Question 1. Show that the points whose position vectors are given are collinear:
(i) 2\hat{i}+\hat{j}-\hat{k}, 3\hat{i}-2\hat{j}+\hat{k}, and \ \hat{i}+4\hat{j}-3\hat{k}
Solution:
Let x = 2\hat{i}+\hat{j}-\hat{k}
y = 3\hat{i}-2\hat{j}+\hat{k}
z = \hat{i}+4\hat{j}-3\hat{k}
Then
\overrightarrow{xy} = Position vector of (y) - Position vector of (x)
= 3\hat{i}-2\hat{j}+\hat{k}-2\hat{i}-\hat{j}+\hat{k}
= \hat{i}-3\hat{j}+2\hat{k}
\overrightarrow{yz} = Position vector of (z) - Position vector of (y)
= \hat{i}+4\hat{j}-3\hat{k} - 3\hat{i}+2\hat{j}-\hat{k}
= -2\hat{i}+6\hat{j}-4\hat{k}
As, \overrightarrow{yz} = -2(\overrightarrow{xy})
So, \overrightarrow{yz} and \overrightarrow{xy} are parallel vectors but y is a common point to them. Hence, the given points x, y, z are collinear.
(ii) 3\hat{i}-2\hat{j}+4\hat{k}, \hat{i}+\hat{j}+\hat{k}, and \ -\hat{i}+4\hat{j}-2\hat{k}
Solution:
Let
x = 3\hat{i}-2\hat{j}+4\hat{k}
y = \hat{i}+\hat{j}+\hat{k}
z = -\hat{i}+4\hat{j}-2\hat{k}
Then,
\overrightarrow{xy} = Position vector of (y) - Position vector of (x)
= \hat{i}+\hat{j}+\hat{k}-3\hat{i}+2\hat{j}-4\hat{k}
= -2\hat{i}+3\hat{j}-3\hat{k}
\overrightarrow{yz} = Position vector of (z) - Position vector of (y)
= -\hat{i}+4\hat{j}-2\hat{k}-\hat{i}-\hat{j}-\hat{k}
= -2\hat{i}+3\hat{j}-3\hat{k}
As, \overrightarrow{yz} = \overrightarrow{xy}
So, \overrightarrow{yz} and \overrightarrow{xy} are parallel vectors but y is a common point to them. Hence, the given points x, y, z are collinear.
Question 2 (i). Using vector method, prove that A(6, -7, -1), B(2, -3, 1), and C(4, -5, 0) are collinear.
Solution:
The points given are A(6, -7, -1), B(2, -3, 1), and C(4, -5, 0)
So, \vec{A}=6\hat{i}-7\hat{j}-\hat{k}
\vec{B}=2\hat{i}-3\hat{j}+\hat{k}
\vec{C}=4\hat{i}-5\hat{j}
\overrightarrow{AB} = Position vector of (B) - Position vector of (A)
= 2\hat{i}-3\hat{j}+\hat{k}-6\hat{i}+7\hat{j}+\hat{k}
= -4\hat{i}+4\hat{j}+2\hat{k}
\overrightarrow{BC} = Position vector of (C) - Position vector of (B)
=4\hat{i}-5\hat{j}-2\hat{i}+3\hat{j}-\hat{k}
= 2\hat{i}-2\hat{j}-\hat{k}
As, \overrightarrow{AB} = -2(\overrightarrow{BC})
So, \overrightarrow{AB} and \overrightarrow{BC} are parallel vectors but B is a common point to them. Hence, the given points A, B, C are collinear.
Question 2 (ii). Using vector method, prove that A(2, -1, 3), B(4, 3, 1), and C(3, 1, 2) are collinear.
Solution:
The points given are A(2, -1, 3), B(4, 3, 1), C(3, 1, 2)
So, the \vec{A}=2\hat{i}-\hat{j}+3\hat{k}
\vec{B}=4\hat{i}+3\hat{j}+\hat{k}
\vec{C}=3\hat{i}+\hat{j}+2\hat{k}
\overrightarrow{AB} = Position vector of (B) - Position vector of (A)
= 4\hat{i}+3\hat{j}+\hat{k}-2\hat{i}+\hat{j}-3\hat{k}
= 2\hat{i}+4\hat{j}-2\hat{k}
\overrightarrow{BC} = Position vector of (C) - Position vector of (B)
= 3\hat{i}+\hat{j}+2\hat{k}-4\hat{i}-3\hat{j}-\hat{k}
= -\hat{i}-2\hat{j}+\hat{k}
As, \overrightarrow{AB} = -2(\overrightarrow{BC})
So, \overrightarrow{AB} and \overrightarrow{BC} are parallel vectors but B is a common point to them. Hence, the given points A, B, C are collinear.
