
Query Processing in Main Memory Database Management Systems

Tobm J L.&man
Mchael J Carey

Computer Sctenccs Department
Untversity of Wisconsm

Ma&son, WI 53706

ABSTRACT
Most pmv~ous work m the ama of mam memory database sys-

tems has focused on the problem of developing query processmg
techmoues that work well wnh a very large buffer pool In thus
paper, -we address query processmg issues for memoryresrdent rela-
uonal databases, an envuonment wrth a very dtfferent set of costs
and pnonues We present an arclutectum for a main memory
DBMS, discussing the ways m whtch a memory resident database
differs from a disk-based database We then address the problem of
processmg relauonal quenes 1n bus archttecture, cons1denng altema-
t1ve algonthms for seleetron, pmpecuon, and Join opemnons and
studying then performance We show that a new mdex structure, the
T Tree, works well for selectton and JOM processing in memory
restdent databases We also show that bashmg methods work well
for processmg pro~cttons and JOUIS. and that an old Join method,
sort-merge, shll has a place m mam memory

1 Introductron

Today, medmm to hrgh-end computer systems typmally have
memory capacmes m the range of 16 to 128 megabytes, and 1t 1s pro-
Jetted that chp densmes will contmue their current trend of doubling
every year for the foreseeable future [Rs86] As a result, It IS
expected that mam memory sizes of a ggabyte or mote will be feasi-
ble and perhaps even fanly common wuhm the next decade Some
researchers b&eve that many apphcaaons wuh memory requue-
ments whtch currently exceed those of today’s technology wtll thus
become memory restdent apphcauons 1n the not-too-dntant future
[GLV83], and the database systems area 1s certam to be affected 1n
some way by these trends Pmv~ous studies of how large amounts of
memory will affect the design of database management systems have
focused almost entuely on how to make use of a large buffer pool
[DK084, DeG85, ElB84, Sha86]

With memory stzes growing as they am, 1t IS qtute 11kely that
databases, at least for some apphcauons, will eventually fit enurely

This research was parttally supported by so IBM FellowshIp, an IBM Faculty
Develosment Award, and Nattonal Scrwce Foundauon Grant Number DCR-
84028l-8

PermIssIon to copy wtthout fee all or part of this matenal IS granted
provtded that the copies are not made or dtstrtbuted for dnect
commerctal advantage, the ACM copynght nottce and the tttle of the
pubheatron and its date appear, and nottce IS grven that copymg 1s by
permtsston of the Associatron for Computrng Machmery To copy
otherwtse, or to repubhsh, reqmres a fee and/or spectfic permtsston

0 1986 ACM 0-89791-191-l/86/0500/0239 $00 75

m mam memory For those apphcauons whose storage reqmrements
contmue to exceed memory capacmes, them may sttll be often-
referenced relattons that wtll fit m memory, m which case rt may pay
to pamuon the database into memory resident and disk resident por-
ttons and then use memory-specific techmques for the memory
restdent pomon (much hke IMS Fastpath and IMS [Dat81]) In
add1uon to tradruonal database appllcattons, there are a number of
emerging appl1cattons for wluch mam memory sizes will almost cer-
tainly be sufficient - appllcat1on.s that wish to be able to store and
access mlaaonal data mostly because the relauonal model and 1ts
assoctated operattons provide an attracuve abstracaon for their
needs Horwuz and Teltelbaum have proposed using relaaonal
storage for program mformanon 1n language-based editors, as adding
relations and relaaonal operanons to attnbute grammars provides a
mce mechamsm for speafy1ng and building such systems [HoT85]
Linton has also proposed the use of a database system as the basis for
constructmg program development envlromnents but841
Snodgrass has shown that the relauonal model provides a good basis
for the development of performance momtonng tools and their inter-
faces [Sno84] Finally, Warren (and others) have addressed the rela-
ttonsh1p between Prolog and mlahonal database systems fJVar81],
and having efficient algonthms for telauonal operaaons 1n mam
memory could be useful for processing quenes m future logic pro-
gramming language implementauons

Mouvated by these considerations, we are addressing the ques-
uon of how to manage large memory res&nr relauonal databases
Whereas tradmonal database algonthms are usually designed to
muum1ze disk traffic, a main memory database system must employ
algonthms that am dnven by other cost factors such as the number of
data compansons and the amount of data movement. We are study-
mg these issues, evaluatmg both old and new algonthms to deter-
mme which ones make the best use of both CPU cycles and memory
(Note that whde memory can be expected to be large, 1t wdl never be
free) We have focused mostly on query processing issues to date,
but we also plan to examme concurrency control and recovery issues
III our research - main memory databases ~111 still be mulu-user
systems, and many apphcauons will require their data to be stored
safely on disk as well as 1n mam memory

The remainder of thts paper IS orgamzed as follows Secuon 2
describes our main memory DBMS archnecture, pointing out ways
m which the orgamzauon of mam memory databases can profitably
doffer from drsk-based databases Sections 3 presents our work on
algonthms for tmplementmg selechon, projectton, and JoIn opera-
uons Both algonthms and performance results are given for each of
these operauons Fmally, Secuon 4 presents our conclusions and
discusses their impact on query opumizatton

239

2 Mam Memory DBMS Arch&cture

In ths sectlon, we present the design of a mam memory data-
base management system (MM-DBMS) that we are bmldmg as part
of a research proJect at the Umverslty of W~s~~~n-Mad~son The

key aspects of the design are the stmcture of relanons, m&es, and
temporary hsts (for holding query results and temporary relanons)
Ideas for approachmg the problems of concurrency control and
recovery are in the development stages The design 1s presented
under the assumption that the. entire. database resides m mam
memory, ignonng (for now) the case of a pamuoned database

2 1 Relations

Every relanon in the MM-DBMS ~11 be broken up mto partl-
tions, a partmon is a umt of recovery that IS larger than a typical &Sk
page, probably on the order of one or two Qsk tracks In order to
allow more freedom of design of these pamuons, the relanons ~111
not be allowed to be traversed dltecdy, so all access to a relation 1s
through an index (Note that tins reqmres all telauons to have at
least one mdex) Although physical contiguity 1s not a major perfor-
mance issue m mam memory (indeed, the tuples of a relation could
be scattered across all of memory), keepmg the tuples grouped
together m a pamnon aids m space management and recovery, as
well as being more efficient in a multi-level cache environment (In a
single-level cache, cache block Sizes are typically smaller than the
size of a tuple, but m a muln-level cache where there are several
cache block sizes, the larger sized cache blocks could hold most or
all of a pamtion)

