
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy row_stack() Function
The Numpy row_stack() function is used to stack 1D or 2D arrays as rows into a 2D array. This function is defined in the numpy module and is useful for stacking multiple 1D arrays as rows in a new 2D array, or for concatenating two 2D arrays along the first axis (vertically) if they have compatible shapes.
The numpy.row_stack() function stacks 1D arrays into rows of a 2D array, resulting in an array with shape (m, n), where m is the number of arrays and n is the length of the arrays. When used with 2D arrays, it behaves like numpy.vstack(), stacking the arrays along the first axis as long as they have compatible dimensions along other axes.

Syntax
Following is the syntax of the numpy.row_stack() function −
numpy.row_stack(arrays)
Parameters
Following are the parameters of the Numpy row_stack() function −
- arrays - A sequence of 1D or 2D arrays. For 1D arrays, all must have the same length. For 2D arrays, they must have the same shape along all but the first axis.
Return Values
The function returns a 2D array with each input array stacked as a row in the output.
Example
Following is an basic example demonstrates stacking two 1D arrays as rows using Numpy row_stack() function −
import numpy as np my_Array1 = np.array([10, 20, 30]) my_Array2 = np.array([40, 50, 60]) row_stacked_array = np.row_stack((my_Array1, my_Array2)) print("Array 1 -", my_Array1) print("Array 2 -", my_Array2) print("Row Stacked Array -\n", row_stacked_array)
Output
The output of the above code is as follows:
Array 1 - [10 20 30] Array 2 - [40 50 60] Row Stacked Array - [[10 20 30] [40 50 60]]
Example - Stacking 2D Arrays
In the following example, we stack two 2D arrays with matching shapes along the columns using numpy.row_stack(). The arrays will be concatenated along the first axis, resulting in a 2D array −
import numpy as np my_Array1 = np.array([[29, 73], [16, 34]]) my_Array2 = np.array([[64, 82], [53, 99]]) row_stacked_array = np.row_stack((my_Array1, my_Array2)) print("Array 1 -\n", my_Array1) print("Array 2 -\n", my_Array2) print("Row Stacked Array -\n", row_stacked_array)
Output
The output of the above code is as follows:
Array 1 - [[29 73] [16 34]] Array 2 - [[64 82] [53 99]] Row Stacked Array - [[29 73] [16 34] [64 82] [53 99]]
Example - Stacking Arrays with Different Shapes
If the input arrays have incompatible shapes, such as mismatched lengths for 1D arrays or different shapes along other axes for 2D arrays, numpy.row_stack() will raise a ValueError. In the following example, we attempt to stack arrays of incompatible shapes:
import numpy as np array1 = np.array([1, 2, 3]) array2 = np.array([4, 5]) try: row_stacked_array = np.row_stack((array1, array2)) except ValueError as e: print("ValueError:", e)
Output
The output of the above code is as follows:
ValueError: all input arrays must have the same shape along all but the first axis