RocCurveDisplay#
- class sklearn.metrics.RocCurveDisplay(*, fpr, tpr, roc_auc=None, estimator_name=None, pos_label=None)[source]#
ROC Curve visualization.
It is recommend to use
from_estimator
orfrom_predictions
to create aRocCurveDisplay
. All parameters are stored as attributes.For general information regarding
scikit-learn
visualization tools, see the Visualization Guide. For guidance on interpreting these plots, refer to the Model Evaluation Guide.- Parameters:
- fprndarray
False positive rate.
- tprndarray
True positive rate.
- roc_aucfloat, default=None
Area under ROC curve. If None, the roc_auc score is not shown.
- estimator_namestr, default=None
Name of estimator. If None, the estimator name is not shown.
- pos_labelint, float, bool or str, default=None
The class considered as the positive class when computing the roc auc metrics. By default,
estimators.classes_[1]
is considered as the positive class.Added in version 0.24.
- Attributes:
- line_matplotlib Artist
ROC Curve.
- chance_level_matplotlib Artist or None
The chance level line. It is
None
if the chance level is not plotted.Added in version 1.3.
- ax_matplotlib Axes
Axes with ROC Curve.
- figure_matplotlib Figure
Figure containing the curve.
See also
roc_curve
Compute Receiver operating characteristic (ROC) curve.
RocCurveDisplay.from_estimator
Plot Receiver Operating Characteristic (ROC) curve given an estimator and some data.
RocCurveDisplay.from_predictions
Plot Receiver Operating Characteristic (ROC) curve given the true and predicted values.
roc_auc_score
Compute the area under the ROC curve.
Examples
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sklearn import metrics >>> y_true = np.array([0, 0, 1, 1]) >>> y_score = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y_true, y_score) >>> roc_auc = metrics.auc(fpr, tpr) >>> display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc, ... estimator_name='example estimator') >>> display.plot() <...> >>> plt.show()
- classmethod from_estimator(estimator, X, y, *, sample_weight=None, drop_intermediate=True, response_method='auto', pos_label=None, name=None, ax=None, plot_chance_level=False, chance_level_kw=None, despine=False, **kwargs)[source]#
Create a ROC Curve display from an estimator.
For general information regarding
scikit-learn
visualization tools, see the Visualization Guide. For guidance on interpreting these plots, refer to the Model Evaluation Guide.- Parameters:
- estimatorestimator instance
Fitted classifier or a fitted
Pipeline
in which the last estimator is a classifier.- X{array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
- yarray-like of shape (n_samples,)
Target values.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- drop_intermediatebool, default=True
Whether to drop thresholds where the resulting point is collinear with its neighbors in ROC space. This has no effect on the ROC AUC or visual shape of the curve, but reduces the number of plotted points.
- response_method{‘predict_proba’, ‘decision_function’, ‘auto’} default=’auto’
Specifies whether to use predict_proba or decision_function as the target response. If set to ‘auto’, predict_proba is tried first and if it does not exist decision_function is tried next.
- pos_labelint, float, bool or str, default=None
The class considered as the positive class when computing the roc auc metrics. By default,
estimators.classes_[1]
is considered as the positive class.- namestr, default=None
Name of ROC Curve for labeling. If
None
, use the name of the estimator.- axmatplotlib axes, default=None
Axes object to plot on. If
None
, a new figure and axes is created.- plot_chance_levelbool, default=False
Whether to plot the chance level.
Added in version 1.3.
- chance_level_kwdict, default=None
Keyword arguments to be passed to matplotlib’s
plot
for rendering the chance level line.Added in version 1.3.
- despinebool, default=False
Whether to remove the top and right spines from the plot.
Added in version 1.6.
- **kwargsdict
Keyword arguments to be passed to matplotlib’s
plot
.
- Returns:
- display
RocCurveDisplay
The ROC Curve display.
- display
See also
roc_curve
Compute Receiver operating characteristic (ROC) curve.
RocCurveDisplay.from_predictions
ROC Curve visualization given the probabilities of scores of a classifier.
roc_auc_score
