
Homework 2: Induction, Coinduction, and Polymorphism
15-814: Types and Programming Languages

Fall 2015
TA: Evan Cavallo (ecavallo@cs.cmu.edu)

Out: 9/24/15
Due: 10/8/15 at 10:30am

1 Termination in System T

Gödel’s System T, presented in Appendix A as we defined it in class, has the valuable property
that any program we can write will evaluate to a value in a finite number of steps. In this section,
we will look at how to prove this fact using Tait’s reducibility method, which is an instance of
the ubiquitous technique of logical relations. The theorem we want to prove is the following:

Theorem (Normalization): If · ` e : τ , then there exists v val such that e 7→∗ v.

(Here, 7→∗ is the transitive closure of the step judgment 7→.) We might hope to prove this
theorem directly by induction on the typing judgment. As we briefly discussed in class, however,
this approach is insufficient. The case for the application rule (App) is demonstrative.

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1e2 : τ
(App)

In this case, our induction hypotheses tell us that e1 7→∗ v1 and e2 7→∗ v2 for some values v1 and
v2. By preservation and the appropriate canonical forms lemma, we know that v1 = λx : τ ′.e′

for some e′. It follows that e1e2 7→∗ v1e2 7→ [e2/x]e′. Unfortunately, we are now stuck, as we
have no information about the behavior of [e2/x]e′.

We will solve this by generalizing, proving a stronger statement which gives us more information
as an induction hypothesis. Specifically, we will define a reducibility predicate Redτ (e) and prove
the following theorem.

Theorem A: If · ` e : τ , Redτ (e).

Since we’ll define Redτ such that Redτ (e) implies the existence of v val with e 7→∗ v, this will
give normalization as a special case. The definition will go by structural induction on the type τ ,
which makes Redτ what is called a logical relation. (In particular, it is a unary logical relation;
we will encounter binary logical relations, such as logical equivalence e ∼τ e′, later in the course.)
Actually, we will prove an even more general theorem in order to account for open terms; to
state it concisely, we first want to define some notation for substitutions.

Definition: A substitution γ = {x1 ↪→ e1, . . . , xn ↪→ en} is a finite mapping
from variables to terms. Given an expression e, we write γ(e) for the expression
[e1, . . . , en/x1, . . . , xn]e, that is, the simultaneous substitution in e of each expres-
sion ei for its corresponding variable xi. For γ as above, we define γ
 Γ to mean that
Γ = x1 : τ1, . . . , xn : τn for some τ1, . . . , τn such that Redτi(ei) holds for 1 ≤ i ≤ n.

1

Now we state the theorem we will actually prove:

Theorem B: If Γ ` e : τ and γ
 Γ then Redτ (γ(e)).

Theorem A follows as the special case where Γ = · and γ = 〈〉. Finally, we define the predicate
Redτ by structural induction on τ :

• Redτ1→τ2(e) holds if

1. · ` e : τ1 → τ2,

2. there exists v val such that e 7→∗ v, and

3. for any e′ such that Redτ1(e′), we have Redτ2(ee′).

• Rednat(e) holds if

1. · ` e : nat,

2. there exists v val such that e 7→∗ v, and

3. v ↓, where v ↓ is a judgment defined by

z ↓ (↓-Z)
e 7→∗ v v val v ↓

s(e) ↓
(↓-S)

Note that Redτ1→τ2(e) is defined in terms of Red at the structurally smaller types τ1 and τ2, so
the definition is well-founded. To get you started on the proof, and to see how this definition
succeeds where the previous attempt failed, here is the (App) case:

• Case (App): We have Γ ` e1e2 : τ with Γ ` e1 : τ ′ → τ and Γ ` e2 : τ ′ for some
τ ′. Per the theorem statement, we assume we are given γ
 Γ and want to prove that
Redτ (γ(e1e2)). By definition of substitution, we have that γ(e1e2) = γ(e1)γ(e2). Moreover,
our induction hypotheses tell us that Redτ ′→τ (γ(e1)) and Redτ ′(γ(e2)). From condition 3
in the definition of Redτ ′→τ , we know that for any e′ with Redτ ′(e′) we have Redτ (γ(e1)e′).
Taking e′ = γ(e2) thus gives our goal.

