
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy moveaxis() Function
The Numpy moveaxis() function moves specified axes of an array to new positions while keeping the order of the remaining axes unchanged. This function defined in numpy module and is often used for reshaping data in multi-dimensional array, especially in complex operations where axis manipulations is required.
In NumPy, both numpy.moveaxis() and numpy.swapaxes() are used to rearrange the axes of a multi-dimensional array. The main difference is that numpy.moveaxis() allows moving multiple axes to different specified positions simultaneously, whereas numpy.swapaxes() only swaps two axes at a time.
The numpy.moveaxis() function offers more flexibility than numpy.swapaxes(), allowing multiple axes to be moved to different positions simultaneously.
Syntax
Following is the syntax of the Numpy moveaxis() function −
numpy.moveaxis(array, source, destination)
Parameters
Following are the parameters of the Numpy moveaxis() function −
- array - The input array whose axes need to be moved.
- source - An integer or sequence of integers specifying the original positions of the axes to move.
- destination - An integer or sequence of integers specifying the target positions for the specified axes.
Return Value
The function returns a view of the original array with the specified axes moved to the target positions.
Example
Following is an basic example to move axis 0 to the axis 1 in a 2D array using Numpy moveaxis() function −
import numpy as np my_Array = np.array([[85, 256, 16], [91, 36, 24]]) Moved_Array = np.moveaxis(my_Array, 0, 1) print("Original Array:\n", my_Array) print("Moved Axes Array (0 to 1):\n", Moved_Array)
Output
Original Array: [[10 20 30] [40 50 60]] Moved Axes Array (0 to 1): [[10 40] [20 50] [30 60]]
Example - Moving an Axis in a 3D Array
In the following example, we have moved axis 0 to axis 2 in a 3D numpy array using numpy.moveaxis() function −
import numpy as np my_Array = np.array([[[71, 44], [25, 100]], [[165, 32], [12, 1]]]) Moved_Array = np.moveaxis(my_Array, 0, 2) print("Original Array:\n", my_Array) print("Moved Axes Array (0 to 2):\n", Moved_Array)
Output
Original Array: [[[1 2] [3 4]] [[5 6] [7 8]]] Moved Axes Array (0 to 2): [[[1 5] [2 6]] [[3 7] [4 8]]]
Example - Moving Multiple Axes in a 4D Array
In the following example, we have moved multiple axes in a 4D array using numpy.moveaxis() function −
import numpy as np my_Array = np.array([[[[45, 78], [12, 63]], [[76, 82], [69, 56]]], [[[12, 24], [1, 39]], [[59, 85], [105, 43]]]]) Moved_Arr = np.moveaxis(my_Array, [1, 2], [2, 0]) print("Original Array:\n", my_Array) print("Moved Axes Array (1 and 2 to 2 and 0):\n", Moved_Arr)
Output
Following is the output of above code −
Original Array: [[[[ 45 78] [ 12 63]] [[ 76 82] [ 69 56]]] [[[ 12 24] [ 1 39]] [[ 59 85] [105 43]]]] Moved Axes Array (1 and 2 to 2 and 0): [[[[ 45 78] [ 76 82]] [[ 12 24] [ 59 85]]] [[[ 12 63] [ 69 56]] [[ 1 39] [105 43]]]]