Count of subsequences with a sum in range [L, R] and difference between max and min element at least X
Last Updated :
23 Jul, 2025
Given an array arr[] consisting of N positive integers and 3 integers L, R, and X, the task is to find the number of subsequences of size atleast 2 with a sum in the range [L, R], and the difference between the maximum and minimum element is at least X. (N≤15)
Examples:
Input: arr[] = {1 2 3}, L = 5, R = 6, X = 1
Output: 2
Explanation:
There are two subsequences possible i.e. {2, 3} and {1, 2, 3}.
Input: arr[] = {10, 20, 30, 25}, L = 40, R = 50, X = 10
Output: 2
Approach: Since N is small, this problem can be solved using bitmasking. There are total 2n subsequences possible. So, every subsequence can be represented by a binary string i.e. mask where if the ith bit is set i.e 1 then the element is considered in the subsequences otherwise not. Follow the steps below to solve the problem:
- Iterate in the range [0, 2n - 1] using the variable i and perform the following steps:
- Initialize a variable say, cnt as 0 and sum as 0 to store the sum of selected elements.
- Initialize a variable say, minVal as INT_MAX and maxVal as INT_MIN to store minimum value and maximum value in the subsequence.
- Iterate in the range [0, N-1] using the variable j and perform the following steps:
- If the jth bit of the ith mask is on, then Increment cnt by 1, add arr[j] to sum and update maxVal as the maximum of maxVal and a[j] and minVal as the minimum of minVal and a[j].
- If cnt >= 2 and sum is in the range [L, R] and the difference of maxVal and minVal is greater than equal to X, then increment ans by 1.
- After completing the above steps, print the value of ans as the answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the number of subsequences
// of the given array with a sum in range [L, R]
// and the difference between the maximum and
// minimum element is at least X
int numberofSubsequences(int a[], int L,
int R, int X, int n)
{
// Initialize answer as 0
int ans = 0;
// Creating mask from [0, 2^n-1]
for (int i = 0; i < (1 << n); i++) {
// Stores the count and sum of
// selected elements respectively
int cnt = 0, sum = 0;
// Variables to store the value of
// Minimum and maximum element
int minVal = INT_MAX, maxVal = INT_MIN;
// Traverse the array
for (int j = 0; j < n; j++) {
// If the jth bit of the ith
// mask is on
if ((i & (1 << j))) {
cnt += 1;
// Add the selected element
sum += a[j];
// Update maxVal and minVal value
maxVal = max(maxVal, a[j]);
minVal = min(minVal, a[j]);
}
}
// Check if the given conditions are
// true, increment ans by 1.
if (cnt >= 2 && sum >= L && sum <= R
&& (maxVal - minVal >= X)) {
ans += 1;
}
}
return ans;
}
// Driver Code
int main()
{
// Given Input
int a[] = { 10, 20, 30, 25 };
int L = 40, R = 50, X = 10;
int N = sizeof(a) / sizeof(a[0]);
// Function Call
cout << numberofSubsequences(a, L, R, X, N)
<< endl;
return 0;
}
Java
// Java program for the above approach
public class GFG {
// Function to find the number of subsequences
// of the given array with a sum in range [L, R]
// and the difference between the maximum and
// minimum element is at least X
static int numberofSubsequences(int a[], int L, int R,
int X, int n)
{
// Initialize answer as 0
int ans = 0;
// Creating mask from [0, 2^n-1]
for (int i = 0; i < (1 << n); i++) {
// Stores the count and sum of
// selected elements respectively
int cnt = 0, sum = 0;
// Variables to store the value of
// Minimum and maximum element
int minVal = Integer.MAX_VALUE,
maxVal = Integer.MIN_VALUE;
// Traverse the array
for (int j = 0; j < n; j++) {
// If the jth bit of the ith
// mask is on
if ((i & (1 << j)) == 0) {
cnt += 1;
// Add the selected element
sum += a[j];
// Update maxVal and minVal value
maxVal = Math.max(maxVal, a[j]);
minVal = Math.min(minVal, a[j]);
}
}
// Check if the given conditions are
// true, increment ans by 1.