Question 2 (iii). Using vector method, prove that X(1, 2, 7), Y(2, 6, 3), and Z(3, 10, -1) are collinear.
Solution:
The points given are X(1, 2, 7), Y(2, 6, 3), Z(3, 10, -1).
So, the \vec{X}=\hat{i}+2\hat{j}+7\hat{k}
\vec{Y}=2\hat{i}+6\hat{j}+3\hat{k}
\vec{Z}=3\hat{i}+10\hat{j}-\hat{k}
\overrightarrow{XY} = Position vector of (Y) - Position vector of (X)
= 2\hat{i}+6\hat{j}+3\hat{k}-\hat{i}-2\hat{j}-7\hat{k}
= \hat{i}+4\hat{j}-4\hat{k}
\overrightarrow{YZ} = = Position vector of (Z) - Position vector of (Y)
= 3\hat{i}+10\hat{j}-\hat{k}-2\hat{i}-6\hat{j}-3\hat{k}
= \hat{i}+4\hat{j}-4\hat{k}
As, \overrightarrow{YZ} = \overrightarrow{XY}
So, \overrightarrow{YZ} and \overrightarrow{XY} are parallel vectors but Y is a common point to them. Hence, the given points X, Y, Z are collinear.
Question 2 (iv). Using vector method, prove that X(-3, -2, -5), Y(1, 2, 3), and Z(3, 4, 7) are collinear.
Solution:
The given points are X(-3, -2, -5), Y(1, 2, 3), and Z(3, 4, 7)
So, \vec{X}=-3\hat{i}-2\hat{j}-5\hat{k}
\vec{Y}=\hat{i}+2\hat{j}+3\hat{k}
\vec{Z}=3\hat{i}+4\hat{j}+7\hat{k}
\overrightarrow{XY} = Position vector of (Y) - Position vector of (X)
= \hat{i}+2\hat{j}+3\hat{k}+3\hat{i}+2\hat{j}+5\hat{k}
= 4\hat{i}+4\hat{j}+8\hat{k}
\overrightarrow{YZ} = = Position vector of (Z) - Position vector of (Y)
= 3\hat{i}+4\hat{j}+7\hat{k}-\hat{i}-2\hat{j}-3\hat{k}
= 2\hat{i}+2\hat{j}+4\hat{k}
As, \overrightarrow{YZ} = 2(\overrightarrow{XY})
So, \overrightarrow{YZ} and \overrightarrow{XY} are parallel vectors but Y is a common point to them. Hence, the given points X, Y, Z are collinear.
Question 2 (v). Using vector method, prove that X(2, -1, 3), Y(3, -5, 1), and Z(-1, 11, 9) are collinear.
Solution:
\vec{X}=2\hat{i}-\hat{j}+3\hat{k}
\vec{Y}=3\hat{i}-5\hat{j}+\hat{k}
\vec{Z}=-\hat{i}+11\hat{j}+9\hat{k}
\overrightarrow{XY} = Position vector of (Y) - Position vector of (X)
= 3\hat{i}-5\hat{j}+\hat{k}-2\hat{i}-\hat{j}+3\hat{k}
= \hat{i}-4\hat{j}-2\hat{k}
\overrightarrow{YZ} = = Position vector of (Z) - Position vector of (Y)
= -\hat{i}+11\hat{j}+9\hat{k}-3\hat{i}+5\hat{j}-\hat{k}
= -4\hat{i}+16\hat{j}+8\hat{k}
As, \overrightarrow{YZ} = 4(\overrightarrow{XY})
So, \overrightarrow{YZ} and \overrightarrow{XY} are parallel vectors but Y is a common point to them. Hence, the given points X, Y, Z are collinear.
Question 3 (i). If \vec{a},\vec{b},\vec{c} are non-zero, non-coplaner vectors, prove that the vectors 5\vec{a}+6\vec{b}+7\vec{c}, 7\vec{a}-8\vec{b}+9\vec{c}, and \ 3\vec{a}+20\vec{b}+5\vec{c} are coplanar.