The tuples m a pamuon will be referred to directly by memory
addresses, so tuples must not change locauons once they have been
entered mto the database For a vanable-length field, the tuple itself
will contain a pointer to the field m the ptitron’s heap space, so
tuple growth will not cause tuples to move ’ Since tuples in memory
can be randomly accessed with no loss m performance, tt 1s possible
for the MM-DBMS to use pointers where it would otherwise be
necessary to copy data in a disk-based DBMS For example, If
foreign keys (attnbutes that reference tuples m other relations) are
ldentlfied m the manner proposed by Date [DatW, the MM-DBMS
can substitute a tuple pointer field for the foreign key field (Tins
field could hold a single pointer value m the case of a one to one
relatlonshlp, or It could hold a list of pomters If the relationship 1s
one to many) When the foreign key field’s value 1s referenced, the
MM-DBMS can simply follow the pointer to the foreign relation
tuple to obtam the desired value %s will be more space efficient,
as pointers will usually be as small as or smaller than data values
(especially when the values are stnngs) Tlus wdl also enhance
remeval performance by allowing the use of precomputed Jams
Consider the following example

Employee Relauon (Name, Id, Age, DeptId)
Department Relation (Name, Id)

Query 1 Retneve the Employee name, Employee age, and Depart-
ment name for all employees over age 65

Most convenuonal DBMSs lack precomputed Jams and would
require a Join operation to answer tis query Even with precom-
puted Joms, a conventional DBMS would need to have the Depart-
ment tuples clustered with the Employee tuples or It could pay the
pnce of a disk access for every Department tuple remeved In the
MM-DBMS, usmg precomputed Joins is much easier Assummg
that the Emp Depud field has been ldentlfied as a foreign key that

references Department tuples, the MM-DBMS will subsmute a
Department tuple pointer m tts place, The MM-DBMS can then sim-
ply perform the selection on the Employee relanon, followmg the
Department pointer of each result tuple

Assuming that the Department Relahon does not have pointers
to the Employee Relation, remevmg data m the other drecaon
would sull requne a Jam operation, but the Join’s comparison can be
done on pointers rather than on data Usmg the relanow from the
example above, consider the followmg query

Query 2 Retneve the names of all employees who work m the Toy
or Shoe Departments

To process tis query, a selecuon wdl be done on the Department
relauon to remeve the “Shoe” and “Toy” Department tuples, and the
result will then be homed with the Employee relanon For the Join,
compansons will be performed using the tuple pointers for the
selecuon’s result and the Department tuple pointers m the Employee
relation Wlnle this would be equivalent m cost to Jmmng on
Dept-Id m tis example, it could lead to a slgmficant cost savmgs If
the Join columns were smng values instead

2 2 Indices

Since relauons are memory resident, it 1s not necessary for a
main memory index to store actual attnbute values Instead, pomters
to tuples can be stored m then place, and these potntem can be used
to extract the atmbute values when needed This has several advan-
tages First, a single tuple pointer provides the index with access to
both the atmbute value of a tuple and the tuple itself, reducing the
Size of the index Second, dus eliminates the complexity of dealing
with long fields, vanable length fields, compression techmques, and
calculatmg storage reqmrements for the index Third, movmg
pointers will tend to be cheaper than moving the (usually longer)
attnbute values when updates necessitate mdex operaaons Finally,
Since a single tuple pomter provides access to any field in the tuple,
muIn-atmbute m&ces will need less m the way of special mechan-
isms Figure 1 shows an example of two m&es built for the
Employee relauon (The m&es are shown as sorted tables for sim-
PllW)

The MM-DBMS design has two types of dynanuc mdex struc-
tures, each serving a &fferent purpose The T Tree mC851, a rela-
uvely new index structure designed for use m mam memory, is used
as the general purpose index for ordered data It 1s able to grow and
shnnk gracefully, be scanned m either Qrection, use storage
efficiently, and handle duplicates with httle extra work Modified
Linear Hashmg, a vanant of Linear Hashmg [Lit801 that has been
modified for use m mam memory mC85], is used for unordered
data Several other index structures were constructed to aid in the
exammatlon of Join and project methods shown later m tis paper
The array index structure [AHK85] was used to store ordered data It
1s easy to build and scan, but it 1s useful only as a read-only index
because It does not handle updates well Chained Bucket Hashmg
[AHU74] was used as the temporary index structure for unordered
data, as It has excellent performance for static data (Ongmally,
Chained Bucket Hashmg was going to be used for static structures in
the MM-DBMS, but it has Since been replaced by Mo&ied Lmear
Hashmg, because It was discovered that the two have slrmlar perfar-
mance when the number of elements remants stabc)

2 3 Temporary hsts

The MM-DBMS uses a temporary hst stmctum far srormg
mtermedmte result nlahons A temm hst is a hst of tuple
pomters plus an awxx@d result descnptor The pomters point to
the source relauon(s) from which the temporary relanon was formed,

240

and the result descnptor 1dentlfies the fields that are contamed 1n the
relation that the temporary hst represents The descnptor takes the
place of projection - no wdtb reduction 1s ever done, so there 1s ht-
tle motivation for computing pmJect1ons before the last step of query
processmg unless a sigmficant number of duphcates can be ehm-
1nated Unlike regular relauons, a temporary hst can be traversed
Qrectly, however, 1t 1s also possible to have an index on a temporary
hst

As an example, 1f the Employee and Department relations of
Figure 1 were Joined on the Department Id fields, then each result
tuple 1n the temporary hst would hold a pour of tuple pomters (one
poumng to an Employee tuple and one pomting to a Department
tuple), and the result descnptor would hst the fields 1n each relation
that appear 1n the result Rgure 1 also shows the result hst for such
an equijom on Department Id (Query 1)

EmDlOVee Relatton r Employee 1

DeDartment

124 102
110 124 L-L-I 105 110
137 137

1 287 1 Pamt 1 455 1 1 (102,201)1 ’ -
I

Flgure 1 - Relation and Index Design

2 4 Concurrency Control and Recovery

The MM-DBMS 1s intended to provide very high performance
for the apphcahons that 1t 1s capable of serving, many of which urlll
reqmre their data to be stored safely on disk as well as 1n memory
Thus, the MM-DBMS must have a fast recovery mechamsm The
system 1s intended for multiple users, so 1t must also provide con-
currency control While we have not yet fimshed the design of these
subsystems, we wish to point out some of the major issues that are
gmd1ng their design