if (cnt >= 2 && sum >= L && sum <= R
&& (maxVal - minVal >= X)) {
ans += 1;
}
}
return ans;
}
// Driver code
public static void main(String[] args)
{
int a[] = { 10, 20, 30, 25 };
int L = 40, R = 50, X = 10;
int N = a.length;
// Function Call
System.out.println(
numberofSubsequences(a, L, R, X, N));
}
}
// This code is contributed by abhinavjain194
Python3
# Python3 program for the above approach
import sys
# Function to find the number of subsequences
# of the given array with a sum in range [L, R]
# and the difference between the maximum and
# minimum element is at least X
def numberofSubsequences(a, L, R, X, n):
# Initialize answer as 0
ans = 0
# Creating mask from [0, 2^n-1]
for i in range(0, (1 << n), 1):
# Stores the count and sum of
# selected elements respectively
cnt = 0
sum = 0
# Variables to store the value of
# Minimum and maximum element
minVal = sys.maxsize
maxVal = -sys.maxsize - 1
# Traverse the array
for j in range(n):
# If the jth bit of the ith
# mask is on
if ((i & (1 << j))):
cnt += 1
# Add the selected element
sum += a[j]
# Update maxVal and minVal value
maxVal = max(maxVal, a[j])
minVal = min(minVal, a[j])
# Check if the given conditions are
# true, increment ans by 1.
if (cnt >= 2 and sum >= L and
sum <= R and (maxVal - minVal >= X)):
ans += 1
return ans
# Driver Code
if __name__ == '__main__':
# Given Input
a = [ 10, 20, 30, 25 ]
L = 40
R = 50
X = 10
N = len(a)
# Function Call
print(numberofSubsequences(a, L, R, X, N))
# This code is contributed by bgangwar59
C#
// C# program for the above approach
using System;
class GFG{
// Function to find the number of subsequences
// of the given array with a sum in range [L, R]
// and the difference between the maximum and
// minimum element is at least X
static int numberofSubsequences(int[] a, int L, int R,
int X, int n)
{
// Initialize answer as 0
int ans = 0;
// Creating mask from [0, 2^n-1]
for(int i = 0; i < (1 << n); i++)
{
// Stores the count and sum of
// selected elements respectively
int cnt = 0, sum = 0;
// Variables to store the value of
// Minimum and maximum element
int minVal = Int32.MaxValue,
maxVal = Int32.MinValue;
// Traverse the array
for(int j = 0; j < n; j++)
{
// If the jth bit of the ith
// mask is on
if ((i & (1 << j)) == 0)
{
cnt += 1;
// Add the selected element
sum += a[j];
// Update maxVal and minVal value
maxVal = Math.Max(maxVal, a[j]);
minVal = Math.Min(minVal, a[j]);
}
}
// Check if the given conditions are
// true, increment ans by 1.
if (cnt >= 2 && sum >= L && sum <= R &&
(maxVal - minVal >= X))
{
ans += 1;
}
}
return ans;
}
// Driver Code
static public void Main()
{
// Given input
int[] a = { 10, 20, 30, 25 };
int L = 40, R = 50, X = 10;
int N = a.Length;
// Function Call
Console.Write(numberofSubsequences(a, L, R, X, N));
}
}
// This code is contributed by avijitmondal1998
JavaScript
<script>
// Javascript program for the above approach
// Function to find the number of subsequences
// of the given array with a sum in range [L, R]
// and the difference between the maximum and
// minimum element is at least X
function numberofSubsequences(a, L, R, X, n)
{
// Initialize answer as 0
let ans = 0;
// Creating mask from [0, 2^n-1]
for (let i = 0; i < (1 << n); i++) {
// Stores the count and sum of
// selected elements respectively
let cnt = 0, sum = 0;
// Variables to store the value of
// Minimum and maximum element
let minVal = Number.MAX_SAFE_INTEGER, maxVal = Number.MIN_SAFE_INTEGER;
// Traverse the array
for (let j = 0; j < n; j++)
{
// If the jth bit of the ith
// mask is on
if ((i & (1 << j)))
{
cnt += 1;
// Add the selected element
sum += a[j];
// Update maxVal and minVal value
maxVal = Math.max(maxVal, a[j]);
minVal = Math.min(minVal, a[j]);
}
}
// Check if the given conditions are
// true, increment ans by 1.
if (cnt >= 2 && sum >= L && sum <= R
&& (maxVal - minVal >= X)) {
ans += 1;
}
}
return ans;
}
// Driver Code
// Given Input
let a = [10, 20, 30, 25];
let L = 40, R = 50, X = 10;
let N = a.length;
// Function Call
document.write(numberofSubsequences(a, L, R, X, N) + "<br>");
// This code is contributed by gfgking.
</script>
Time Complexity: O(N×2N)
Auxiliary Space: O(1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem