Ruby - Bug #20250

Crash with "Object ID seen, but not in mapping table: proc" error
02/09/2024 10:11 AM - zetter (Chris Zetter)

Status: Closed
Priority: Normal
Assignee:

Target version:

ruby -v: ruby 3.3.0 (2023-12-25 revision Backport: 3.0: WONTFIX, 3.1: REQUIRED, 3.2:
5124f9ac75) [arm64-darwin23] DONE, 3.3: DONE

Description
Hello, | experienced a crash which | was able to reliably reproduce with the following:

require 'bundler/inline'
gemfile (true) do

source 'https://rubygems.org'

gem 'activesupport', '7.1.3"
end
require 'active_support'
logger = ActiveSupport::Logger.new('log/log.log', 1, 100 * 1024 * 1024)
logger.formatter = proc {|_, _, _, message| "#{message}\n" }
logger = ActiveSupport::TaggedlLogging.new (logger)
logger.tagged ("TAG") .info "hello"
logger.tagged ("TAG") .info "hello" # usually crashes here

GC.start # sometimes need to trigger crash with GC

It looks like this is caused by the interaction with the formatter proc and the tagged logging features of activesupport. Let me know if
a more minimal example would be useful.

| can reproduce this with:
e ruby 3.3.0 on arm64-darwin23
¢ ruby 3.3.0 on x86_64-linux
¢ |atest ruby HEAD (5e12b75716) on arm64-darwin23

| cannot reproduce this on ruby 3.2.2.

Thanks for any help

Related issues:
Related to Ruby - Bug #20253: “Proc.dup’ and “Proc#clone™ don't preserve fina... Closed

Associated revisions

Revision d19d683a354530a27b4cbb049223f8dc70c75849 - 02/09/2024 04:38 PM - byroot (Jean Boussier)
rb_obj_setup: do not copy RUBY_FL_SEEN_OBJ_ID

[Bug #20250]

We're seting up a new instance, so it never had an associated
object_id.

Revision d19d683a354530a27b4cbb049223f8dc70c75849 - 02/09/2024 04:38 PM - byroot (Jean Boussier)
rb_obj_setup: do not copy RUBY_FL_SEEN_OBJ_ID

[Bug #20250]

05/12/2025 1/5

We're seting up a new instance, so it never had an associated
object_id.

Revision d19d683a - 02/09/2024 04:38 PM - byroot (Jean Boussier)
rb_obj_setup: do not copy RUBY_FL_SEEN_OBJ_ID
[Bug #20250]

We're seting up a new instance, so it never had an associated
object_id.

Revision de1a586ecc2ee7f465f0c0a69291054136a3a819 - 02/12/2024 05:31 PM - byroot (Jean Boussier)
proc.c: get rid of CLONESETUP
[Bug #20253]

All the way down to Ruby 1.9, Proc, Method, UnboundMethod
and Binding always had their own specific clone and dup routine.

This caused various discrepancies with how other objects behave
on dup and “clone. [Bug #20250], [Bug #20253].

This commit get rid of CLONESETUP and use the the same codepath
as all other types, so ensure consistency.

NB: It's still not accepting the freeze keyword argument on clone.

Co-Authored-By: Etienne Barri¢ etienne.barrie@gmail.com

Revision de1a586ecc2ee7f465f0c0a69291054136a3a819 - 02/12/2024 05:31 PM - byroot (Jean Boussier)
proc.c: get rid of CLONESETUP

[Bug #20253]

All the way down to Ruby 1.9, Proc, Method, UnboundMethod
and Binding always had their own specific clone and dup routine.

This caused various discrepancies with how other objects behave
on dup and “clone. [Bug #20250], [Bug #20253].

This commit get rid of CLONESETUP and use the the same codepath
as all other types, so ensure consistency.

NB: It's still not accepting the freeze keyword argument on clone.

Co-Authored-By: Etienne Barri¢ etienne.barrie@gmail.com

Revision de1a586e - 02/12/2024 05:31 PM - byroot (Jean Boussier)
proc.c: get rid of CLONESETUP

[Bug #20253]

All the way down to Ruby 1.9, Proc, Method, UnboundMethod
and Binding always had their own specific clone and dup routine.

This caused various discrepancies with how other objects behave
on dup and “clone. [Bug #20250], [Bug #20253].