One proposed solution to the recovery problem 1s to use
battery-backup RAM modules &eR85], but thus does not protect
memory from the possibility of a me&a failure - a malfunctionmg
CPU or a memory frulure could destroy a several gigabyte database
Thus, disks will stdl be needed to provide a stable storage medium
for the database Given the size of memory, appl1cauons that depend
on the DBMS ~11 probably not be able to afford to wat for the
entire database to be reloaded and brought up to date from the log
Thus, we are developing an approach that will allow normal process-
1ng to contmue 1mme&ately, although at a slower pace until the
workmg sets of the current transacuons are read into mam memory

Our approach to recovery 1n the MM-DBMS 1s based on an
active log device. Dunng normal operation, the log device reads the
updates of comrmtted transactions from the stable log buffer and
updates the disk copy of the database The log device holds a change
accumulation log, so 1t does not need to update the disk version of
the database every ume a partmon 1s modified The MM-DBMS
wntes all log 1nformauon directly into a stable log buffer before the

actual update 1s done to the database, as 1s done 1n IMS FASTPATH
[IBM791 If the transaction aborts, then the log entry 1s removed and
no undo 1s needed If the transacuon comrmts, then the updates are
propagated to the database After a crash, the MM-DBMS can
continue processmg as soon as the workmg sets of the current tran-
sacDons are present in main memory The process of readmg in a
workmg set works as follows Each pamtlon that pamclpates 1n the
working set 1s read from the &sk copy of the database The log dev-
1ce 1s checked for any updates to that pamuon that have not yet been
propagated to the disk copy Any updates that exist are merged with
the parution on the fly and the updated pamuon 1s placed 1n
memory Once the workmg set has been read in, the MM-DBMS
should be able to run at close to 1ts normal rate while the remainder
of the database 1s read 1n by a background process A related propo-
sal for mam memory database recovery has been developed in paral-
lel with ours [&86], since both schemes are 1n theu development
stages, however, 1t would be premature to compare them here

c

cl- CPU

L

Log Device

I I

Flgure 2 - Recovery Components

Concurrency control costs are different for a memory resident
database Transactions will be much shorter 1n the absence of &sk
accesses In tis environment, 1t will be reasonable to lock large
items, as locks will be held for only a short time Complete senall-
zat1on would even be possible 1f all transactions could be guaranteed
to be reasonably short, but transachon interleaving 1s necessary for
fairness 1f some transactions will be long We expect to set locks at
the partition level, a frurly coarSe level of granulanty, as tuple-level
locking would be prolubrtlvely expensive here (A lock table 1s basi-
tally a hashed relation, so the cost of lockmg a tuple would be com-
parable to the cost of accessing 1t - thus doubling the cost of tuple
accesses 1f tuple-level lockmg 1s used) Recall that the Size of a par-
tmon 1s expected to be on the order of one or several disk tracks
(since tlus 1s the unit of recovery) Partmon-level lockmg may lead
to problems with certam types of transactions that are mherently
long (e g , conversational transachons) We will address these issues
1n future work

3 Query Processmg m Mam Memory DBMS

The direct addressatnhty of data 1n a memory resident database
has a profound impact on query processmg With the nouon of clus-
tenng removed, the methods for selection, Join and projection
acquire new cost formulas Old and new algonthms for these query
processing operations were tested to determme which algonthms
perform best 1n a main memory environment

3 1 The Test Environment

All of the tests reported here were run on a PDP VAX 1 l/750
running with two megabytes of real memory (as opposed to virtual
memory) ’ Each of the algontbms was Implemented 1n the C pro-
gramming language, and every effort was made to ensure that the
quality of the implementauons was umform acmss the algonthms
The validity of the execution umes reported here was venfied by

241

recording and exanumng the number of compansons, the amount of
data movement, the number of hash funcoon calls, and other nuscel-
laneous operations to ensure that the algonthms were doing what
they were supposed to (1 e , neither more nor less) These counters
were compiled out of the code when the final performance tests were
run, so the execution hmes presented here reflect the mnmng times
of the actual operaaons ~rlth very little ume spent m overhead (e g ,
dnver) routmes Tumng was done usmg a rouhne sundar to the
‘getrusage’ facility of Umx ’

3 2 Selection

This section summarizes the results from a study of index
mechamsms for mam memory databases [Lec85] The index stmc-
tures tested were AVL Trees [AHU74], B Trees [Com7913, arrays
[AHK85], Chamed Bucket hashmg [Knu73], Extendible Hashmg
[FNP79], Linear Hashmg &t80], Modified Linear Hashmg [LeC85],
and one new method, the T Tree [LeC85] (Modified Linear Hashmg
uses the basic pnnclples of Lmear Hashmg, but uses very small
nodes m the directory, single-item overflow buckets, and average
overtlow cham length as the cntena to control duectoly growth) All
of these mdex structures, except for the T Tree, are well-known, and
tbelr algontbms are described m the hterature Thus, we descnbe
only the T Tree here

3 2 1 The T Tree Index Structure

The T Tree 1s a new balanced tree structure that evolved from
AVL and B Trees, both of which have certam posmve quahhes for
use m mam memory The AVL Tree was designed as an internal
memory data structure It uses a bmary tree search, which 1s fast
sum the binary search 1s mtrm~c to the tree structure (1 e , no anth-
mettc calculations are needed) Updates always affect a leaf node,
and may result m an unbalanced tree, so the tree IS kept balanced by
rotation operations The AVL Tree has one major hsadvantage -
its poor storage uuhza0on Each tree node holds only one data item,
so there are two pointers and some control mformation for every data
item The B Tree IS also good for memory use - its storage unhza-
uon IS better since there are many data items per pomter4, searchmg
1s fairly fast since a small number of nodes are searched with a
binary search, and updatmg 1s fast smce data movement usually
involves only one node

The T Tree is a binary tree with many elements per node (Rg-
ure 3) Figure 4 shows a node of a T Tree, called a T Node Since
the T Tree IS a binary tree, It retams the mtnnslc binary search nature
of the AVL Tree, and, because a T node contmns many elements, the
T Tree has the good update and storage charactenshcs of the B Tree
Data movement 1s required for msemon and deletion, but it 1s usu-
ally needed only withm a single node Rebalancing IS done using
rotations smular to those of the AVL Tree, but it 1s done much less
often than m an AVL ‘Fiee due to the possibility of mtra-node data
movement

To md in our dlscuss:on of T Trees, we begin by mtroducmg
some helpful termmology There are three different types of T-
nodes, as shown in Figure 4 A T-node that has two subtrees 1s

2Unvr IS a trademark of AT&T Bell Laboratones
’ We refer to the onglaal B Tree, not the commonly used B+ Tree Tests re-

ported m [L&85] showed that the B+ Tree uses more storage than the B Tree and
does not perform any better m mam memory

’ A B Tree mternal node contams (N + 1) node pomters for every N data
Items while a B Tree leaf node coota~ns only data items Since leaf nodes greatly
outnumber mlemal nodes for typlcal values of N, there are many data items per node
poulter

Figure 3 - A T Tree

+ Half-Leaf Nodes

data, data, data, “’ dat
I I

Figure 4 - T Nodes

called an rnrernal node A T-node that has one NIL chdd pointer and
one non-NIL cluld pointer 1s called a half-leaf A node that has two
NIL cluld pointers 1s called a leaf For a node N and a value X, If X
lies between the mlmmum element of N and the maximum element
of N (mcluslve), then we say that node N bounds the value X Since
the data m a T-node IS kept m sorted or&r, its leftmost element IS the
smallest element m the node and its nghrmost element 1s the largest.
For each internal node A, there 1s a cormspondmg leaf (or half-leaf)
that holds the data value that 1s the predecessor to the mimmum
value m A, and there 1s also a leaf (or half-leaf) that holds the succes-
sor to the maximum value m A The predecessor value 1s called the
greatest lower bound of the internal node A, and the successor value
IS called the least upper bound

Associated with a T 1 ree is a nummum count and a maxlmum
count Internal nodes no&s keep their occupancy (I e the number of
data items m the node) m dus range The mlmmum and maximum
counts will usually differ by Just a small amount, on the order of one
or two items, whch turns out to be enough to slgmficandy reduce the
need for tree rotations With a mix of mserts and deletes, dns little
bit of extra mom reduces the amount of data passed down to leaves
due to msert overtlows, and It also reduces the amount of data bor-
rowed from leaves due to delete underllows Thus, havmg flexlblhty
m the occupancy of internal nodes allows storage uuhxanon and
insert/delete time to be traded off to some extent Leaf nodes and
half-leaf nodes have an occupancy ranging from zero to the max-
Imum count

Searchmg m a T Tree 1s sumlar to seamhmg m a binary tree
The mam difference. 1s that compansons are made wltb the mimmum
and maximum values of the node rather than a single value as m a
bmary tree no& The search conslsta of a bmary tree search to iind
the node that bounds the search value and then a bmary search of the
node to find the value, if such a node ts found

To insert mto a T Tree, one first searches for a node that
bounds the msert value If such a node 1s found, the item 1s inserted
there If the insert causes an overtlow, the mimmum elementS of that

shlovmg the muummn element mqures less total data movement tbao movmg
the maxmum element Smularly, when a node underflow because of a deletion,
borrowlog the greatest lower bound from a leaf node rqmres less work than kc-
rowmg the least upper bound These details are explamed m [L.eC851

242

node IS transferred to a leaf node, becoming the new greatest lower
bound for the node it used to occupy If no boundmg node can be
found, then the leaf node where the search ended 1s the node where
the insert value goes If the leaf node 1s full, a new leaf 1s added and
the tree IS rebalanced

To delete from a T Tree, one first searches for the node that
bounds the delete value Then, one searches the node for the delete
value If a boundmg node IS not found, or the delete value wlthm the
bounding node IS not found, the delete returns unsuccessful Other-
wse, the item IS removed from the node If deletmg from the node
causes an underllow, then the greatest lower bound for tlus node 1s
borrowed from a leaf If dns causes a leaf node to become empty,
the leaf node 1s deleted and the tree 1s rebalanced If there 1s no leaf
to borrow from, then the node (which must be a leaf) 1s allowed to
underflow

3 2 2 The Index Tests

Each index structure (arrays, AVL Trees, B Trees, Chained
Bucket Hashmg, Extedble Hashmg, Lmear Hashmg, Modified
Linear Hashmg, and T Trees) was tested for all aspects of mdex use
creation, search, scan, range quenes (hash structures excluded),
query nuxes (mtenmxed searches, mserts and deletes), and deletion
Each test used m&x structures filled ~rlth 30,000 umque elements
(except for create, which inserted 30,000 elements) The m&ces
were configured to run as umque mdlces - no duphcates were per-
mltted The index structures were constructed in a *mam memory”
style, that is, the Indices held only tuple pomters instead of actual
key values or whole tuples We summanze the results of three of the
tests from [LeCSS] searchmg, a query mrx of searches and updates,
and storage cost measurements In order to compare the perfor-
mance of the mdex structures m the same graphs, the number of van-
able parameters of the vanous st.mctures was reduced to one - node
size In the case of Mtified Lmear Hashmg, single-item nodes were
used, so the “Node Sue” axis m the graphs refers to the average
overflow bucket cham length Those structures without vanable
node sizes simply have straight hnes for their execution umes The
graphs represent the hashmg algontbms with dashed lines and the
order-presexvmg structures with solid lines

Search

Graph 1 shows the search times of each algonthm for vanous
node sizes The array uses a pure bmary search The overhead of the
anthmeac calculauon and movement of pointers 1s nonceable when
compared to the “hanlwu&” binary search of a binary tree In con-
trast, the AVL Tree needs no anthmetrc calculahons, as It Just does
one compare and then follows a pomter The T Tree does the major-
ity of lta search m a manner slmllar to that of the AVL Tree, then,
when It locates the correct node, It sHrltches to a binary search of that
node Thus, the search cost of the T Tree search 1s shghdy more
than the AVL Tme. search cost, as some time 1s lost m binary search-
mg the final node The B Tree search ume IS the worst of the four
order-preservmg structures, because It reqmres several bmary
searches, one for each no& m the search path

The hashmg schemes have a fixed cost for the hash funcaon
computation plus the cost of a linear search of the node and any asso-
ciated overflow buckets For the smallest node sizes, all four hash-
mg methods are basically equivalent The differences he in the
search fimes as the nodes get larger Linear Hashmg and Extendible
Hashmg are Just about the same, as they both search mulaple-Item
nodes Mo&fied Linear Hashmg searches a linked hst of single-Item
nodes, so each data reference reqmres traversing a pointer Tlus
overhead 1s noticeable when the cham becomes long (Recall that