Solution:
The given vectors are
X = 5\vec{a}+6\vec{b}+7\vec{c}
Y = 7\vec{a}-8\vec{b}+9\vec{c}
Z = 3\vec{a}+20\vec{b}+5\vec{c}
Three vectors are coplanar, if they satisfy the given conditions(for real u and v)
X = u * Y + v * Z
5\vec{a}+6\vec{b}+7\vec{c}=u(7\vec{a}-8\vec{b}+9\vec{c})+v(3\vec{a}+20\vec{b}+5\vec{c})
5\vec{a}+6\vec{b}+7\vec{c}=\vec{a}(7u+3v)+\vec{b}(20v-8u)+\vec{c}(9u+5v)
On comparing coefficients, we get the following equations
7u + 3v = 5 -(1)
20v - 8u = 6 -(2)
9u + 5v = 7 -(3)
From first two equations, we find that
u = 1/2
v = 1/2
Now put the value of u and v in eq(3)
9(1/2) + 5(1/2) = 7
14/2 = 7
7 = 7
So, the value satisfies the third equation.
Hence, the given vectors X, Y, Z are coplanar.
Question 3 (ii). If \vec{a},\vec{b},\vec{c} are non-zero, non-coplaner vectors, prove that the vectors \vec{a}-2\vec{b}+3\vec{c}, -3\vec{b}+5\vec{c}, and \ -2\vec{a}+3\vec{b}-4\vec{c} are coplanar.
Solution:
The given vectors are
X = \vec{a}-2\vec{b}+3\vec{c}
Y = -3\vec{b}+5\vec{c}
Z = -2\vec{a}+3\vec{b}-4\vec{c}
Three vectors are coplanar, if they satisfy the given conditions(for real u and v)
X = u * Y + v * Z
\vec{a}-2\vec{b}+3\vec{c}=u(-3\vec{b}+5\vec{c})+v(-2\vec{a}+3\vec{b}-4\vec{c})
\vec{a}-2\vec{b}+3\vec{c}=(-2v)\vec{a} +\vec{b}(-3u+3v)+\vec{c}(5u-4v)
On comparing coefficients, we get the following equations
-2v = 1 -(1)
3v - 3u = -2 -(2)
5u - 4v = 3 -(3)
From the first two equations, we find that
v = -1/2
u = 1/6
Now put the value of u and v in eq(3)
5(1/6) - 4(-1/2) = 3
5/6 + 2 = 3
(5 + 12)/6 = 3
17/6 ≠ 3
The value doesn't satisfy the third equation. Hence, the given vectors X, Y, Z are not coplanar.
Question 4.Show that the four points having position vectors 6\hat{i}-7\hat{j}, 16\hat{i}-19\hat{j}-4\hat{k},3\hat{i}-6\hat{k},2\hat{i}-5\hat{j}+10\hat{k} are coplanar.
Solution:
Let the given vectors be
\vec{W}=6\hat{i}-7\hat{j}\\ \vec{X}=16\hat{i}-19\hat{j}-4\hat{k}\\ \vec{Y}=3\hat{i}-6\hat{k}\\ \vec{Z}=2\hat{i}-5\hat{j}+10\hat{k}
\overrightarrow{WX} = Position vector of (X) - Position vector of (W)
= 16\hat{i}-19\hat{j}-4\hat{k} - 6\hat{i}+7\hat{j}
= 10\hat{i}-12\hat{j}-4\hat{k}
\overrightarrow{WY} = Position vector of (Y) - Position vector of (W)
= 3\hat{i}-6\hat{k}- 6\hat{i}+7\hat{j}
= -3\hat{i}+7\hat{j}-6\hat{k}
\overrightarrow{WZ} = Position vector of (Z) - Position vector of (W)
= 2\hat{i}-5\hat{j}+10\hat{k} - 6\hat{i}+7\hat{j}
= -4\hat{i}+2\hat{j}+10\hat{k}
The given vectors are coplanar if,
WX = u(WY) + v(WZ)
10\hat{i}-12\hat{j}-4\hat{k}=u(-6\hat{i}+10\hat{j}-6\hat{k})+v(-4\hat{i}+2\hat{j}+10\hat{k})
10\hat{i}-12\hat{j}-4\hat{k}=\hat{i}(-6u-4v)+\hat{j}(10u+2v)+\hat{k}(-6u+10v)
On comparing coefficients, we get the following equations
-6u - 4v = 10 -(1)
10u + 2v = -12 -(2)
-6u + 10v = -4 -(3)
From the first two equations, we find that
u = -1
v = -1
Now put the value of u and v in eq(3)
-6(-1) + 10(-1) = -4
6 - 10 = -4
-4 = -4
The value satisfies the third equation. Hence, the given vectors W, X, Y, Z are coplanar.
