Showing 1900 open source projects for "cuda machine learning"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 1
    CV-CUDA

    CV-CUDA

    CV-CUDA™ is an open-source, GPU accelerated library

    CV-CUDA is an open-source project that enables building efficient cloud-scale Artificial Intelligence (AI) imaging and computer vision (CV) applications. It uses graphics processing unit (GPU) acceleration to help developers build highly efficient pre- and post-processing pipelines. CV-CUDA originated as a collaborative effort between NVIDIA and ByteDance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Machine Learning Octave

    Machine Learning Octave

    MatLab/Octave examples of popular machine learning algorithms

    This repository contains MATLAB / Octave implementations of popular machine learning algorithms, along with explanatory code and mathematical derivations, intended as educational material rather than production code. Implementations of supervised learning algorithms (linear regression, logistic regression, neural nets). The author’s goal is to help users understand how each algorithm works “from scratch,” avoiding black-box library calls.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit, and OpenCV. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 5
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Model Zoo

    Model Zoo

    Please do not feed the models

    ...GPU acceleration is supported for most models through CUDA integration, enabling efficient training on compatible hardware. With community contributions encouraged, the Model Zoo acts as a hub for sharing and exploring diverse machine learning applications in Julia.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    ...If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning frameworks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Data Annotator for Machine Learning

    Data Annotator for Machine Learning

    Data annotator for machine learning

    Data annotator for machine learning allows you to centrally create, manage and administer annotation projects for machine learning. Data Annotator for Machine Learning (DAML) is an application that helps machine learning teams facilitate the creation and management of annotations. Active learning with uncertain sampling to query unlabeled data. Project tracking with real-time data aggregation and review process. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 10
    Awesome production machine learning

    Awesome production machine learning

    Curated list of awesome open source libraries

    This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, version, scale, and secure your production machine learning. Open-source frameworks, tutorials, and articles curated by machine learning professionals. Open-source bias audit toolkits for data scientists, machine learning researchers, and policymakers to audit machine learning models for discrimination and bias, and to make informed and equitable decisions around developing and deploying predictive risk-assessment tools.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TensorRT Backend For ONNX

    TensorRT Backend For ONNX

    ONNX-TensorRT: TensorRT backend for ONNX

    Parses ONNX models for execution with TensorRT. Development on the main branch is for the latest version of TensorRT 8.4.1.5 with full dimensions and dynamic shape support. For previous versions of TensorRT, refer to their respective branches. Building INetwork objects in full dimensions mode with dynamic shape support requires calling the C++ and Python API. Current supported ONNX operators are found in the operator support matrix. For building within docker, we recommend using and setting...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    cuML

    cuML

    RAPIDS Machine Learning Library

    cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions that share compatible APIs with other RAPIDS projects. cuML enables data scientists, researchers, and software engineers to run traditional tabular ML tasks on GPUs without going into the details of CUDA programming. In most cases, cuML's Python API matches the API from scikit-learn.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    OpenCV (Open Source Computer Vision Library) is a comprehensive open-source library for computer vision, machine learning, and image processing. It enables developers to build real-time vision applications ranging from facial recognition to object tracking. OpenCV supports a wide range of programming languages including C++, Python, and Java, and is optimized for both CPU and GPU operations.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 14
    Learning Interpretability Tool

    Learning Interpretability Tool

    Interactively analyze ML models to understand their behavior

    The Learning Interpretability Tool (LIT, formerly known as the Language Interpretability Tool) is a visual, interactive ML model-understanding tool that supports text, image, and tabular data. It can be run as a standalone server, or inside of notebook environments such as Colab, Jupyter, and Google Cloud Vertex AI notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    emgucv

    emgucv

    Cross platform .Net wrapper to the OpenCV image processing library

    Emgu CV is a cross platform .Net wrapper to the OpenCV image processing library. Allowing OpenCV functions to be called from .NET compatible languages. The wrapper can be compiled by Visual Studio and Unity, it can run on Windows, Linux, Mac OS, iOS and Android.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 16
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. Jittor'op is similar to NumPy. Let's try some operations. We create Var a and b via operation jt.float32, and add them. Printing those variables shows they have the same shape and dtype.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    ML.NET

    ML.NET

    Open source and cross-platform machine learning framework for .NET

    With ML.NET, you can create custom ML models using C# or F# without having to leave the .NET ecosystem. ML.NET lets you re-use all the knowledge, skills, code, and libraries you already have as a .NET developer so that you can easily integrate machine learning into your web, mobile, desktop, games, and IoT apps. ML.NET offers Model Builder (a simple UI tool) and ML.NET CLI to make it super easy to build custom ML Models. These tools use Automated ML (AutoML), a cutting edge technology that automates the process of building best performing models for your Machine Learning scenario. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers, embedded, or automotive product platforms. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 20
    CUTLASS

    CUTLASS

    CUDA Templates for Linear Algebra Subroutines

    CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes these "moving parts" into reusable, modular software components abstracted by C++ template classes. These thread-wide, warp-wide, block-wide, and device-wide...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    elasticsearch-learning-to-rank

    elasticsearch-learning-to-rank

    Plugin to integrate Learning to Rank

    The Elasticsearch Learning to Rank plugin uses machine learning to improve search relevance ranking. It's powering search at places like Wikimedia Foundation and Snagajob.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    GraphNeuralNetworks.jl

    GraphNeuralNetworks.jl

    Graph Neural Networks in Julia

    GraphNeuralNetworks.jl is a graph neural network library written in Julia and based on the deep learning framework Flux.jl.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    ...By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Shumai

    Shumai

    Fast Differentiable Tensor Library in JavaScript & TypeScript with Bun

    Shumai is an experimental differentiable tensor library for TypeScript and JavaScript, developed by Facebook Research. It provides a high-performance framework for numerical computing and machine learning within modern JavaScript runtimes. Built on Bun and Flashlight, with ArrayFire as its numerical backend, Shumai brings GPU-accelerated tensor operations, automatic differentiation, and scientific computing tools directly to JavaScript developers. It allows seamless integration of machine learning, deep learning, and custom differentiable programs into web-based or server-side environments without relying on Python frameworks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next