Modltied LlFear Hash

Array

T Tree

Seconds
AVL Tree

Chamed Bucket Hash

o! ’ ’ ’ 1 8 1 ’ ’ 0 ’
0 10 20 30 40 50 60 70 80 90 100

Node Size
Graph 1 - Index Search

“Node Size” 1s really average cham length for Mo&fied Linear Hash-
ing 1

Query MIX

The query mix test IS most Important, as It shows the index
structures m a normal workmg envlromnent Tests wem performed
for three query nuxes using different percentages of mterspersed
searches, inserts and deletes

1) 80% searches, 10% msew, 10% deletes
2) 60% searches, 20% mserta, 20% deletes
3) 40% searches, 30% inserts, 30% deletes

The query mix of 60 percent searches, 20 percent mserta and 20 per-
cent deletes (Graph 2) was representative of the three query mix
graphs The T Tree performs better than the AVL Tree and the B
Tree here because of its better combmed search / update capability
The AVL tree is faster than the B Ttee because It 1s able to search
faster than the B Tree, but the execution times are smular because of
the B Tree’s better update capability For the smallest node sizes,
Modified Linear Hashmg, Extendible Hashmg, and Chamed Bucket
Hashing are all basically equivalent They have similar search cost,

and when the need to resize the directory 1s not present, they all have
the same update cost Lmear Hashmg, on the other hand, was much
slower because, trying to mamtam a pamcular storage uuhzatlon
(number of data bytes used I total number of data bytes aviulable), It
did a slgmficant amount of data reorgamzmon even though the
number of elements was relatively constant As for the array index,
ita performance was two orders of magmmde worse than that of the
other index structures because of the large amount of data movement
reqmred to keep the amy m sorted order (Every update reqmres
moving half of the army, on the average)

Storage Cost

Space considerations preclude the mcluslon of the storage
results graph, but we summanze them here The array uses the
mlmmum amount of storage, so we discuss the storage costs of the
other algonthms as a raao of their storage cost to the array storage

243

947

& Array

501 I I
I i

45 - \ Lmear Hash :
:

: /
/’

,/ Modified Lmear Hash

1 i ;
30 !I

Extendible Ha+,.
,//--’

/’
/’ \ B Tree

/’ L AVL Tree
,‘- /

/
c T Tree

5~--------------------------------
Chamed Bucket Hash

0- I I , I I , t I
0 10 20 30 40 50 60 70 80 90 100

Node Size
Graph 2 - Query MIX of 60% Searches

cost Fust, we consider the fixed values the AVL Tree storage fac-
tor was 3 because of the two node pomters it needs for each data
item, and Chamed Bucket Hashmg had a storage factor of 2 3
because it had one pointer for each data Item and part of the table
remained unused (the hash funcnon was not perfecrly umform)
Modified Lmear Hashmg was slmdar to Chamed Bucket Hasbmg for
an average hash chain length of 2, but, for larger hash chams, the
number of empty slots m the table decreased and eventually the table
became completely full Finally, Linear Hashmg, B Trees, Extendl-
ble Hashmg and T Trees all had nearly equal storage factors of 15
for medmm to large size nodes Extendible Hashmg tended to use
tbe largest amount of storage for small nodes sizes (2,4 and 6) This
was because a small node size mcreased the probablbty that some
nodes would get more values than others, causing tbe directory to
double repeatedly and thus use large amounts of storage As its node
size was mcreased, the probabllny of dus happemng became lower

3 2 3 Index Study Results

Table 1 summarizes the results of our study of mam memory
index structures We use a four level ratmg scale (poor, far, good,
great) to show the performance of the index structures m the three
categones An important dung to nonce about the hash-based
indices is that, whtle Extendble Hashmg and Mtified Linear Hash-
mg had very good performance for small nodes, they also had hgh
storage costs for small nodes (However, the storage uhhzatlon for
Modified Linear Hashmg can probably be Improved by using
multiple-item nodes, thereby reducing the pointer to data Item rauo,
the version of Modified Linear Hasbmg tested here used smgle-Item
nodes, so there was 4 bytes of pointer overhead for each data item)
As for the other two hash-based methods Chained Bucket Hashmg
had good search and update performance, but it also bad fairly high
storage costs, and it 1s only a stauc stn~cture, and finally, Linear
Hashing is Just too slow to use m mam memory Among the hash-

based methods tested, Modified Linear Hashmg pmvlded the best
overall performance

Lookmg at the order-preserving mdex structures, AVL Trees
have good search execution times and fair update execution rimes,,
but they have tigh storage costs Arrays have reasonable search
umes and low storage costs, but any update actlvlty at all causes it to
have execunon rimes orders of mugnrrude higher than the other
mdex structures AVL Trees and arrays do not have suffiaently
good performance I storage charactenshcs for conslderaaon as mam
memory indices T Trees and B Trees do not have the storage prob-
lems of dynarmc haslung methods, they have low storage costs for
those node sizes that lead to good performance The T Tree seems to
be the best of choice for an order-preservmg mdex structure, as it
performs umformly well in all of the tests

Table 1 -Index Study Results

3 3 Jorn

Previous Jam studies mvolvmg large memones have been
based on the large buffer pool assumphon [Sha86], [DK084],
[DeG851 (Others have studled hash moms as well m a normal dtsk
environment [Bab791, [VaG84], [Bra84], but tbelr results are less
applicable here) Three mam Jam methods were tested m [DeG85]
Nested Loops wtth a hashed index, Sort Merge [BlE77], and three
hasbmg methods, Simple Hash, Hybnd Hash and GRACE Hash
[DK084] The msulta showed that when both Elations fit m
memory, the three hash algonthms became equvalent, and the
nested loops Jam with a bash index was found to perform Just as well
as the other hash algonthms (and outperformed Sort Merge) They
also studied the use of semqom pmcessmg with ht vectors to reduce
the number of disk accesses involved m the Join, but dus senqom
pass 1s redundant when the relattons are memory resident The
variety of Join relation compostaons (e g , sizes, Join selechvitles,
Jam column value dtstnbunons) used m their study was small, and
may not completely reflect all posslblhties (performance-wise)

In dus study, we examme the performance of a number of can-
didate Join methods for the MM-DBMS We use a wide selection of
relation composlhons so as to evaluate the algonthms under a wde
vanety of possible condmons