Question 5(i). Prove that the following vectors are coplanar Show that the points 2\hat{i}-\hat{j}+\hat{k},\hat{i}-3\hat{j}-5\hat{k},3\hat{i}-4\hat{j}-4\hat{k}
Solution:
The given vectors are \vec{A}=2\hat{i}-\hat{j}+\hat{k}\\ \vec{B}=\hat{i}-3\hat{j}-5\hat{k}\\ \vec{C}=3\hat{i}-4\hat{j}-4\hat{k}
The given vectors are coplanar if,
A = u(B) + v(C)
2\hat{i}-\hat{j}+\hat{k}=u(\hat{i}-3\hat{j}-5\hat{k})+v(3\hat{i}-4\hat{j}-4\hat{k})
2\hat{i}-\hat{j}+\hat{k}=\hat{i}(u+3v)+\hat{j}(-3u-4v)+\hat{k}(-5u-4v)
On comparing coefficients, we get the following equations
u + 3v = 2 -(1)
-3u - 4v = -1 -(2)
-5u - 4v = 1 -(3)
From the first two equations, we find that
u = -1
v = 1
Now put the value of u and v in eq(3)
-5(-1) - 4(1) = 1
5 - 4 = 1
1 = 1
The value satisfies the third equation. Hence, the given vectors A, B, C are coplanar.
Question 5(ii). Prove that the following vectors are coplanar Show that the points \hat{i}+\hat{j}+\hat{k},2\hat{i}+3\hat{j}-\hat{k},-\hat{i}-2\hat{j}+2\hat{k}
Solution:
The given vectors are \vec{A}=\hat{i}+\hat{j}+\hat{k}\\ \vec{B}=2\hat{i}+3\hat{j}-\hat{k}\\ \vec{C}=-\hat{i}-2\hat{j}+2\hat{k}
The given vectors are coplanar if,
A = u(B) + v(C)
\hat{i}+\hat{j}+\hat{k}=u(2\hat{i}+3\hat{j}-\hat{k})+v(-\hat{i}-2\hat{j}+2\hat{k})
\hat{i}+\hat{j}+\hat{k}=(2u-v)\hat{i}+(3u-2v)\hat{j}+(-u+2v)\hat{k}
On comparing coefficients, we get the following equations
2u - v = 1 -(1)
3u - 2v = 1 -(2)
-u + 2v = 1 -(3)
From the first two equations, we find that
u = 1
v = 1
Now put the value of u and v in eq(3)
-(1) + 2(1) = 1
1 = 1
The value satisfies the third equation. Hence, the given vectors A, B, C are coplanar.
Question 6 (i). Prove that the vector 3\hat{i}+\hat{j}-\hat{k},2\hat{i}-\hat{j}+7\hat{k},7\hat{i}-\hat{j}+23\hat{k} are non-coplanar.
Solution:
The given vectors are \vec{A}=3\hat{i}+\hat{j}-\hat{k}\\ \vec{B}=2\hat{i}-\hat{j}+7\hat{k}\\ \vec{C}=7\hat{i}-\hat{j}+23\hat{k}
The given vectors are coplanar if,
A = u(B) + v(C)
3\hat{i}+\hat{j}-\hat{k}=u(2\hat{i}-\hat{j}+7\hat{k})+v(7\hat{i}-\hat{j}+23\hat{k})
3\hat{i}+\hat{j}-\hat{k}=(2u+7v)\hat{i}+(-u-v)\hat{j}+(7u+23v)\hat{k}
On comparing coefficients, we get the following equations
2u + 7v = 3 -(1)
-u - v = 1 -(2)
7u + 23v = -1 -(3)
From the first two equations, we find that
u = -2
v = 1
Now put the value of u and v in eq(3)
7(-2) + 23(1) = -1
-14 + 23 = -1
-9 ≠ -1
The value does not satisfy the third equation. Hence, the given vectors A, B, C are not coplanar.
Question 6 (ii). Prove that the vector \hat{i}+2\hat{j}+3\hat{k},2\hat{i}+\hat{j}+3\hat{k},\hat{i}+\hat{j}+\hat{k} are non-coplanar.
