
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy divmod() Function
The NumPy divmod() function is used to return the element-wise quotient and remainder of division. It performs both division and modulo operations, returning two arrays: one for the quotient and one for the remainder.
This function handles broadcasting for arrays of different shapes and can operate with both arrays and scalars.
Syntax
Following is the syntax of the NumPy divmod() function −
numpy.divmod(x1, x2, /, out1=None, out2=None, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Parameters
This function accepts the following parameters −
- x1: The dividend input array. It is the array whose elements will be divided by the elements of x2.
- x2: The divisor input array. Like x1, it should have the same shape as x1, or be broadcastable to a common shape.
- out1 (optional): A location into which the quotient is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
- out2 (optional): A location into which the remainder is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
- where (optional): This condition is broadcast over the input. At locations where the condition is True, the out arrays will be set to the ufunc result. Otherwise, they will retain their original value.
- casting (optional): Controls what kind of data casting may occur. Defaults to 'same_kind'.
- order (optional): Controls the memory layout order of the result. 'C' means C-order, 'F' means Fortran-order, 'A' means 'F' if inputs are all F, 'C' otherwise, 'K' means match the layout of the inputs as closely as possible.
- dtype (optional): The type of the returned arrays and of the accumulator in which the division is performed. The dtype of x1 and x2 is used by default unless dtype is specified.
- subok (optional): If True, then sub-classes will be passed-through, otherwise the returned arrays will be forced to be base-class arrays.
Return Value
This function returns two arrays: one containing the element-wise quotient and the other containing the element-wise remainder of the division of x1 by x2. If out1 and out2 are provided, it returns references to these.
Example: Basic Usage of divmod() Function
In the following example, we create two 1-dimensional arrays and use the divmod() function to perform element-wise division and modulo operations −
import numpy as np # Creating two 1-dimensional arrays arr1 = np.array([5, 9, 11, 14]) arr2 = np.array([3, 4, 5, 6]) # Performing element-wise division and modulo quotient, remainder = np.divmod(arr1, arr2) print("Quotient:", quotient) print("Remainder:", remainder)
Following is the output obtained −
Quotient: [1 2 2 2] Remainder: [2 1 1 2]
Example: divmod() Function with Broadcasting
In this example, we demonstrate the use of broadcasting with the divmod() function. We create a 2-dimensional array and calculate the quotient and remainder when it is divided by a 1-dimensional array −
import numpy as np # Creating a 2-dimensional array arr1 = np.array([[5, 9, 11], [14, 21, 29]]) # Creating a 1-dimensional array arr2 = np.array([3, 4, 5]) # Performing element-wise division and modulo with broadcasting quotient, remainder = np.divmod(arr1, arr2) print("Quotient:\n", quotient) print("Remainder:\n", remainder)
This will produce the following result −
Quotient: [[1 2 2] [4 5 5]] Remainder: [[2 1 1] [2 1 4]]
Example: divmod() Function with Scalar
In this example, we divide all elements of an array by a scalar and calculate both the quotient and the remainder −
import numpy as np # Creating a 1-dimensional array arr = np.array([5, 9, 11, 14]) # Performing division and modulo with a scalar value 3 quotient, remainder = np.divmod(arr, 3) print("Quotient:", quotient) print("Remainder:", remainder)
Following is the output of the above code −
Quotient: [1 3 3 4] Remainder: [2 0 2 2]
Example: divmod() Function with Negative Values
In this example, we calculate the quotient and remainder of division involving negative numbers −
import numpy as np # Creating a 1-dimensional array with negative values arr = np.array([-5, -9, -11, -14]) # Performing division and modulo with a scalar value 3 quotient, remainder = np.divmod(arr, 3) print("Quotient:", quotient) print("Remainder:", remainder)
The output obtained is as shown below −
Quotient: [-2 -3 -4 -5] Remainder: [ 1 0 1 1]