3 3 1 Relation GeneratIon

In or&r to support our intent to test a variety of relanon com-
poslhons, we constructed our test relahons so that we could vary
several parameters The vanable parameters were

(1) The relauon cardmahty (IRj)

(2) Tbe number of Jam column duplicate values (as a percentage of
IRI) and then &stnbuhon

(3) The semjorn selecnvlty (the number of values m the larger
relauon tbat paruclpate in the Join, expressed as a percentage of
the larger telauon)

244

In order to get a vanable semlJom selecnvlty, the smaller rela-
tlon was built with a specified number of values from the larger rela-
tion To get a vanable number of duphcates, a specified number of
umque values were generated (either from a random number genera-
tor or from the larger relauon), and then the number of occurrences
of each of these values was determmed usmg a random sampling
procedure based on a truncated normal dlstnbutlon with a vanable
standard deviation Graph 3 shows the three duphcate dlstnbuhons
used for the tests - a skewed &smbutlon (where the standard devla-
hon was 0 1), a moderately skewed dlstnbuhon (the 0 4 curve m the
graph), and a near-umform dlsmbution (the 0 8 curve m the graph)

100

90

80

70

60

SO
Percent
Tuples

40

30

20

10

0

i

;
-I I

-i

0 10 20 30 40 50 60 70 80 90 100
Percent Values

Graph 3 - Dlstrlhutlon of Duphcate Values

The results for the 0 4 and 0 8 cases were slmdar, so results are given
here only for the two extreme cases

3.3 2 The Jom Algorithms

For memory resident databases, all of the hash-based algo-
nthms tested m [DeG85] were found to perform equally well
Therefore, the hash-based nested loops algonthm IS the only hash-
based algonthm that we examme here For our tests, we lmple-
mented and measured the performance of a total of five Join algo-
nthms Nested Loops, a simple mam-memory version of a nested
loops Jam with no index, Hash Jom and Tree Jom, two vanants of
the nested loops Jom that use indices, and Sort Merge and Tree
Merge, two vanants of the sort-merge Jom method of [BlE77] We
bnefly descnbe each of these methods m turn Recall that relauons
are always accessed vta an index, unless otherwise specified, an
array index was used to scan the relations m our tests

The pure Nested Loops Join IS an O(N*) algontbm It uses one
relation as the outer, scamung each of its tuples once For each outer
tuple, it then scans the entire inner relaaon lookmg for tuples with a
matchmg Jom column value The Hash Jom and Tree Jom algo-
nthms are similar, but they each use an index to limit the number of

tuples that have to be scanned m the inner relation The Hash Join
bmlds a Cham Bucket Hash index on the Join column of the mner
relation, and then it uses tis index to find matchmg tuples durmg the
JoIn The Tree Jom uses an exlstmg T Tree index on the mner rela-
hon to find matchmg tuples We do not include the posslblhty of
building a T Tree on the mner relation for the Join because It turns
out to be a viable alternative only if the T tree already exists as a reg-
ular index - if the cost to build the tree is included, a Tree Jom ~111
aZwuys cost more than a Hash Jom, as a T tree costs more to bmld
and a hash table IS faster for single value remeval DC851 On the
other hand, we always include the cost of bmldmg a hash table,
because we feel tbat a hash table mdex 1s less likely to emst than a T
Tree index The cost of creating a hash table with 30,000 elements 1s
about 5 seconds m our envlmnment OCSS]

The merge Jam algonthm [BlE77] was implemented using two
index struchzes, an array mdex and a T Tree mdex For the Son
Merge algorithm tested here, array indexes were built on both rela-
tions and then sorted The sort was done using qmcksort wtth an
msemon sort for subarrays of ten elements or less 6 For the Tree
Merge tests, we built T Tree mdlces on the Jam columns of each
relation, and then performed a merge Join usmg these indices How-
ever, we do not report the T Tree constmctton ames m our tests - tt
turns out that the T Merge algorithm 1s only a viable altemanve if
the indices already exist Prehmmary tests showed that the arrays
can be built and sorted m 60 percent of the time to bmld the trees,
and also that the array can be scanned m about 60 percent of the time
It takes to scan a tree

3.3 3 Jom Tests

The Jom algonthms wem each tested with a variety of relation
composltrons m order to determine their relative performance Six
tests were performed m all, and they are summarized below In our
descnpuon of the tests, IRl(denotes the outer relation and IR21
denotes the mner relation

(1) Vary Cardtnuhty Vary the sizes of the relations with (Rll =
jR21,0% duphcates, and a semlJom selechvlty of 100%

(2) Vary Inner Curdmnultty Vary the size of R2 (IR2(= l-100% of
IRll) with [Rll = 30,000, 0% duplicates, and a semJom selec-
t1v1ty of 100%

(3) Vury Outer Cardmltty Vary the size of Rl (IRll = l-100% of
IR21) with IR21 = 30,000, 0% duplicates, and a senuJom selec-
t1v1ty of 100%

(4) Vary Dupltcate Percentage (skewed) Vary the duplicate per-
centage of both relations from O-100% with IRll = IR21 =
20,000, a semiJom selecnvlty of 1008, and a skewed duplicate
dlsmbution

(5) Vary Duphcate Percentage (uniform) Vary the duplicate per-
centage of both mlauons from O-100% with IRll = IR21 =
20,000, a semlJom selecuvlty of lOO%, and a umform duplicate
dlsmbuuon

(6) Vary Semyorn Selectrvrty Vary the semiJoin selecmrty from
l-100% with jRl[= IR21 = 30,000 and a duplicate percentage of
50% with a umform duplicate dlsmbunon

6 We ran a test to detenmne the optunal subarray sue for swtchmg from
qucksort to’msertmn sort, the ophmal subarray size was 10

245

--

3 3 4 Jom Test Results

we present the results of each of the JOHI tests m dns secuon
The results for the Nested Loops algorithm ~11 be presented
separately at the end of the secaon, as its performance was typIcally
two orders of magmtude worse than that of the other Jam methods