Solution:
The given vectors are \vec{A}=\hat{i}+2\hat{j}+3\hat{k}\\ \vec{B}=2\hat{i}+\hat{j}+3\hat{k}\\ \vec{C}=\hat{i}+\hat{j}+\hat{k}
The given vectors are coplanar if,
A = u(B) + v(C)
\hat{i}+2\hat{j}+3\hat{k}=u(2\hat{i}+\hat{j}+3\hat{k})+v(\hat{i}+\hat{j}+\hat{k})
\hat{i}+2\hat{j}+3\hat{k}=(2u+v)\hat{i}+(u+v)\hat{j}+(3u+v)\hat{k}
On comparing coefficients, we get the following equations
2u + v = 1 -(1)
u + v = 2 -(2)
3u + v = 3 -(3)
From the first two equations, we find that
u = 0
v = 1
Now put the value of u and v in eq(3)
3(0) + 1 = 3
1 = 3
The value does not satisfy the third equation. Hence, the given vectors A, B, C are not coplanar.
Question 7(i). If \vec{a},\vec{b},\vec{c} are non-coplanar vectors, prove that the given vectors are non-coplanar 2\vec{a}-\vec{b}+3\vec{c},\vec{a}+\vec{b}-2\vec{c},\vec{a}+\vec{b}-3\vec{c}
Solution:
The given vectors are D(2\vec{a}-\vec{b}+3\vec{c}),E(\vec{a}+\vec{b}-2\vec{c}),F(\vec{a}+\vec{b}-3\vec{c}) )
The given vectors are coplanar if,
D = u(E) + v(F)
2\vec{a}-\vec{b}+3\vec{c}=u(\vec{a}+\vec{b}-2\vec{c})+v(\vec{a}+\vec{b}-3\vec{c})
2\vec{a}-\vec{b}+3\vec{c}=(u+v)\vec{a}+(u+v)\vec{b}+(-2u-3v)\vec{c}
On comparing coefficients, we get the following equations
u + v = 2 -(1)
u + v = -1 -(2)
-2u - 3v = 3 -(3)
There is no value that satisfies the third equation. Hence, the given vectors D, E, F are not coplanar.
Question 7(ii). If \vec{a},\vec{b},\vec{c} are non-coplanar vectors, prove that the given vectors are non-coplanar \vec{a}+2\vec{b}+3\vec{c}, 2\vec{a}+\vec{b}+3\vec{c},\vec{a}+\vec{b}+\vec{c}
Solution:
The given vectors are D(\vec{a}+2\vec{b}+3\vec{c}),E(2\vec{a}+\vec{b}+3\vec{c}),F(\vec{a}+\vec{b}+\vec{c})
The given vectors are coplanar if,
D = u(E) + v(F)
\vec{a}+2\vec{b}+3\vec{c}=u(2\vec{a}+\vec{b}+3\vec{c})+v(\vec{a}+\vec{b}+\vec{c})
\vec{a}+2\vec{b}+3\vec{c}=(2u+v)\vec{a}+(u+v)\vec{b}+(3u+v)\vec{c}
On comparing coefficients, we get the following equations
2u + v = 1 -(1)
u + v = 2 -(2)
3u + v = 3 -(3)
From the first two equations, we find that
u = -1
v = 3
Now put the value of u and v in eq(3)
3(-1) + (3) = 3
0 = 3
There is no value that satisfies the third equation. Hence, the given vectors D, E, F are not coplanar.
Question 8. Show that the vector \vec{a},\vec{b},\vec{c} given by \vec{a}=\hat{i}+2\hat{j}+3\hat{k},\vec{b}=2\hat{i}+\hat{j}+3\hat{k},\vec{c}=\hat{i}+\hat{j}+\hat{k} are non-coplanar. Express vector \vec{d} =\vec{d} = 2\hat{i} -\hat{j}-3\hat{k} as a linear combination of the vector \vec{a},\vec{b}, and\ \vec{c} .
