Ruby - Feature #6869

Do not treat '_" parameter exceptionally
08/15/2012 06:50 AM - alexeymuranov (Alexey Muranov)

Status: Assigned

Priority: Normal

Assignee: matz (Yukihiro Matsumoto)
Target version:

Description
| started by commenting on #6693, but i have realized that this is a slightly different request.

| propose to not treat the variable name exceptionally. Current behavior:

{0=>1}.each_with_index { |_,_| p _ } # [0, 1]
prints "[0, 1]", but

{1=>2}.each_with_index { |x,x| p x } # SyntaxError: (eval):2: duplicated argument name
raises "SyntaxError: (eval):2: duplicated argument name".
Similarly for methods:

def £(_, _)

end
£(0, 1) # => 0

def f(x, x)

X
end # => SyntaxError: (eval):2: duplicated argument name

Observe also that the use of repeated _ parameter is not consistent between methods and blocks: for methods the value is the first
assigned value, and for blocks it is the array of all the assigned values.

1. | propose to use the same rule for all variables, without distinguishing _ specially.
In particular i propose to allow to repeat any variable, not only _, in block or method arguments without raising an error.

There may be several solutions what the repeated argument will hold: it may hold the array of all assigned values, the first assigned
value, the last assigned value, the first non-nil assigned value, or the last non-nil assigned value.

1. | propose to treat repeated arguments in methods and in blocks the same way (do not know which one).

2. For unused variables i propose to introduce a special placeholder, for example
delimiter (comma or bracket):

not followed by anything other than a

each_with_index { |-, value| puts value }
-, —, suffix = parse (name)
History

#1 - 08/15/2012 10:59 AM - drbrain (Eric Hodel)
- Category set to core

- Assignee set to matz (Yukihiro Matsumoto)

(]

Seems to be part of variable shadowing checks. The check was added before r8857 (which was a refactor of the feature) and checking for
removed in r14186.

was

Since it was committed by matz | think your chances at acceptance are low.

05/25/2025 1/4

https://redmine.ruby-lang.org/issues/6693

#2 - 08/15/2012 01:03 PM - marcandre (Marc-Andre Lafortune)
Hi,
alexeymuranov (Alexey Muranov) wrote:

| propose to not treat the variable name exceptionally.

Sorry for the naive question, but why? What are you trying to achieve? What real world problem do you want to fix?

1. For unused variables i propose to introduce a special placeholder

| feel that unused variables do not warrant a change to the already complex Ruby syntax.
#3 - 08/15/2012 04:23 PM - alexeymuranov (Alexey Muranov)
marcandre (Marc-Andre Lafortune) wrote:

Hi,

alexeymuranov (Alexey Muranov) wrote:

| propose to not treat the variable name "_" exceptionally.
Sorry for the naive question, but why? What are you trying to achieve? What real world problem do you want to fix?
| do not like exceptions. When i was first learning Ruby, i thought that the underscore is a letter like any other, but sometimes it behaves like any
other, and sometimes not.

It also seems to me more natural to use a placeholder for a discarded value than to assign it to a variable first and then discard.

1. For unused variables i propose to introduce a special placeholder
| feel that unused variables do not warrant a change to the already complex Ruby syntax.
In my opinion, treating variables differently based on their names is also a part of syntax, and in my opinion such rules are harder to follow than a rule

for a single placeholder. As there is no dedicated placeholder in Ruby now, this one may be adapted later to other situations as well, i think.

Update: The most important real world problem this addresses is reading the code! With a placeholder, it is immediately clear that the value is
discarded, but with a special variable one needs to look through the code to be sure it is not used somewhere.

Plus one needs to remember currently what a repeated variable is holding in different situations.

#4 - 04/12/2014 01:05 PM - alexeymuranov (Alexey Muranov)

It looks like the use of the underscore _ as a "placeholder" is quite common in other languages ("black hole" register in Vim, "whatever" pattern that
matches everything in Haskell), but there it is really a placeholder and not a variable: values "assigned" to _ cannot be retrieved.

With this in view, maybe, instead of this my proposal, the underscore can be "downgraded" to a "placeholder" (or "black hole" peudo-variable)?

#5 - 04/13/2014 05:11 AM - nobu (Nobuyoshi Nakada)

- Description updated

Alexey Muranov wrote:
Observe also that the use of repeated _ parameter is not consistent between methods and blocks: for methods the value is the first assigned
value, and for blocks it is the array of all the assigned values.

It is unrelated to _, but because of Enumerable#each_with_index.

Try:

{0=>1}.each_with_index {|x,y|l p x} # [0, 1]

Alexey Muranov wrote:

It looks like the use of the underscore _ as a "placeholder" is quite common in other languages ("black hole" register in Vim, "whatever" pattern
that matches everything in Haskell), but there it is really a placeholder and not a variable: values "assigned" to _ cannot be retrieved.

05/25/2025 2/4

Isn't it more exceptional?
#6 - 04/13/2014 08:50 AM - alexeymuranov (Alexey Muranov)
Nobuyoshi Nakada wrote:
Alexey Muranov wrote:
Observe also that the use of repeated _ parameter is not consistent between methods and blocks: for methods the value is the first
assigned value, and for blocks it is the array of all the assigned values.
It is unrelated to _, but because of Enumerable#each_with_index.
Try:

{0=>1}.each_with_index {Ix,y| p x} # [0, 1]

Thanks, i do not know what i was thinking.
Alexey Muranov wrote:
It looks like the use of the underscore _ as a "placeholder" is quite common in other languages ("black hole" register in Vim, "whatever"

pattern that matches everything in Haskell), but there it is really a placeholder and not a variable: values "assigned" to _ cannot be
retrieved.

Isn't it more exceptional?

Yes, so this proposal would need to be closed, and i would need to open a new one. When i opened this one, i did not know that the underscore was
a common "placeholder" in other languages and i thought that Ruby documentation presents the underscore in identifiers roughly as equivalent to a
lowercase letter (doesn't it?).

Here is a sentence from the online version of Programming Ruby:

In these descriptions, lowercase letter means the characters "a" though "z", as well as "_", the underscore.

In any case, in Ruby the following works perfectly, and in my opinion this all is confusing:

So, yes, my new proposal would be to downgrade the underscore to a placeholder, so that in something like this

foo do |_, x|

10 lines of code
end
or

_, _, suffix = parse something

it would be immediately clear the values "assigned" to _ are discarded.

#7 - 06/11/2020 08:25 AM - docx (Lukas Dolezal)

Hi. This is interesting and | can see that the inconsistent treatment of _ can be confusing (I never noticed tho because | never tried to access _).
| wonder however, | always thought that _ is exactly explicitly part of syntax as "unused parameter". Am | wrong?

So if that is the case, what about going the other direction to remove the inconsistency of what value it takes, and just make it explicitly "unusable" -
can we raise SyntaxError when any _ is being accessed inside of method/block?

#8 - 06/11/2020 08:28 AM - docx (Lukas Dolezal)
Re

In these descriptions, lowercase letter means the characters "a" though "z", as well as "_", the underscore.

| think what they mean here is that you can use it inside of a variable. Probably just did not realized the single underscore case :) But that is my
interpretation.

05/25/2025 3/4

#9 - 12/10/2020 08:58 AM - naruse (Yui NARUSE)
- Target version deleted (3.0)

#10 - 04/03/2024 03:50 AM - hsbt (Hiroshi SHIBATA)
- Status changed from Open to Assigned

05/25/2025 4/4

http://www.tcpdf.org

