Seed-Music is a unified framework for high-quality and controlled music generation and editing, capable of producing vocal and instrumental works from multimodal inputs such as lyrics, style descriptions, sheet music, audio references, or voice prompts, and of supporting post-production editing of existing tracks by allowing direct modification of melodies, timbres, lyrics, or instruments. It combines autoregressive language modeling with diffusion approaches and a three-stage pipeline comprising representation learning (which encodes raw audio into intermediate representations, including audio tokens, symbolic music tokens, and vocoder latents), generation (which transforms these multimodal inputs into music representations), and rendering (which converts those representations into high-fidelity audio). The system supports lead-sheet to song conversion, singing synthesis, voice conversion, audio continuation, style transfer, and fine-grained control over music structure.