This commit get rid of CLONESETUP and use the the same codepath
as all other types, so ensure consistency.

NB: It's still not accepting the freeze keyword argument on clone.

Co-Authored-By: Etienne Barri¢ etienne.barrie@gmail.com

Revision a63e979853783601a60228b45741f8b3776€5507 - 03/21/2024 01:45 AM - NARUSE, Yui
merge revision(s) d19d683a354530a27b4cbb049223f8dc70c75849,de1a586ecc2ee7f465f0c0a69291054136a3a819: [Backport #20250] (#10308)

rb_obj_setup: do not copy RUBY_FL_SEEN_OBJ_ID

05/12/2025 2/5

mailto:etienne.barrie@gmail.com
mailto:etienne.barrie@gmail.com
mailto:etienne.barrie@gmail.com

[Bug #20250]

We're seting up a new instance, so it never had an associated
object_id.

proc.c: get rid of “CLONESETUP"
MIME-Version: 1.0

Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

[Bug #20253]

All the way down to Ruby 1.9, "Proc’, "Method', "UnboundMethod’
and "Binding® always had their own specific clone and dup routine.

This caused various discrepancies with how other objects behave
on ‘dup’ and ‘clone. [Bug #20250], [Bug #20253].

This commit get rid of “CLONESETUP' and use the the same codepath
as all other types, so ensure consistency.

NB: It's still not accepting the freeze' keyword argument on ‘clone’.

Co-Authored-By: Etienne Barrié <etienne.barrie@gmail.com>
Revision a63e979853783601a60228b45741f8b3776€5507 - 03/21/2024 01:45 AM - NARUSE, Yui
merge revision(s) d19d683a354530a27b4cbb049223f8dc70c75849,de1a586ecc2ee7f465f0c0a69291054136a3a819: [Backport #20250] (#10308)
rb_obj_setup: do not copy RUBY_FL_SEEN_OBJ_ID

[Bug #20250]

We're seting up a new instance, so it never had an associated
object_id.

proc.c: get rid of “CLONESETUP"
MIME-Version: 1.0

Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

[Bug #20253]

All the way down to Ruby 1.9, "Proc’, "Method', "UnboundMethod’
and "Binding® always had their own specific clone and dup routine.

This caused various discrepancies with how other objects behave
on “dup’ and ‘clone. [Bug #20250], [Bug #20253].

This commit get rid of “CLONESETUP' and use the the same codepath
as all other types, so ensure consistency.

NB: It's still not accepting the freeze' keyword argument on clone’.

Co-Authored-By: Etienne Barrié <etienne.barrie@gmail.com>
Revision a63e9798 - 03/21/2024 01:45 AM - NARUSE, Yui
merge revision(s) d19d683a354530a27b4cbb049223f8dc70c75849,de1a586ecc2ee7f465f0c0a69291054136a3a819: [Backport #20250] (#10308)
rb_obj_setup: do not copy RUBY_FL_SEEN_OBJ_ID

[Bug #20250]

We're seting up a new instance, so it never had an associated
object_id.

proc.c: get rid of “CLONESETUP"
MIME-Version: 1.0

Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

[Bug #20253]

All the way down to Ruby 1.9, "Proc’, "Method', ‘UnboundMethod’

05/12/2025 3/5

and "Binding’ always had their own specific clone and dup routine.

This caused various discrepancies with how other objects behave
on ‘dup’ and ‘clone. [Bug #20250], [Bug #20253].

This commit get rid of "CLONESETUP and use the the same codepath
as all other types, so ensure consistency.

NB: It's still not accepting the ' freeze' keyword argument on clone’.

Co-Authored-By: Etienne Barrié <etienne.barrie@gmail.com>
Revision 584a02aaafda74c21d24dc4c5e223a2482c7fde3 - 07/13/2024 06:17 AM - nagachika (Tomoyuki Chikanaga)
merge revision(s) d19d683a354530a27b4cbb049223f8dc70c75849: [Backport #20250]

rb_obj_setup: do not copy RUBY_FL_SEEN_OBJ_ID

[Bug #20250]

We're seting up a new instance, so it never had an associated
object_id.

Revision 584a02aaafda74c21d24dc4c5e223a2482c7fde3 - 07/13/2024 06:17 AM - nagachika (Tomoyuki Chikanaga)
merge revision(s) d19d683a354530a27b4cbb049223f8dc70c75849: [Backport #20250]

rb_obj_setup: do not copy RUBY_FL_SEEN_OBJ_ID

[Bug #20250]

We're seting up a new instance, so it never had an associated
object_id.

Revision 584a02aa - 07/13/2024 06:17 AM - nagachika (Tomoyuki Chikanaga)
merge revision(s) d19d683a354530a27b4cbb049223{8dc70c75849: [Backport #20250]
rb_obj_setup: do not copy RUBY_FL_SEEN_OBJ_ID
[Bug #20250]

We're seting up a new instance, so it never had an associated
object_id.

History

#1 - 02/09/2024 12:30 PM - byroot (Jean Boussier)
| had a quick look and this is very interesting. As far as | can tell cached_object_id for this Proc, so the most likely explanation is that some other part
of the codebase is messing with the object flags.

I'll try to dig deeper.

#2 - 02/09/2024 12:42 PM - byroot (Jean Boussier)
Alright, it's a bug in #clone, | managed to reduce it to:
proc = Proc.new { }

proc.object_id

proc.clone
GC.start

Shouldn't be too hard to figure out. IIRC Proc#clone was modified recently, the flag that indicate the instance has an object_id need to be cleared on
the cloned object.

#3 - 02/09/2024 01:31 PM - byroot (Jean Boussier)

- Backport changed from 3.0: UNKNOWN, 3.1: UNKNOWN, 3.2: UNKNOWN, 3.3: UNKNOWN to 3.0: WONTFIX, 3.1: REQUIRED, 3.2: REQUIRED,
3.3: REQUIRED

Patch: https:/github.com/ruby/ruby/pull/9903

Also this bug affect all Ruby versions since the new object_id implementation back in 2.7, | got all of them to crash on it.

05/12/2025 45

https://github.com/ruby/ruby/pull/9903

#4 - 02/09/2024 04:39 PM - byroot (Jean Boussier)
- Status changed from Open to Closed

Applied in changeset git|d19d683a354530a27b4cbb049223f8dc70c75849.

rb_obj_setup: do not copy RUBY_FL_SEEN_OBJ_ID
[Bug #20250]

We're seting up a new instance, so it never had an associated
object_id.

#5 - 02/09/2024 04:48 PM - byroot (Jean Boussier)
- Related to Bug #20253: "Proc.dup’ and "Proc#clone’ don't preserve finalizers added

#6 - 03/21/2024 06:59 AM - naruse (Yui NARUSE)

- Backport changed from 3.0: WONTFIX, 3.1: REQUIRED, 3.2: REQUIRED, 3.3: REQUIRED to 3.0: WONTFIX, 3.1: REQUIRED, 3.2: REQUIRED,
3.3: DONE

ruby_3_3 a63e979853783601a60228b45741f8b3776e5507 merged revision(s)
d19d683a354530a27b4cbb049223f8dc70c75849,de1a586ecc2ee7f465f0c0a69291054136a3a819.

#7 - 07/13/2024 06:18 AM - nagachika (Tomoyuki Chikanaga)
- Backport changed from 3.0: WONTFIX, 3.1: REQUIRED, 3.2: REQUIRED, 3.3: DONE to 3.0: WONTFIX, 3.1: REQUIRED, 3.2: DONE, 3.3: DONE

ruby_3_2 584a02aaafda74c21d24dc4c5e223a2482c7fde3 merged revision(s) d19d683a354530a27b4cbb049223f8dc70c75849.

Files

ruby-2024-02-09-092829.ips 13.2 KB 02/09/2024 zetter (Chris Zetter)
output.log 142 KB 02/09/2024 zetter (Chris Zetter)
crash_test_2.rb 465 Bytes 02/09/2024 zetter (Chris Zetter)

05/12/2025 5/5

https://redmine.ruby-lang.org/projects/ruby-master/repository/git/revisions/d19d683a354530a27b4cbb049223f8dc70c75849
https://redmine.ruby-lang.org/issues/20250
https://redmine.ruby-lang.org/projects/ruby-master/repository/git/revisions/584a02aaafda74c21d24dc4c5e223a2482c7fde3
https://redmine.ruby-lang.org/projects/ruby-master/repository/git/revisions/d19d683a354530a27b4cbb049223f8dc70c75849
http://www.tcpdf.org

