
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy divide() Function
The NumPy divide() function is used to perform element-wise division between two arrays or an array and a scalar.
It divides the first array by the second array, element by element, and returns a new array of the results. If division by zero occurs, it results in inf or nan, depending on the context. This function can also handle broadcasting for arrays of different shapes.
Syntax
Following is the syntax of the NumPy divide() function −
numpy.divide(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Parameters
This function accepts the following parameters −
- x1: The numerator input array. Both arrays should have the same shape, or they must be broadcastable to a common shape.
- x2: The denominator input array. Like x1, it should have the same shape as x1, or be broadcastable to a common shape.
- out (optional): A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
- where (optional): This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Otherwise, it will retain its original value.
- casting (optional): Controls what kind of data casting may occur. Defaults to 'same_kind'.
- order (optional): Controls the memory layout order of the result. 'C' means C-order, 'F' means Fortran-order, 'A' means 'F' if inputs are all F, 'C' otherwise, 'K' means match the layout of the inputs as closely as possible.
- dtype (optional): The type of the returned array and of the accumulator in which the elements are divided. The dtype of x1 and x2 is used by default unless dtype is specified.
- subok (optional): If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array.
Return Value
This function returns the element-wise quotient of the input arrays x1 and x2. If out is provided, it returns a reference to out.
Example: Basic Usage of divide() Function
In the following example, we create two 1-dimensional arrays and use the divide() function to perform element-wise division −
import numpy as np # Creating two 1-dimensional arrays arr1 = np.array([10, 20, 30, 40]) arr2 = np.array([2, 4, 5, 10]) # Performing element-wise division result = np.divide(arr1, arr2) print(result)
Following is the output obtained −
[5. 5. 6. 4.]
Example: Dividing Arrays with Broadcasting
In this example, we demonstrate the use of broadcasting with the divide() function. We create a 2-dimensional array and divide it by a 1-dimensional array −
import numpy as np # Creating a 2-dimensional array arr1 = np.array([[10, 20, 30], [40, 50, 60]]) # Creating a 1-dimensional array arr2 = np.array([2, 4, 6]) # Performing element-wise division with broadcasting result = np.divide(arr1, arr2) print(result)
This will produce the following result −
[[ 5. 5. 5. ] [20. 12.5 10. ]]
Example: Using the "out" Parameter
In this example, we use the out parameter to store the result of the division in a specified array −
import numpy as np # Creating two 1-dimensional arrays arr1 = np.array([10, 20, 30, 40]) arr2 = np.array([2, 4, 5, 10]) # Creating an output array out_arr = np.empty(4) # Performing element-wise division and storing the result in out_arr np.divide(arr1, arr2, out=out_arr) print(out_arr)
Following is the output of the above code −
[5. 5. 6. 4.]
Example: Using the "where" Parameter
In this example, we use the where parameter to conditionally perform the division operation −
import numpy as np # Creating two 1-dimensional arrays arr1 = np.array([10, 20, 30, 40]) arr2 = np.array([2, 4, 5, 10]) # Creating a condition array condition = np.array([True, False, True, False]) # Performing element-wise division where the condition is True result = np.divide(arr1, arr2, where=condition) print(result)
The output obtained is as shown below −
[5.e+000 0.e+000 6.e+000 8.e-323]