With the right definition Red in hand, the (App) case follows almost trivially. On the other
hand, the (Lam) case becomes more difficult. In general, though, proving the theorem is the
easy part of a logical relations argument – the hard part is choosing the right theorem to prove.

To complete the proof, you’ll need the following lemma.

Lemma (Closure under Head Expansion): If Redτ (e′), · ` e : τ and e 7→ e′,
then Redτ (e).

Task 1 Prove closure under head expansion.

With the help of Preservation, closure under head expansion extends to apply when e 7→∗ e′ in
multiple steps (you can use this without proof).

Task 2 Prove the remaining cases of Theorem B.

2

2 Programming with nats and streams

Consider an extension of Gödel’s T with sums, products, and a coinductive type of streams. The
type stream τ consists of streams which produce values of type τ . We will call this language
LNS.

τ ::= τ1 × τ2 | τ1 + τ2 | nat | stream τ
e ::= · · · | z | s(e) | rec(e; e;x.e) | hd(e) | tl(e) | strgen e {hd(x) ↪→ e | tl(x) ↪→ e}

(The statics and dynamics for stream τ are given in Appendix B. The rules for products and
sums are as in PFPL 10 and 11; we’ll assume lazy evaluation to match our presentation of T, but
it won’t make a difference here.) In class, we briefly mentioned iteration and primitive recursion
in relation to the operator rec. In this context, rec in LNS corresponds to iteration and may
be called the iterator. We can define an alternate form rec′(e; e0;x.y.e1) which corresponds to
primitive recursion. In this form, e1 has access to two bound variables. As in the iterator, x is
bound to the result of recursing on the predecessor of e (assuming e is of the form s(e′)). In the
new recursor, y is bound to the predecessor itself.

rec′(z; e0;x.y.e1) 7→ e0

rec′(s(e); e0;x.y.e1) 7→ [rec′(e; e0;x.y.e1), e/x, y]e1

It is simple to define rec(e; e0;x.e1) in terms of rec′(e; e0;x.y.e1); simply ignore y. Using the
other constructs of LNS, it is also possible to define rec′ in terms of rec. (It is not possible,
however, in plain System T!) We can write

rec′(e; e0;x.y.e1) , (rec(e; 〈e0, z〉; p.〈[p · l, p · r/x, y]e1, s(p · r)〉)) · l

Now that we have a more useful recursor, we’ll get some practice working with nats and streams.
In all of the below definitions, you may use any of the constructs of LNS, as well as rec′. You
may also find it helpful to break large definitions into intermediate ones, give them names, and
refer to them in the larger definition.

Task 3

1. Define plus, where plus m n 7→∗ m+ n.1

2. Define minus, where minus m n 7→∗ m− n if m > n. It should produce 0 otherwise.

3. Define leq, where leq m n 7→∗ l · 〈〉 if m ≤ n and leq m n 7→∗ r · 〈〉 otherwise.

4. Define mod, where mod m n = m mod n.

Next, we define some functions on nat streams.

1We will write n to indicate the representation of a natural number n as an element of type nat.

3

Task 4

1. Define a function delay, which takes a nat and a nat stream and produces a stream whose
head is the given nat and whose tail is the given stream; if we think of the input stream as
a signal, this function delays the input signal by one clock tick and maintains the delayed
value in a buffer. For example, delay 0 nats should return the stream 0, 0, 1, 2, 3,

2. Define a function csum, which takes a nat stream and produces a nat stream that is the
cumulative sum of the input stream; csum nats should be 0, 1, 3, 6,

The type stream τ is isomorphic (in a sense we will make precise later in the class) to the type
nat→ τ . If f is the function representation of a stream s, f n returns the nth element of s (i.e.
hd(tl(n)(s)), where tl(n) indicates n applications of tl.)

Task 5 Rewrite the definitions of Task 4, using nat → nat functions anywhere nat streams
appear (i.e. the stream arguments should be functions as described above, as should the result.)