Solution:
The given vectors are
\vec{a}=\hat{i}+2\hat{j}+3\hat{k}\\ \vec{b}=2\hat{i}+\hat{j}+3\hat{k}\\ \vec{c}=\hat{i}+\hat{j}+\hat{k}
The given vectors are coplanar if,
D = u(E) + v(F)
On comparing coefficients, we get the following equations
2u + v = 1 -(1)
u + v = 2 -(2)
3u + v = 3 -(3)
From above two equations,
u = -1
v = 3
Now put the value of u and v in eq(3)
3(-1) + (3) = 3
0 = -3
There is no value that satisfies the third equation. Hence, the given vectors D, E, F are not coplanar
The given vectors are
\vec{a}=\hat{i}+2\hat{j}+3\hat{k}\\ \vec{b}=2\hat{i}+\hat{j}+3\hat{k}\\ \vec{c}=\hat{i}+\hat{j}+\hat{k}\\ \vec{d}=2\hat{i}-\hat{j}-3\hat{k}
The given vectors are coplanar if,
\vec{d}=\vec{a}x+\vec{b}y+\vec{c}z
2\hat{i}-\hat{j}-3\hat{k}=x(\hat{i}+2\hat{j}+3\hat{k})+y(2\hat{i}+\hat{j}+3\hat{k})+z(\hat{i}+\hat{j}+\hat{k})
2\hat{i}-\hat{j}-3\hat{k}=(x+2y+z)\hat{i}+(2x+y+z)\hat{j}+(3x+3y+z)\hat{k}
On comparing coefficients, we get the following equations,
x + 2y + z = 2 -(1)
2x + y + z = -1 -(2)
3x + 3y + z = -3 -(3)
From above three equations,
x = -8/3
y = 1/3
z = 4
Therefore, \vec{d} = \frac{-8}{3}\vec{a} + \frac{1}{3}\vec{b} + 4\vec{c}
Question 9. Prove that a necessary and sufficient condition for the three vectors \vec{a},\vec{b},and \ \vec{c} to be coplanar is that these exist scalar l, m, n, not all zero simultaneously such that l\vec{a}+m\vec{b}+n\vec{c} = \vec{0}
Solution:
Given conditions: Let us considered \vec{a},\vec{b},and \ \vec{c} be three coplanar vectors.
Then one of them is expressible as a linear combination of other two vectors.
Let,
c=x\vec{a} +y\vec{b}
x\vec{a}+y\vec{b}-\vec{c}=0
Here, l = x, y = m, n = -1
From above,
l\vec{a}+m\vec{b}+n\vec{c}=0
n\vec{c}=-l\vec{a}-m\vec{b}
\vec{c}=(-l/n)\vec{a}+(-m/n)\vec{b}
Hence, \vec{c} is a linear combination of two vectors \vec{a} \ and \ \vec{b} .
Hence proved that \vec{a},\vec{b},and \ \vec{c} are coplanar vectors.
Question 10. Show that the four points A, B, C, and D with position vectors \vec{a},\vec{b},\vec{c}, and \ \vec{d} respectively are coplanar if and only if 3\vec{a}-2\vec{b}+\vec{c}-2\vec{d} = 0 .
Solution:
Given: A, B, C, D be four vectors with position vector \vec{a},\vec{b},\vec{c}, and \ \vec{d}
Let us considered A, B, C, D be coplanar.
Then, there exists x, y, z, u not all zero such that,
x\vec{a} + y\vec{b} + z\vec{c} + u\vec{d} = 0
Let us considered x = 3, y = -2, z = 1, y = -2
So, 3\vec{a}-2\vec{b}+\vec{c}-2\vec{d}=0
and x + y + z + u = 3 - 2 + 1 - 2 = 0
So, A, B, C, D are coplanar.
Let us considered 3\vec{a}-2\vec{b}+\vec{c}-2\vec{d}=0
3\vec{a}+\vec{c}=2\vec{b}+2\vec{d}
Now on dividing both side by sum of coefficient 4
\frac{(3\vec{a}+\vec{c})}{4}=\frac{(2\vec{b}+2\vec{d})}{4}
\frac{(3\vec{a}+\vec{c})}{(3+1)}=\frac{(2\vec{b}+2\vec{d})}{(2+2)}
It shows that point P divides AC in the ratio 1:3 and BD in the ratio 2:2 internally,
hence P is the point of intersection of AC and BD.
So, A, B, C, D are coplanar.
Summary
Chapter 23 of RD Sharma Class 12 Solutions covers the Algebra of Vectors. Exercise 23.8 specifically focuses on vector cross products and their applications. Key topics include:
- Definition and properties of vector cross product
- Geometric interpretation of cross product
- Applications in calculating areas of parallelograms and triangles
- Finding perpendicular vectors
- Vector triple products
- Conditions for coplanarity of vectors
- Applications in physics (e.g., torque calculations)
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice