
Ruby - Feature #20444

Kernel#loop: returning the "result" value of StopIteration doesn't work when raised directly

04/22/2024 09:41 PM - esad (Esad Hajdarevic)

Status: Feedback   

Priority: Normal   

Assignee:    

Target version:    

Description

There was a https://bugs.ruby-lang.org/issues/11498 a while ago which was merged in, but I was surprised to find out that raising

StopIteration in a loop like

loop { raise StopIteration.new(3) }

returns nil and not 3.

History

#1 - 04/23/2024 05:02 AM - nobu (Nobuyoshi Nakada)

- Status changed from Open to Closed

StopIteration.new(3) does not set result, and no way to set it in Ruby level.

$ ruby -e 'e = StopIteration.new(3); p e.message, e.result'

"3"

nil

#2 - 04/23/2024 06:21 AM - esad (Esad Hajdarevic)

nobu (Nobuyoshi Nakada) wrote in #note-1:

StopIteration.new(3) does not set result, and no way to set it in Ruby level.

$ ruby -e 'e = StopIteration.new(3); p e.message, e.result'

"3"

nil

 

Thanks for the hint. It seems that subclassing StopIteration to provide result works:

class MyException < StopIteration

  def result = 5

end

loop { raise MyException } # => 5

#3 - 04/24/2024 02:40 AM - nobu (Nobuyoshi Nakada)

I'm curious what your use case is.

Although I don't know the reason why StopIteration#initialize does not have the argument for result, it would be difficult to change it now because of

the backward compatibility.

#4 - 04/24/2024 03:33 AM - nobu (Nobuyoshi Nakada)

- Status changed from Closed to Feedback

#5 - 04/24/2024 03:33 AM - nobu (Nobuyoshi Nakada)

- Tracker changed from Bug to Feature

- ruby -v deleted (ruby 3.3.0 (2023-12-25 revision 5124f9ac75) [arm64-darwin20])

- Backport deleted (3.0: UNKNOWN, 3.1: UNKNOWN, 3.2: UNKNOWN, 3.3: UNKNOWN)

#6 - 04/24/2024 09:07 AM - esad (Esad Hajdarevic)

nobu (Nobuyoshi Nakada) wrote in #note-3:

05/12/2025 1/3

https://bugs.ruby-lang.org/issues/11498


I'm curious what your use case is.

Although I don't know the reason why StopIteration#initialize does not have the argument for result, it would be difficult to change it now because

of the backward compatibility.

 I think my use case is a bit of an edge case - I am passing a block into a Ractor where it runs in a loop. This way I can control exit from the loop, but

obviously this can be also refactored into a normal result value of the block and "manual" looping control depending on the result.

#7 - 04/24/2024 10:40 AM - ufuk (Ufuk Kayserilioglu)

@esad If you just want to return a result from the loop, you can use break <value> to do that:

$ ruby -e "puts loop { break 3 }"

3

 You shouldn't have to deal with anything low level like StopIteration to do that.

#8 - 04/24/2024 11:00 AM - esad (Esad Hajdarevic)

ufuk (Ufuk Kayserilioglu) wrote in #note-7:

@esad If you just want to return a result from the loop, you can use break <value> to do that:

$ ruby -e "puts loop { break 3 }"

3

 

Calling break from a block passed to a ractor will raise an exception. I think some sample code about my example will be helpful:

Let's make a ractor that just calls all blocks passed to it in a loop:

r = Ractor.new do 

  block = Ractor.receive

  loop { block.call() }

end

 Now let's send it a block that raises StopIteration:

block = true.instance_eval { proc { raise StopIteration, 3 } } 

# instance_eval in true gives us a "shareable" proc 

r.send Ractor.make_shareable(block)

r.take # => nil

 Let's try with a subclass (this works)

class MyStop < ::StopIteration

  attr_reader :result

  def initialize(result)

    @result = result

  end

end

block = true.instance_eval { proc { raise MyStop, 3 } }

r.send Ractor.make_shareable(block)

r.take # => 3

#9 - 04/26/2024 08:28 AM - nobu (Nobuyoshi Nakada)

That example does not need Ractor.

class MyStop < ::StopIteration

  attr_reader :result

  def initialize(result)

    @result = result

  end

end

block = proc {raise StopIteration, 3}

p Thread.start {loop {block.call}}.value #=> nil

block = proc { raise MyStop, 3 }

p Thread.start {loop {block.call}}.value #=> 3

#10 - 04/26/2024 10:07 AM - esad (Esad Hajdarevic)

05/12/2025 2/3



nobu (Nobuyoshi Nakada) wrote in #note-9:

That example does not need Ractor.

 Yes, you are right, it actually doesn't need Thread either, and is simply about calling a block in a loop and how to break the loop from the called block:

proc { break 3}.then { |p| loop { p.call() }} raises exception, and proc { raise StopIteration, 3 }.then { |p| loop { p.call() }} returns nil, etc.

Powered by TCPDF (www.tcpdf.org)

05/12/2025 3/3

http://www.tcpdf.org

