math/#Base.fld

- Status changed from Open to Closed

Applied in changeset git|0617cba197cdff626ee9c74cece480df31d384ef.

[DOC] Add the link to [Feature #18809]

05/12/2025 3/3

https://redmine.ruby-lang.org/projects/ruby-master/repository/git/revisions/0617cba197cdff626ee9c74cece480df31d384ef
https://redmine.ruby-lang.org/issues/18809
http://www.tcpdf.org