Test 1 - Vary Cardmality

Graph 4 shows the performance of the Jam methods for rela-
tlons with equal cardmahues The relations are Jomed on keys (1 e ,
no duplicates) w1t.h a semlJom selectlvlty of 100% (1 e , all tuples
pamclpate m the Join) If both m&ces are av;ulable, then a Tree
Merge gives the best performance It does the least amount of work,
as the T Tree indices are assumed to exist, and scanmng them m
order 1lmlt.s the number of compansons required to perform the Join
The number of compansons done 1s approximately ([Rll + IR21 * 2),
as each element in Rl 1s referenced once and each element m R2 IS
referenced twice me presence of duplicates would increase the
number of hmes the elements m R2 are referenced) If it 1s not that
case that both mdlces are avadable, it 1s best to do a Hash Join It
turns out that, m tlus case, it is actually faster to build and use a hash
table on the mner relanon than to simply use an exishng T Tree
index A Hash table has a fixed cost, independent of the index size,
to look up a value The number of compansons done in a Hash Join
1s approximately (IRlj + (IRll * k)) where k IS the fixed lookup cost,
whereas the number of compansons m a Tree Jom 1s roughly (IR 1 I +
(IRl) * Log@2]))) The value of k 1s much smaller than
Logz(lR21))) but larger than 2 Finally, the Sort Merge algorithm has
the worst performance of the algonthms in dus test, as the cost of
bulldmg and sorting the arrays for use m the merge phase 1s too high
(WI * Lw$lW) + WI * L4$lW)) + WI + WIN

JOIN TEST 1 ((RI! = IR2()

Hash Jom
- Tree Jam
------ Sort Merge

/’
1’

/ 1’
/’

Seconds

10 -
/’

--- Tree Merge /’
/’

1’

/’ II/-;

/’
/’

1’ ,
/’

0 7500 15000 22500 30000
Number Of Tuples

Graph 4 - Vary Cardmahty

Test 2 - Vary Inner Cardmallty

Graph 5 shows the performance of the JOHI methods as R2’s
cardmahty 1s vaned from l-10036 of the cardmahty of Rl In tis
test, Rl’s cardmahty IS fixed at 30,000, the Join columns were agam
keys (1 e , no duplicates), and the senuJom selectlmty was agam
100% The results obtamed here are snmlar to those of Test 1, with
Tree Merge performmg the best if T Tree m&ces exist on both Join
columns, and Hash Jom performing the best othemse In dus test,
each of the the mdex JOIIIS were basically doing (RI\ searches of an
index of (Increasing) cardmahty IR21

20- JOIN TEST 2 (Vary IR21)

Hash Jom
- Tree Join

15-
------ Sort Merge

lo-

Seconds
1’

,/-

/

I
/’ /’ /’ ,

I

,

5
,

-- __---
/--

_--- --/
--

0-
0 25% 50% 75% 100%

1R2) Percentage of JR11

Graph 5 - Vary Inner Cardmahty

Test 3 -Vary Outer Cardmahty

The parameters of Test 3 were identical to those of Test 2
except that jRl(was vaned instead of (R2(The results of dus test are
shown m Graph 6 The Tree Merge, Hash Join, and Sort Merge
algonthms perform much the same as they did m Test 2 In dus
case, however, the Tree Join outperforms the others for small values
of (Rll, beatmg even the Tree Merge algorithm for the smallest (RI1
values Tlus IS mtumve, as this algorithm behaves like a simple
selecuon when [Rll contams few tuples Once IR21 mcreases to
about 60% of IRlI, the Hash Jom algorithm becomes the better
method agam because the speed of the hash lookup overcomes the
lmtlal cost of bmldmg the hash table, both of which combmed are
cheaper than the cost of many T Tree searches for large values of
lRl/ Note if a hash table index already existed for R2, then the
Hash Jom would be faster than the Tree Jom (recall that bmldmg the
hash table takes about 5 seconds)

246

20 JOIN TEST 3 Wary lR11) JOIN TEST 4 (Vary Duplicates - Skewed Dust)
10000

Hash Jom
- Tree Jom

Hash Join
- Tree Jom
------ Sort Merge
--- Tree Merge

10

Seconds

Seconds

10

1
0 25% 50% 75%

IRll Percentage of IR21

Graph 6 - Vary Outer Cardmahty

100%

Test 4 -Vary Duphcate Percentage (skewed)

For test 4, IRll and /R21 were fixed at 20,000, the sern1Jom
selecttvity was kept at lOO%, and the duphcate percentage for both
relahons was vaned from 1 to 100% The results of dus test are
shown m Graph 7 The duplicate chsmbuuon was skewed, so there
were many duplicates for some values and few or none for others
(The duplicate percentages of the two relauons were different m this
test - a result of the relauon construction procedure In order to
actieve 100 percent semqom selecnvlty, the values for R2 were
chosen from Rl, wluch already contamed a non-urnform dlsmbuhon
of duphcates Therefore, number of duplicates m R2 1s greater than
that of Rl The duplicate percentages m Graph 7 refer to Rl) Once
the number of duplicates becomes sigmficant, the number of match-
mg tuples (and hence result tuples) becomes large, resultmg m many
more tuples being scanned The Sort Merge method 1s the most
efficient of the algonthms for scanmng large numbers of tuples -
once the skewed duplicate percentage leaches about 80 percent, the
cost of bmldmg and sortmg the arrays IS overcome by the efficiency
of scannmg the relations via the arrays, so It beats even Tree Merge
m tlus case Although the number of compansons 1s the same, as
both Tree Merge and Sort Merge use the same Merge Jam algorithm,,
the array index can be scanned faster than the T Tree index because
the army index holds a hst of contiguous elements whereas the T
Tree holds nodes of con@uous elements Joined by pomters Test
results from [L&851 show that the array can be scanned m about 2/3
the time It takes to scan a T Tree The Index Jam methods are less
efficient for processmg large numbers of elements for each Jcnn
value, so they begin to lose to Sort Merge when the skewed duphcate
percentage reaches about 40 percent

Test 5 -Vary Duplicate Percentage (muform)

Test 5 is ldenucal to Test 4 except that the chsmbuaon of
duphcates was umform The results of Test 5 are shown m Graph 8

0 25% 50% 75% 100%
Duplicate Percentage

Graph 7 - Vary Duplicate Percentage (skewed)

IN TEST 5 (Vary Duphcates - Uniform Dust)

Hash Jom
- Tree Jom
------ Sort Merge
--- Tree Merge

100 I I

1000

Seconds

10 /

1
0 25% 50% 75% 100%

Duplicate Percentage

Graph 8 - Vary Duplicate Percentage (uniform)

(Note that the duplicate percentages of Rl and R2 are the same here,
because R2 was created with a umform &smbunon of Rl values)
Here, the Tree Merge algonthm remamed the best method unttl the
duphcate percentage exceeded about 97 percent because the output

