
Ruby - Feature #4910

Classes as factories

06/20/2011 08:50 PM - rklemme (Robert Klemme)

Status: Rejected

Priority: Normal

Assignee: matz (Yukihiro Matsumoto)

Target version:

Description

I suggest to add these two to class Class:

class Class

 alias call new

 def to_proc(*args)

 lambda {|*a| new(*args)}

 end

end

 Then we can use class instances where blocks are needed and can easily use them as factory instances using the general contract

of #call (see example attached).

Related issues:

Related to Ruby - Feature #14498: Class#to_proc Rejected

History

#1 - 06/20/2011 10:08 PM - Eregon (Benoit Daloze)

Hello,

Robert Klemme wrote:

I suggest to add these two to class Class:

class Class

 alias call new

 def to_proc(*args)

 lambda {|*a| new(*args)}

 end

end

Did you want to mean:

def to_proc

 lambda { |*args| new(*args) } # or maybe lambda { |args| new(*args) }

end

 ?

#to_proc is called with no arguments (Symbol.instance_method(:to_proc).arity # => 0).

Then we can use class instances where blocks are needed and can easily use them as factory instances using the general contract of #call (see

example attached).

 I don't really see the advantage of defining #call, you could use #new instead at line 16.

If you want more flexibility, I believe it is fine to use a block.

But I like Class#to_proc, and it is indeed some kind of factory helper:

Pos = Struct.new :x,:y

[[1,2],[3,4]].map(&Pos) # => [#<struct Pos x=1, y=2>, #<struct Pos x=3, y=4>]

instead of

[[1,2],[3,4]].map { |x,y| Pos.new(x,y) }

05/19/2025 1/4

note neither #to_proc defined as "lambda { |*args| new(*args) }" nor map(&Pos.method(:new)) would work:

([#<struct Pos x=[1, 2], y=nil>,...])

 The obvious limitation being the lack of flexibility for common arguments (e.g.: y always the same). You would then have to use an explicit block.

I do not know if it is worth to add it for this specific case, but it can be nice.

I am also unsure if we need factories in Ruby (certainly not like in statically typed languages).

#2 - 06/20/2011 11:29 PM - rklemme (Robert Klemme)

Benoit Daloze wrote:

Hello,

Robert Klemme wrote:

I suggest to add these two to class Class:

class Class

 alias call new

 def to_proc(*args)

 lambda {|*a| new(*args)}

 end

end

Did you want to mean:

def to_proc

 lambda { |*args| new(*args) } # or maybe lambda { |args| new(*args) }

end

 ?

#to_proc is called with no arguments (Symbol.instance_method(:to_proc).arity # => 0).

 No, it was meant exactly as stated. Advantage is that you can provide parameters to #new if needed while mapping the parameterless call of to_proc

easily to the parameterless call of Class#new.

Then we can use class instances where blocks are needed and can easily use them as factory instances using the general contract of #call

(see example attached).

 I don't really see the advantage of defining #call, you could use #new instead at line 16.

If you want more flexibility, I believe it is fine to use a block.

 That's the exact point: by aliasing #new to #call we can pass in a lambda OR a class instance. The most general contract would then be '#call'able

(i.e. an anonymous callback function) and as a shortcut we can pass in a class instance.

But I like Class#to_proc, and it is indeed some kind of factory helper:

Pos = Struct.new :x,:y

[[1,2],[3,4]].map(&Pos) # => [#<struct Pos x=1, y=2>, #<struct Pos x=3, y=4>]

instead of

[[1,2],[3,4]].map { |x,y| Pos.new(x,y) }

note neither #to_proc defined as "lambda { |*args| new(*args) }" nor map(&Pos.method(:new)) would work:

([#<struct Pos x=[1, 2], y=nil>,...])

 The obvious limitation being the lack of flexibility for common arguments (e.g.: y always the same). You would then have to use an explicit block.

I do not know if it is worth to add it for this specific case, but it can be nice.

 I had considered that case as well and felt it might not be as common as the case where we try to provide arguments. I do not have any statistics

though and I hope for others shedding some more light what they deem more useful.

A variant would be

class Class

 def to_proc(*args)

05/19/2025 2/4

 if args.empty?

 lambda {|*a| new(*a)}

 else

 lambda {|*a| new(*args)}

 end

 end

end

 In other words: if arguments are passed to to_proc use them as sole method arguments for #new; if not, use whatever is passed to the proc (which

would support your mapping example).

We could probably make things even more complex by appending *a to *args and truncating the list with the arity of #new at the time of invocation of

the block (or, more efficient, time of call of to_proc).

I am also unsure if we need factories in Ruby (certainly not like in statically typed languages).

 Any class in Ruby is a factory object already with method #new being the factory method.

#3 - 06/23/2011 02:12 AM - headius (Charles Nutter)

I'm not sure I agree with adding to_proc to Class instances, since it seems questionable that #new is what you'd always want to be called. Dodging

that debate for now, there is another way to get the result you seek:

class Foo

 def initialize(i)

 @i = i

 end

end

(1..50).map(&Foo.method(:new))

 This is both more explicit and less magic. If there were syntax added to get method objects (without calling #method) it would be even cleaner.

#4 - 06/24/2011 12:25 AM - rklemme (Robert Klemme)

Charles Nutter wrote:

I'm not sure I agree with adding to_proc to Class instances, since it seems questionable that #new is what you'd always want to be called.

 Hmm, but what else? I think it is a reasonable default.

Dodging that debate for now, there is another way to get the result you seek:

class Foo

 def initialize(i)

 @i = i

 end

end

(1..50).map(&Foo.method(:new))

 This is both more explicit and less magic. If there were syntax added to get method objects (without calling #method) it would be even cleaner.

 That's true. Though in absence of that syntax I prefer (1..50).map {|i| Foo.new i} over your solution as it is equally explicit and even less magic - could

even be shorter to type. :-) Actually only (1..50).map(&Foo) would be an alternative I would consider.

Cheers

#5 - 03/25/2012 04:28 PM - mame (Yusuke Endoh)

- Status changed from Open to Assigned

- Assignee set to matz (Yukihiro Matsumoto)

#6 - 11/20/2012 09:41 PM - mame (Yusuke Endoh)

- Target version set to 2.6

#7 - 12/25/2017 06:15 PM - naruse (Yui NARUSE)

- Target version deleted (2.6)

05/19/2025 3/4

#8 - 02/20/2018 08:50 AM - nobu (Nobuyoshi Nakada)

- Description updated

#9 - 02/21/2018 05:13 AM - matz (Yukihiro Matsumoto)

- Related to Feature #14498: Class#to_proc added

#10 - 02/21/2018 05:14 AM - matz (Yukihiro Matsumoto)

- Status changed from Assigned to Rejected

It can lead to unreadable code.

Matz.

Files

pro.rb 836 Bytes 06/20/2011 rklemme (Robert Klemme)

Powered by TCPDF (www.tcpdf.org)

05/19/2025 4/4

http://www.tcpdf.org

