
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy squeeze() Function
The Numpy squeeze() function is used to remove single-dimensional entries from the shape of an array.
This function is useful for eliminating dimensions with size 1 which can simplify array manipulations. For example if we have an array with shape (1, 3, 1, 5) by applying squeeze() will transform it to shape (3, 5) by removing the singleton dimensions.
This function takes an optional axis parameter to specify which dimensions to remove but if not provided it removes all singleton dimensions.
The result is a new array with fewer dimensions but the same data.
Syntax
The syntax for the Numpy squeeze() function is as follows −
numpy.squeeze(a, axis=None)
Parameters
Following are the parameters of the Numpy squeeze() function −
- a(array_like): This is the input data which should be an array or array-like object.
- axis(None or int or tuple of ints, optional): This parameter selects a subset of single-dimensional entries in the shape. If an axis is specified then only that axis or axes will be squeezed. If no axis is specified then all single-dimensional entries will be removed. If a specified axis is not of size 1 then an error will be raised.
Return Value
This function returns the input array but with all or a subset of the dimensions of size 1 removed. This does not modify the original array but returns a new array.
Example 2
Following is the example of using the Numpy squeeze() function. Here in this example the array 'a' with shape (1, 3, 1) is squeezed to remove all single-dimensional entries which results in an array with shape (3,) −
import numpy as np # Original array with shape (1, 3, 1) a = np.array([[[1], [2], [3]]]) print("Original array shape:", a.shape) # Squeezed array squeezed_a = np.squeeze(a) print("Squeezed array shape:", squeezed_a.shape) print("Squeezed array:", squeezed_a)
Output
Original array shape: (1, 3, 1) Squeezed array shape: (3,) Squeezed array: [1 2 3]
Example 2
Here in this example we are attempting to squeeze a non-single-dimensional axis i.e. axis 1, results in a ValueError since axis 1 has a size of 3 −
import numpy as np # Original array with shape (1, 3, 1) a = np.array([[[1], [2], [3]]]) print("Original array shape:", a.shape) try: # Attempting to squeeze a non-single-dimensional axis squeezed_a = np.squeeze(a, axis=1) except ValueError as e: print("Error:", e)
Output
Original array shape: (1, 3, 1) Error: cannot select an axis to squeeze out which has size not equal to one
Example 3
Below is the example which shows how to use numpy.squeeze() to remove single-dimensional entries from the shape of an array −
import numpy as np # Creating a 3D array with shape (1, 3, 3) x = np.arange(9).reshape(1, 3, 3) print('Array X:') print(x) print('\n') # Removing single-dimensional entries from the shape of x y = np.squeeze(x) print('Array Y:') print(y) print('\n') # Printing the shapes of the arrays print('The shapes of X and Y array:') print(x.shape, y.shape)
Output
Array X: [[[0 1 2] [3 4 5] [6 7 8]]] Array Y: [[0 1 2] [3 4 5] [6 7 8]] The shapes of X and Y array: (1, 3, 3) (3, 3)