3 Inductive and Coinductive Types

3.1 Generic Programming

In this section, we will generalize nat and stream to arbitrary inductive and coinductive types.
Recall that the generalized versions of the recursor and generator are defined using the generic
extension primitive map{t.τ}(x.e). Before diving into the full generality of inductive and coin-
ductive types, let’s do a little generic programming.

A database schema may be viewed as giving a type to the records of the database. With sums, we
can cleanly express optional fields or alternatives. For example (using the generalized notation
for products), we might define a type

string× (string + unit)× string× (int + string)

for a database that has fields for a first name, an optional middle name, a last name, and either
a phone number or email address.

Task 6

1. Write a function crecord : record → record which uses a given capitalization function
c : string→ string to capitalize the first, middle, and last name entries, without using
the map operator. (Assume that × associates to the right, so τ1 × τ2 × τ3 is shorthand for
τ1 × (τ2 × τ3).)

2. Now define crecord as an application of map.

Recall the statics and dynamics rules for map. There is a different dynamics rule for each type
constructor that map can operate over, so we’ll just show the representative case of products
(see PFPL 14.2 for others).

4

t.τ pos Γ, x : ρ ` e′ : ρ′ Γ ` e : [ρ/t]τ

Γ ` map{t.τ}(x.e′)(e) : [ρ′/t]τ

map{t.τ1 × τ2}(x.e′)(e) 7→ 〈map{t.τ1}(x.e′)(e · l), map{t.τ2}(x.e′)(e · r〉)

We have to restrict map to a certain class of type operators, because not all type operators are
covariant. (For example, it would not be possible to define map for the operator t.t→ t.) Here,
we’ve restricted to positive operators, which are defined by the following judgment.

t.t pos t.unit pos
t.τ1 pos t.τ2 pos
t.τ1 × τ2 pos t.void pos

t.τ1 pos t.τ2 pos
t.τ1 + τ2 pos

t 6∈ τ1 τ2 pos
t.τ1 → τ2 pos

Task 7 Suppose we add a new rule
t.τ pos

t.stream τ pos

Give a new dynamics rule for map to cover this case. Prove the case of preservation corresponding
to your dynamics rule.

3.2 Trees

For the rest of this section, we will work in a language M with general inductive and coinductive
types, in addition to sums, products and functions. The formal definition of this language is
given in PFPL 15.2 and 15.3. For the sake of convenience, we’ll also include the type nat from
System T.

τ ::= ... | µt.τ | νt.τ
e ::= ... | fold{t.τ}(e) | rec{t.τ}(x.e1; e2) | unfold{t.τ}(e) | gen{t.τ}(x.e1; e2)

Task 8

1. Define a type btree of binary trees with values of type nat at each node (excluding leaves).

2. Define the empty tree bemp : btree.

3. Define the function val : btree→ (nat + unit), which returns the value at the root node
or returns r · 〈〉 on the empty tree.

4. Define the function sum : btree → nat which returns the sum of all of the numbers in a
tree. It should return z on the empty tree.

Task 9

1. Define a type itree of infinite binary trees with values of type nat at every node. Every
node has two children; there are no leaves and there is no empty tree.

2. Define the infinite tree containing zero at every node.

5

3. Define the function val : btree→ nat, which returns the value at the root node.

4. Define the function embed : btree→ itree, which embeds an finite tree in an infinite one
by extending with zeroes.

Task 10 Assume we generalize all of our definitions to handle nested type operators (e.g.
µt.µs.τ where τ may contain both s and t.) This allows us to combine inductive and coin-
ductive types.

1. Define a type of nat-valued tree with finite depth but infinite branching factor. A tree of
this type is either empty or is a node with a value of type nat and a stream of children.

2. Define the dual of the above type: a nat-valued tree with (potentially) infinite depth and
finite but variable branching factor. A tree of this type is a node with a value of type nat

and a finite list of children.

In both cases, you need only define the type. You do not need to define any operations over it.

4 System F

4.1 Church Encoding

Recall the syntax of System F.

