
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy dstack() Function
The Numpy dstack() function is used to stack arrays in sequence depth-wise (along the third axis). This function is part of the numpy module. It is useful for stacking multiple arrays to create a 3D array, where each input array becomes a layer in the third dimension.
For example, stacking two 2D arrays with the same shape will result in a 3D array with the same height and width as the input arrays, and a depth equal to the number of arrays stacked.
In the numpy.dstack() function, if the input arrays have different shapes along the first or second axis, it will raise a ValueError.
Syntax
Following is the syntax of the Numpy dstack() function −
numpy.dstack(arrays)
Parameters
Following are the parameters of the Numpy dstack() function −
- arrays - Sequence of arrays to be stacked. The arrays must have the same shape along the first and second axes.
Return Values
The function returns a 3D array with a new depth dimension, combining all input arrays along this third axis.
Example
Following is a basic example to stack two 1D arrays depth-wise using Numpy dstack() −
import numpy as np array1 = np.array([1, 2, 3]) array2 = np.array([4, 5, 6]) dstacked_array = np.dstack((array1, array2)) print("Array 1 -", array1) print("Array 2 -", array2) print("Depth-wise Stacked Array -\n", dstacked_array)
Output
Following is the output of the above code −
Array 1 - [1 2 3] Array 2 - [4 5 6] Depth-wise Stacked Array - [[[1 4] [2 5] [3 6]]]
Example - Depth-wise Stacking 2D Arrays
In the following example, we stack two 2D arrays depth-wise using numpy.dstack() to create a 3D array. Each input array has a shape of (2, 3), and the resulting array will have a shape of (2, 3, 2) −
import numpy as np array1 = np.array([[10, 20, 30], [40, 50, 60]]) array2 = np.array([[70, 80, 90], [100, 110, 120]]) dstacked_array = np.dstack((array1, array2)) print("Array 1 -\n", array1) print("Array 2 -\n", array2) print("Depth-wise Stacked Array -\n", dstacked_array) print("Shape of Depth-wise Stacked Array -", dstacked_array.shape)
Output
Following is the output of the above code −
Array 1 - [[10 20 30] [40 50 60]] Array 2 - [[ 70 80 90] [100 110 120]] Depth-wise Stacked Array - [[[ 10 70] [ 20 80] [ 30 90]] [[ 40 100] [ 50 110] [ 60 120]]] Shape of Depth-wise Stacked Array - (2, 3, 2)
Example - Stacking Arrays with Different Shapes
The input arrays must have the same shape along the first two axes. If they do not, numpy.dstack() will raise a ValueError. In the following example, we attempt to stack arrays of incompatible shapes −
import numpy as np array1 = np.array([[1, 2], [3, 4]]) array2 = np.array([[5, 6, 7], [8, 9, 10]]) try: dstacked_array = np.dstack((array1, array2)) print(dstacked_array) except ValueError as e: print("ValueError:", e)
Output
Following is the output of the above code −
ValueError: all the input array dimensions except for the concatenation axis must match exactly