Take your average developer and ask "do you know language/technology X?" None of us will feel any shame in admitting that we do not know X. After all there are so many languages, frameworks and technologies, how could you know them all? But what if X is writing testable code? Somehow we have trouble answering the question "do you know how to write tests?" Everyone says yes, whether or not we actually know it. It is as if there is some shame in admitting that you don't know how to write tests.
Now I am not suggesting that people knowingly lie here, it is just that they think there is nothing to it. We think: I know how to write code, I think my code is pretty good, therefore my code is testable!
I personally think that we would do a lot better if we would recognize testability as a skill in its own right. And as such skills are not innate and take years of practice to develop. We could than treat it as any other skill and freely admit that we don't know it. We could than do something about it. We could offer classes, or other materials to grow our developers, but instead we treat it like breathing. We think that any developer can write testable code.
It took me two years of writing tests first, where I had as much tests as production code, before I started to understand what is the difference between testable and hard to test code. Ask yourself, how long have you been writing tests? What percentage of the code you write is tests?
Here is a question which you can ask to prove my point: "How do you write hard to test code?" I like to ask this question in interviews and most of the time I get silence. Sometimes I get people to say, make things private. Well if visibility is your only problem, I have a RegExp for you which will solve all of your problems. The truth is a lot more complicated, the code is hard to test doe to its structure, not doe to its naming conventions or visibility. Do you know the answer?
We all start at the same place. When I first heard about testing I immediately thought about writing a framework which will pretend to be a user so that I can put the app through its paces. It is only natural to thing this way. This kind of tests are called end-to-end-tests (or scenario or large tests), and they should be the last kind of tests which you write not the first thing you think of. End-to-end-tests are great for locating wiring bugs but are pretty bad at locating logical bugs. And most of your mistakes are in logical bugs, those are the hard ones to find. I find it a bit amusing that to fight buggy code we write even more complex framework which will pretends to be the user, so now we have even more code to test.
Everyone is in search of some magic test framework, technology, the know-how, which will solve the testing woes. Well I have news for you: there is no such thing. The secret in tests is in writing testable code, not in knowing some magic on testing side. And it certainly is not in some company which will sell you some test automation framework. Let me make this super clear: The secret in testing is in writing testable-code! You need to go after your developers not your test-organization.
Now lets think about this. Most organizations have developers which write code and than a test organization to test it. So let me make sure I understand. There is a group of people which write untestable code and a group which desperately tries to put tests around the untestable code. (Oh and test-group is not allowed to change the production code.) The developers are where the mistakes are made, and testers are the ones who feel the pain. Do you think that the developers have any incentive to change their behavior if they don't feel the pain of their mistakes? Can the test-organization be effective if they can't change the production code?
It is so easy to hide behind a "framework" which needs to be built/bought and things will be better. But the root cause is the untestable code, and until we learn to admit that we don't know how to write testable code, nothing is going to change...
We all have separation anxiety. Its a human tendency. We love inertia, and we don’t like change. But why should your code have separation anxiety ? Its not human (even though it might try and grow a brain of its own at times)!
I bring this up because I got the chance to work with someone who had some questions on how to test UI code. Fairly innocuous question, and in most cases, my response would have been, keep the UI code simple and free of any logic, and don’t worry too much about it. Or you could write some nice end to end / integration tests / browser based tests. So with that response set in mind, I set off into the unknown. Little was I to know was that was the least of my concerns. As I sat down to look at the code, I saw that there were already tests for the code. I was optimistic now, I mean, how bad could things be if there are already tests for it ?
Well, I should remember next time to actually look at the tests first. But anyways, there were tests, so I was curious what kinds of tests they wanted to write and what kind of help I could provide, if any. So it turns out, the class was some sort of GUI Component, which basically had some fields, and depending on whether they were set of not, displayed them as widgets inside of it. So there were, say, 5 fields, and differing combinations of what was set would produce different output. The nice thing was that the rendered data was returned as a nice Java object, so you could easily assert on what was set, and get a handle on the widgets inside of it, etc. So the method was something along the following lines :
public RenderedWidgetGroup render() { RenderedWidgetGroup group = createWidgetGroup(this.componentId, this.parent); if (this.name = null) { return group; } group.addWidget(new TextWidget(this.name)); group.addWidget( new DateWidget( this.updatedTimestamp == null ? this.createdTimestamp : this.updatedTimestamp)); return group;}
So far, so good, right ? Nice, clean, should be easy to test if we can set up this component with the right fields. After that, it should just be a few tests based on the different code paths defined by the conditionals. Yeah, thats what I thought too. So, me, being the naive guy that I was, said, yeah, that looks nice, should be easy to test. I don’t see the problem.
Well, then I was taken to the tests. The first thing I see is a huge test. Or atleast thats what I think it is. Then I read it more closely, and see its a private method. It seems to take in a bunch of fields (Fields with names that I distinctly remembered from just a while ago) and churn out a POJO (Plain Old Java Object). Except this POJO was not the GUI Component object I expected. So obviously, I was curious (and my testing sensors were starting to tingle). So I followed through to where it was called (which wasn’t very hard, it was a private method) and lo and behold, my worst fears confirmed.
