LiteRT
LiteRT (Lite Runtime), formerly known as TensorFlow Lite, is Google's high-performance runtime for on-device AI. It enables developers to deploy machine learning models across various platforms and microcontrollers. LiteRT supports models from TensorFlow, PyTorch, and JAX, converting them into the efficient FlatBuffers format (.tflite) for optimized on-device inference. Key features include low latency, enhanced privacy by processing data locally, reduced model and binary sizes, and efficient power consumption. The runtime offers SDKs in multiple languages such as Java/Kotlin, Swift, Objective-C, C++, and Python, facilitating integration into diverse applications. Hardware acceleration is achieved through delegates like GPU and iOS Core ML, improving performance on supported devices. LiteRT Next, currently in alpha, introduces a new set of APIs that streamline on-device hardware acceleration.
Learn more
Gemma 3n
Gemma 3n is our state-of-the-art open multimodal model, engineered for on-device performance and efficiency. Made for responsive, low-footprint local inference, Gemma 3n empowers a new wave of intelligent, on-the-go applications. It analyzes and responds to combined images and text, with video and audio coming soon. Build intelligent, interactive features that put user privacy first and work reliably offline. Mobile-first architecture, with a significantly reduced memory footprint. Co-designed by Google's mobile hardware teams and industry leaders. 4B active memory footprint with the ability to create submodels for quality-latency tradeoffs. Gemma 3n is our first open model built on this groundbreaking, shared architecture, allowing developers to begin experimenting with this technology today in an early preview.
Learn more
Google Cloud Vision AI
Derive insights from your images in the cloud or at the edge with AutoML Vision or use pre-trained Vision API models to detect emotion, understand text, and more. Google Cloud offers two computer vision products that use machine learning to help you understand your images with industry-leading prediction accuracy. Automate the training of your own custom machine learning models. Simply upload images and train custom image models with AutoML Vision’s easy-to-use graphical interface; optimize your models for accuracy, latency, and size; and export them to your application in the cloud, or to an array of devices at the edge. Google Cloud’s Vision API offers powerful pre-trained machine learning models through REST and RPC APIs. Assign labels to images and quickly classify them into millions of predefined categories. Detect objects and faces, read printed and handwritten text, and build valuable metadata into your image catalog.
Learn more
LFM2
LFM2 is a next-generation series of on-device foundation models built to deliver the fastest generative-AI experience across a wide range of endpoints. It employs a new hybrid architecture that achieves up to 2x faster decode and prefill performance than comparable models, and up to 3x improvements in training efficiency compared to the previous generation. These models strike an optimal balance of quality, latency, and memory for deployment on embedded systems, allowing real-time, on-device AI across smartphones, laptops, vehicles, wearables, and other endpoints, enabling millisecond inference, device resilience, and full data sovereignty. Available in three dense checkpoints (0.35 B, 0.7 B, and 1.2 B parameters), LFM2 demonstrates benchmark performance that outperforms similarly sized models in tasks such as knowledge recall, mathematics, multilingual instruction-following, and conversational dialogue evaluations.
Learn more