Open In App

numpy.ma.mask_or() function | Python

Last Updated : 22 Apr, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
numpy.ma.mask_or() function combine two masks with the logical_or operator. The result may be a view on m1 or m2 if the other is nomask (i.e. False).
Syntax : numpy.ma.mask_or(m1, m2, copy = False, shrink = True) Parameters : m1, m2 : [ array_like] Input masks. copy : [bool, optional] If copy is False and one of the inputs is nomask, return a view of the other input mask. Defaults to False shrink : [bool, optional] Whether to shrink the output to nomask if all its values are False. Defaults to True. Return : The result masks values that are masked in either m1 or m2.
Code #1 : Python3
# Python program explaining
# numpy.ma.mask_or() function

# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 

m1 = geek.ma.make_mask([1, 1, 0, 1])
m2 = geek.ma.make_mask([1, 0, 0, 0])

gfg = geek.ma.mask_or(m1, m2)

print (gfg)
Output :
[ True  True False  True]
  Code #2 : Python3
# Python program explaining
# numpy.ma.mask_or() function

# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 

m1 = geek.ma.make_mask([1, 0, 0, 0])
m2 = geek.ma.make_mask([1, 1, 0, 1])

gfg = geek.ma.mask_or(m1, m2)

print (gfg)
Output :
[ True  True False  True]

Next Article

Similar Reads