
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy ndarray.flatten() method
The Numpy ndarray.flatten()method which is used to return a new 1-D array that is a copy of the original array which is flattened.
The ndarray.flat attribute which is an iterator and ndarray.flatten() which creates a new array.
We can specify the order of flattening as 'C' for row-major (C-style) order, 'F' for column-major (Fortran-style) order, 'A' for 'F' if the array is Fortran contiguous, 'C' otherwise and 'K' for the order the elements appear in memory.
Syntax
The syntax for the Numpy ndarray.flatten function is as follows −
ndarray.flatten(order='C')
Parameter
This function takes a single parameter i.e. 'C' which is row major which is by default.
We can assign 'F': column major, 'A': flatten in column-major order, if a is Fortran contiguous in memory, row-major order otherwise 'K': flatten a in the order the elements occur in the memory
Return Value
This function returns a one-dimensional numpy array which contains all the elements of the input array in the specified order.
Example 1
Following is the example of Numpy ndarray.flatten() method which shows flattening a 2D array into a 1D array in the default row-major order, resulting in [1, 2, 3, 4, 5, 6] −
import numpy as np # Creating a 2D numpy array array_2d = np.array([[1, 2, 3], [4, 5, 6]]) # Flattening the array using the default order ('C') flattened_array = array_2d.flatten() print("Original 2D array:") print(array_2d) print("\nFlattened array (row-major order):") print(flattened_array)
Output
Original 2D array: [[1 2 3] [4 5 6]] Flattened array (row-major order): [1 2 3 4 5 6]
Example 2
Here in this example we show how a 3D array is flattened into a 1D array in column-major order which yields [1, 5, 3, 7, 2, 6, 4, 8] −
import numpy as np # Creating a 3D numpy array array_3d = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # Flattening the array using the 'F' order flattened_array = array_3d.flatten(order='F') print("Original 3D array:") print(array_3d) print("\nFlattened array (column-major order):") print(flattened_array)
Output
Original 3D array: [[[1 2] [3 4]] [[5 6] [7 8]]] Flattened array (column-major order): [1 5 3 7 2 6 4 8]
Example 3
Below example shows flattening a Fortran-contiguous array using the 'A' order which results in column-major order flattening, giving [1, 4, 2, 5, 3, 6] −
import numpy as np # Creating a 2D numpy array with Fortran-contiguous memory layout array_fortran = np.asfortranarray([[1, 2, 3], [4, 5, 6]]) # Flattening the array using the 'A' order flattened_array = array_fortran.flatten(order='A') print("Original Fortran-contiguous 2D array:") print(array_fortran) print("\nFlattened array ('A' order):") print(flattened_array)
Output
Original Fortran-contiguous 2D array: [[1 2 3] [4 5 6]] Flattened array ('A' order): [1 4 2 5 3 6]