For an example, you have some users data in a dataframe-1 and you have to new users data in a dataframe-2, then you have to find out all the matched records from dataframe-2 and dataframe-1 by using pandas and retrieve matching rows and report to the business for the reason of these records.
So, we are here to show you the logic to get these matched records from two datasets/dataframes in Python.
import pandas as pd
#create NaN Values in Pandas DataFrame by numpy
import numpy as np
#creating dataframe-1
df1 = pd.DataFrame({
‘Name’: [‘Ryan’,’Rosy’,’Wills’,’Tom’,’Alice’,’Volter’,’Jay’,’John’,’Ronny’],
‘Age’: [25,26,14,19,22,28,30,32,28],
‘Height’: [189.0,193.0,200.0,155.0,165.0,170.0,172.0,156.0,165.0]})
#creating dataframe-2
df2 = pd.DataFrame({
‘Name’: [‘Ryan’,’Rosy’,’Wills’,’Tom’,’Alice’,np.nan,’Jay’,’John’,’Ronny’],
‘Age’: [25,26,14,0,22,28,30,32,28],
‘Height’: [189.0,np.nan,200.0,155.0,np.nan,170.0,172.0,156.0,165.0]})
Display Values from Dataframe -1 and Dataframe -2 Now, we have populated the both dataframes and these are the below values from dataframes -

# check datatypes for each column
df1 = df1.astype(df2.dtypes.to_dict())
commondf=pd.merge(df1,df2, on=[‘Name’,’Age’,’Height’], right_index=True)
#show common records
commondf








