Python | Pandas Series.truncate() Last Updated : 09 Sep, 2024 Comments Improve Suggest changes Like Article Like Report Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Pandas Series.truncate() function is used to truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds. Syntax: Series.truncate(before=None, after=None, axis=None, copy=True) Parameter : before : Truncate all rows before this index value. after : Truncate all rows after this index value. axis : Axis to truncate. Truncates the index (rows) by default. copy : Return a copy of the truncated section. Returns : truncated Series or DataFrame. Example #1: Use Series.truncate() function to truncate some data from the series prior to a given date. Python # importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio', 'Moscow']) # Create the Datetime Index didx = pd.DatetimeIndex(start ='2014-08-01 10:00', freq ='W', periods = 6, tz = 'Europe/Berlin') # set the index sr.index = didx # Print the series print(sr) Output : Now we will use Series.truncate() function to truncate data which are prior to '2014-08-17 10:00:00+02:00' in the given Series object. Python # truncate data prior to the given date sr.truncate(before = '2014-08-17 10:00:00 + 02:00') Output : As we can see in the output, the Series.truncate() function has successfully truncated all data prior to the mentioned date. Example #2: Use Series.truncate() function to truncate some data from the series prior to a given index label and after a given index label. Python # importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([19.5, 16.8, 22.78, 20.124, 18.1002]) # Print the series print(sr) Output : Now we will use Series.truncate() function to truncate data which are prior to the 1st index label and after the 3rd index label in the given Series object. Python # truncate data outside the given range sr.truncate(before = 1, after = 3) Output : As we can see in the output, the Series.truncate() function has successfully truncated all data prior to the mentioned index label and after the mentioned index label. Comment More info S Shubham__Ranjan Follow Improve Article Tags : Pandas Python-pandas Python pandas-series-methods AI-ML-DS With Python Explore Pandas Tutorial 6 min read IntroductionPandas Introduction 3 min read How to Install Pandas in Python? 5 min read How To Use Jupyter Notebook - An Ultimate Guide 5 min read Creating ObjectsCreating a Pandas DataFrame 2 min read Python Pandas Series 5 min read Creating a Pandas Series 3 min read Viewing DataPandas Dataframe/Series.head() method - Python 3 min read Pandas Dataframe/Series.tail() method - Python 3 min read Pandas DataFrame describe() Method 4 min read Selection & SlicingDealing with Rows and Columns in Pandas DataFrame 5 min read Pandas Extracting rows using .loc[] - Python 3 min read Extracting rows using Pandas .iloc[] in Python 7 min read Indexing and Selecting Data with Pandas 4 min read Boolean Indexing in Pandas 6 min read Python | Pandas DataFrame.ix[ ] 2 min read Python | Pandas Series.str.slice() 3 min read How to take column-slices of DataFrame in Pandas? 2 min read OperationsPython | Pandas.apply() 4 min read Apply function to every row in a Pandas DataFrame 3 min read Python | Pandas Series.apply() 3 min read Pandas dataframe.aggregate() | Python 2 min read Pandas DataFrame mean() Method 2 min read Python | Pandas Series.mean() 2 min read Python | Pandas dataframe.mad() 2 min read Python | Pandas Series.mad() to calculate Mean Absolute Deviation of a Series 2 min read Python | Pandas dataframe.sem() 3 min read Python | Pandas Series.value_counts() 2 min read Pandas Index.value_counts()-Python 3 min read Applying Lambda functions to Pandas Dataframe 6 min read Manipulating DataAdding New Column to Existing DataFrame in Pandas 6 min read Python | Delete rows/columns from DataFrame using Pandas.drop() 4 min read Python | Pandas DataFrame.truncate 3 min read Python | Pandas Series.truncate() 2 min read Iterating over rows and columns in Pandas DataFrame 4 min read Pandas Dataframe.sort_values() 2 min read Python | Pandas Dataframe.sort_values() | Set-2 3 min read How to add one row in existing Pandas DataFrame? 4 min read Grouping DataPandas GroupBy 4 min read Grouping Rows in pandas 2 min read Combining Multiple Columns in Pandas groupby with Dictionary 2 min read Merging, Joining, Concatenating and ComparingPython | Pandas Merging, Joining and Concatenating 8 min read Python | Pandas Series.str.cat() to concatenate string 3 min read Python - Pandas dataframe.append() 4 min read Python | Pandas Series.append() 4 min read Pandas Index.append() - Python 2 min read Python | Pandas Series.combine() 3 min read Add a row at top in pandas DataFrame 1 min read Python | Pandas str.join() to join string/list elements with passed delimiter 2 min read Join two text columns into a single column in Pandas 2 min read How To Compare Two Dataframes with Pandas compare? 5 min read How to compare the elements of the two Pandas Series? 3 min read Working with Date and TimePython | Working with date and time using Pandas 8 min read Python | Pandas Timestamp.timestamp 3 min read Python | Pandas Timestamp.now 3 min read Python | Pandas Timestamp.isoformat 2 min read Python | Pandas Timestamp.date 2 min read Python | Pandas Timestamp.replace 3 min read Pandas.to_datetime()-Python 3 min read Python | pandas.date_range() method 4 min read Like