τ ::= α | τ → τ | ∀α.τ
e ::= λx:τ.e | ee | Λα.e | e[τ]

Using the few type constructors available in System F, it is possible to define types with the
same behavior as almost any of the types we have studied. For example, we can define products
and sums with

τ1 × τ2 , ∀t.(τ1 → τ2 → t)→ t

〈e1, e2〉 , Λt.λf :τ1 → τ2 → t.fe1e2
e · l , e[τ1](λx:τ1.λy:τ2.x)

e · r , e[τ2](λx:τ1.λy:τ2.y)

τ1 + τ2 , ∀t.(τ1 → t)→ (τ2 → t)→ t

l · e1 , Λt.λf1:τ1 → t.λf1:τ2 → t.f1e1
r · e2 , Λt.λf1:τ1 → t.λf1:τ2 → t.f2e2

case e {x1.e1;x2.e2} , e[τ](λx1:τ1.e1)(λx2:τ2.e2)

unit , ∀t.t→ t

〈〉 , Λt.λx:t.x

void , ∀t.t
abort[τ](e) , e[τ]

These are called Church encodings and were originally defined by Alonzo Church in the untyped
λ-calculus.

6

Task 11 Using the definitions above, we are able to define a System F equivalent for any type
operator t.τ pos as defined in Section 3.1. Since we have also translated the constructors and
recursors for these types, we can define map as well. Use these to define, for any t.τ pos, the
System F equivalent of µt.τ along with fold and rec. (You may want to try encoding some
specific cases first to develop some intuition.)

Task 12 Define νt.τ for any t.τ pos, along with gen and unfold. (Hint) Recall that coinductive
types use hidden internal state in order to respond to unfold. As such, you may find it useful
to use existential types, which are definable in System F per PFPL 17.3.

A System T

A.1 Statics

Γ, x : τ ` x : τ
(Hyp)

Γ ` z : nat
(Z)

Γ ` e : nat
Γ ` s(e) : nat

(S)

Γ ` e : nat Γ ` e0 : τ Γ, x : τ ` e1 : τ

Γ ` rec(e; e0;x.e1) : τ
(Rec)

Γ, x : τ ′ ` e : τ

Γ ` λx:τ ′.e : τ ′ → τ
(Lam)

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1e2 : τ
(App)

A.2 Dynamics

z val
(Z-V)

s(e) val
(S-V) e 7→ e′

rec(e; e0;x.e1) 7→ rec(e′; e0;x.e1)
(Rec-S)

rec(z; e0;x.e1) 7→ e0
(Rec-IZ)

rec(s(e); e0;x.e1) 7→ [rec(e; e0;x.e1)/x]e1
(Rec-IS)

λx:τ.e val
(Lam-V)

e1 7→ e′1
e1e2 7→ e′1e2

(App-S)
(λx:τ.e)e′ 7→ [e′/x]e

(App-I)

B Streams

B.1 Statics

Γ ` e : τ ′ Γ, x : τ ′ ` e1 : τ Γ, x : τ ′ ` e2 : τ ′

Γ ` strgen e {hd(x) ↪→ e1 | tl(x) ↪→ e2} : stream τ
(Str) Γ ` e : stream τ

Γ ` hd(e) : τ
(Hd)

7

Γ ` e : stream τ
Γ ` tl(e) : stream τ

(Tl)

B.2 Dynamics

strgen e {hd(x) ↪→ e1 | tl(x) ↪→ e2} val
(Str-V) e 7→ e′

hd(e) 7→ hd(e′)
(Hd-S)

hd(strgen e {hd(x) ↪→ e1 | tl(x) ↪→ e2}) 7→ [e/x]e1
(Hd-I) e 7→ e′

tl(e) 7→ tl(e′)
(Tl-S)

tl(strgen e {hd(x) ↪→ e1 | tl(x) ↪→ e2}) 7→ strgen ([e/x]e2) {hd(x) ↪→ e1 | tl(x) ↪→ e2}
(Tl-I)

8

	Termination in System T
	Programming with nats and streams
	Inductive and Coinductive Types
	Generic Programming
	Trees

	System F
	Church Encoding

	System T
	Statics
	Dynamics

	Streams
	Statics
	Dynamics