The POJO object generated by the private method was passed in to the constructor of the GUI component, which (on following it further down the rabbit hole) in its constructor did something like the following :
public MyGUIComponent(ComponentId id, Component parent, MyDataContainingPOJO pojo) { super(id, parent); readData(pojo);}
And of course, readData, as you would expect, is a :
And of course, without writing the exact opposite of this method in the unit test, it just wasn’t possible to write unit tests. And sudddenly, it became clear why they were having trouble unit testing their Gui Components. Because if they wanted to test render (Which was really their aim), they would have to set up this POJO with the correct fields (which of course, to make things more interesting / miserable, had sub POJOs with sub POJOs of their own. Yay!) to be exercised in their test.
The problem with this approach is two fold :
This also adds, as I saw, obviously complicated pre test setup logic which should not be required to test something completely different. This is a HUGE code smell. Unit testing a class should not be an arduous, painful task. It should be easy as setting up a POJO and testing a method. The minute you have to perform complicated setup to Unit test a class (Note, the keyword is unit test. You can have integration tests which need some non trivial setup.), stop! There is something wrong.
The problem here is that there is a mixing of concerns in the MyGuiComponent class. As it turns out, MyGuiComponent breaks a few fundamental rules of testability. One, it does work in the constructor. Two, it violates the law of demeter, which states that the class should ask for what it needs, not what it doesn’t need to get what it needs (Does that even make sense ?). Thirdly, it is mixing concerns. That is, it does too much. It knows both how to create itself as well as do the rendering logic. Let me break this down further :
If you scroll back up and look at the constructor for MyGuiComponent, you will see it calling readData(pojo). Now, the basic concept to test any class is that you have to create an instance of the class under test (unless it has static methods. Don’t get me started on that…). So now, every time you create an instance of MyGuiComponent, guess what ? readData(pojo) is going to get called. Every. Single. Time ! And it cannot be mocked out. Its a private method. And god forbid if you really didn’t care about the pojo and passed in a null. Guess what ? It most probably will blow up with a NullPointerException. So suddenly, that innocuous method in the constructor comes back to haunt you when you write yours tests (You are, aren’t you ?).
Furthermore, if you look at what readData(pojo) does, you would be even more concerned. At its base, MyGuiComponent only cares about 6 fields which it needs to render. Depending on the state of each of these fields, it adds widget. So why does the constructor ask for something totally unrelated ? This is a fundamental violation of the Law of Demeter. The Law of Demeter can be summed up as “Ask for what you need. If you need to go through one object to get what you need, you are breaking it.”. A much more fancier definition can be found on the web if you care, but the minute you see something like A.B().C() or something along those lines, there is a potential violation.
In this case, MyGuiComponent doesn’t really care about the POJO. It only cares about some fields in the POJO, which it then assigns to its own fields. But the constructor still asks for the POJO instead of directly asking for the fields. What this means is that instead of just creating an instance of MyGuiComponent with the required fields in my test, I now have to create the POJO with the required fields and pass that in instead of just setting it directly. Convoluted, anyone ?
Finally, what could be considered an extension of the previous one, but deserves a rant of its own. What the fundamental problem with the above class is that it is mixing concerns. It knows both how to create itself as well as how to render itself once it has been created. And the way it has been coded enforces that the creation codepath is executed every single time. To provide an analogy for how ridiculous this is, it is like a a Car asking for an Engine Number and then using that number to create its own engine. Why the heck should a car have to know how to create its engine ? Or even a car itself ? Similarly, why should MyGuiComponent know how to create itself ? Which is exactly what is happening here.
Now that we had arrived at the root of the problem, we immediately went about trying to fix it. My immediate instinct was to pull out MyGuiComponent into the two classes that I was seeing. So we pulled out a MyGuiComponentFactory, which took up the responsibility of taking in the POJO and creating a GuiComponent out of it. Now this was independently testable. We also added a builder pattern to the MyGuiComponent, which the factory leveraged.
class MyGuiComponentFactory { MyGuiComponent createFromPojo(ComponentId id, Component parent, MyDataContainingPOJO pojo) { // Actual logic of converting from pojo to // MyGuiComponent using the builder pattern }}class MyGuiComponent { public MyGuiComponent(ComponentId id, Component parent) { super(id, parent); } public MyGuiComponent setName(String name) { this.name = name; return this; }}
And now, suddenly (and expectedly, I would like to add), the constructor for MyGuiComponent becomse simple. There is no work in the constructor. The fields are set up through setters and the builder pattern. So now, we started writing the unit tests for the render methods. It took about a single line of setup to instantiate MyGuiComponent, and we could test the render method in isolation now. Hallelujah!!
Disclaimer :No code was harmed / abused in the course of the above blog post. There were no separation issues whatsoever in the end, it was a clean mutual break!