Compute the area under the ROC curve.
Examples
>>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.metrics import RocCurveDisplay >>> from sklearn.model_selection import train_test_split >>> from sklearn.svm import SVC >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = SVC(random_state=0).fit(X_train, y_train) >>> RocCurveDisplay.from_estimator( ... clf, X_test, y_test) <...> >>> plt.show()
- classmethod from_predictions(y_true, y_score=None, *, sample_weight=None, drop_intermediate=True, pos_label=None, name=None, ax=None, plot_chance_level=False, chance_level_kw=None, despine=False, y_pred='deprecated', **kwargs)[source]#
Plot ROC curve given the true and predicted values.
For general information regarding
scikit-learn
visualization tools, see the Visualization Guide. For guidance on interpreting these plots, refer to the Model Evaluation Guide.Added in version 1.0.
- Parameters:
- y_truearray-like of shape (n_samples,)
True labels.
- y_scorearray-like of shape (n_samples,)
Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by “decision_function” on some classifiers).
Added in version 1.7:
y_pred
has been renamed toy_score
.- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- drop_intermediatebool, default=True
Whether to drop thresholds where the resulting point is collinear with its neighbors in ROC space. This has no effect on the ROC AUC or visual shape of the curve, but reduces the number of plotted points.
- pos_labelint, float, bool or str, default=None
The label of the positive class. When
pos_label=None
, ify_true
is in {-1, 1} or {0, 1},pos_label
is set to 1, otherwise an error will be raised.- namestr, default=None
Name of ROC curve for labeling. If
None
, name will be set to"Classifier"
.- axmatplotlib axes, default=None
Axes object to plot on. If
None
, a new figure and axes is created.- plot_chance_levelbool, default=False
Whether to plot the chance level.
Added in version 1.3.
- chance_level_kwdict, default=None
Keyword arguments to be passed to matplotlib’s
plot
for rendering the chance level line.Added in version 1.3.
- despinebool, default=False
Whether to remove the top and right spines from the plot.
Added in version 1.6.
- y_predarray-like of shape (n_samples,)
Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by “decision_function” on some classifiers).
Deprecated since version 1.7:
y_pred
is deprecated and will be removed in 1.9. Usey_score
instead.- **kwargsdict
Additional keywords arguments passed to matplotlib
plot
function.
- Returns:
- display
RocCurveDisplay
Object that stores computed values.
- display
See also
roc_curve
Compute Receiver operating characteristic (ROC) curve.
RocCurveDisplay.from_estimator
ROC Curve visualization given an estimator and some data.
roc_auc_score
Compute the area under the ROC curve.
Examples
>>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.metrics import RocCurveDisplay >>> from sklearn.model_selection import train_test_split >>> from sklearn.svm import SVC >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = SVC(random_state=0).fit(X_train, y_train) >>> y_score = clf.decision_function(X_test) >>> RocCurveDisplay.from_predictions(y_test, y_score) <...> >>> plt.show()
- plot(ax=None, *, name=None, plot_chance_level=False, chance_level_kw=None, despine=False, **kwargs)[source]#
Plot visualization.
Extra keyword arguments will be passed to matplotlib’s
plot
.- Parameters:
- axmatplotlib axes, default=None
Axes object to plot on. If
None
, a new figure and axes is created.- namestr, default=None
Name of ROC Curve for labeling. If
None
, useestimator_name
if notNone
, otherwise no labeling is shown.- plot_chance_levelbool, default=False
Whether to plot the chance level.
Added in version 1.3.
- chance_level_kwdict, default=None
Keyword arguments to be passed to matplotlib’s
plot
for rendering the chance level line.Added in version 1.3.
- despinebool, default=False
Whether to remove the top and right spines from the plot.
Added in version 1.6.
- **kwargsdict
Keyword arguments to be passed to matplotlib’s
plot
.
- Returns:
- display
RocCurveDisplay
Object that stores computed values.
- display
Gallery examples#

Post-tuning the decision threshold for cost-sensitive learning

Multiclass Receiver Operating Characteristic (ROC)

Receiver Operating Characteristic (ROC) with cross validation