247

of the loin was much lower for most duplicate percentages When
the duplicate percentages were low (O-60 percent), the Jam algo-
nthms had behavior similar to that of earlier tests Once the duph-
cate percentage became tigh enough to cause a lugh output Jam (at
about 97 percent), Sort Merge agam became the fastest Join method

Test 6 -Vary SenuJom Selectlvlty

In the previous tests, the senuJom selecnvlty was held constant
at 100% In Test 6, however, it was vaned, and the results of tis
test are shown in Graph 9 For @IIS test, /Rlj = JR21 = 30,000 ele-
ments, the duplicate percentage was fixed at 50% m each relauon
with a umform dlsmbuhon (so there were roughly two occurrences
of each JOUI column value in each relation), and the senuJom selec-
tivity was vaned from l-100% The Tree Jam was affected the most
by the mcrease in matching values, a bnef descnpaon of the search
procedure ~111 explam why When the T Tree IS searched for a set of
tuples with a single value, the search stops at any tuple with that
value, and the tree 1s then scanned m both dnec~ons from that poa-
non (smce the list of tuples for a gven value 1s logically connguous
m the tree) If the lmtlal search does not find any tuples matchmg
the search value, then the scan phase 1s bypassed and the search
returns unsuccessful When the percentage of matchmg values IS
low then, most of the searches are unsuccessful and the total cost IS
much lower than when the maJonty of searches are successful A
slmllar case can be made for the Hash Jam m that unsuccessful
searches sometimes reqmre less work than successful ones - an
unsuccessful search may scan an empty hash chain instead of a full
one The increase m the Tree Merge execunon time m Graph 9 was
due mostly to the extra data compansons and the extra overhead of
recording the mcreasmg number of matchmg tuples Sort Merge 1s
less affected by the increase m matchmg tuples because the sortmg
time overshadows the time required to perform the actual merge Jam

20

15

10

Seconds

JOIN TEST 6 (Vary SemlJom Selectwty)

fl

Hash Jom
Tree Jom

------ Sort Merge
_--- Tree Merge

_---

_---

_ c --

_----

1

0 25% 50% 75%
Percent Matchmg Values

Graph 9 - Vary Semqom Selectwlty

100%

3 3 5 Jom Test Result Summary

If the proper pair of tree indices IS present, the Tree Merge Jam
method was found to perform the best m almost all of the sltuatlons
tested It turned out never to be advantageous to budd the T Tree
Indices for thus Jam method, however, as it would then be slower
then the other three methods In sltuauons where one of the two
relations 1s missing a Jam column index, the Hash Jom method was
found to be the best choice There are only two exceptions to these
statements

(1) If an mdex exists on the larger relation and the smaller relation
1s less than half the size of the larger relation, then a Tree Jam
(T Tree index Join) was found to execute faster than a Hash
Join In tis slmaaon, the tuples m the smaller relation can be
looked up m the tree mdex faster than a hash table can be bmlt
and scanned This would also be true for a hash mdex if It
already existed

(2) When the semiJom selecnvlty and the duplicate percentage are
both tigh, the Sort Merge Jam method should be used, pamcu-
larly if the duplicate dlsmbutlon IS highly skewed A Tree
Merge Join IS also sansfactoly is this case, but the required
mdlces may not be present If the indices must be bmlt, then
the Tree Merge Join will be more costly than the Hash Jom for
duplicate percentages less then 60 m the skewed case and 80 m
the umform case

It should be mentioned that only eqmJoms were tested Non-
equljoins other than “not equals” can make use of ordenng of the
data, so the Tree Jom should be used for such (<, 5, >, 2) Jams

As mennoned earher, we also tested the nested loops Join
method Due to the fact that its performance was usually several
orders of magnitude worse than the other Join methods, we were
unable to present them on the same graphs Graph 10 shows the cost
of nested loops Jam for a pomon of Test 1, with IRl(= jR21 vaned
from 1,000 to 20,000 It is clear that, unless one plans to generate
full cross products on a regular basis, nested loops Join should slm-
ply never be considered as a practical Join method for a mam
memory DBMS

The precomputed Jam described m Section 2 1 was not tested
along with the other Join methods Intumvely, It would beat each of
the Join methods m every case, because the Jolmng tuples have
already been poured Thus, the tuple pointers for the result relation
can simply be extracted from a single relation

3 4 ProJectIon

In our discussion of the MM-DBMS m Section 2, we explained
that much of the work of the proJectlon phase of a query 1s imphcltly
done by speclfymg the attnbutes in the form of result descnptors
Thus, the only step requmng any slgmficant processing is the final
operation of removing duplicates For duphcate ehmmatlon, we
tested two candidate methods Sort Scan [BBD83] and Hashmg
[DK084] Agam, we implemented both methods and compared their
performance

In these tests, the composltlon of the relation to be proJected
was vaned m ways similar to the those of the Join tests - both the
relation cardmahty and its duplicate percentage were vaned Since
prehmmary tests showed that the dlsmbunon of duphcates had no
effect on the results, we do not vary the dlsmbuuon in the tests
presented here

248

10000 NESTED LOOPS JOIN

100

Seconds

10

1 7

0 10000 20000 30000
Number of Tuples (IF11 = JR2))

Graph 10 - Nested Loops Join

Graph 11 shows the performance of the two duphcate ehmma-
non algonthms for relations of various sizes For dus test, no duph-
cates were actually introduced m the relation, so the startmg size of
the relation and lta final stze were the same The msemon overhead
m the hash table IS linear for all values of JR1 (since the hash table
size was always chosen to be (R1/2), whde the cost for sortmg goes as
O(lRI log IRI) As the number of tuples becomes large, this sorting
cost dommates the performance of the Sort Scan method In addl-
tlon, these tests were performed using single column relations - the
number of compansons IS much higher m the sort process, and thus
cost would only be exacerbated If more columns paruclpated m the
proJection Thus, the Hashmg method IS the clear winner m dus test

Graph 12 shows the results for a relation with 30,000 elements
but a varying number of duplicates As the number of duplicates
Increases, the hash table stores fewer elements (since the duplicates
are discarded as they are encountered) The Hashmg method IS thus
able to run faster than It would with all the elements (since it has
shorter chams of elements to process for each hash value) Sortmg,
on the other hand, realizes no such advantage, as it must shll sort the
entire hst before ehmmatmg tuples durmg the scan phase The large
number of duplicates does affect the sort to some degree, however,
because the msertlon sort has less work to do when there are many
duplicates - with many equal values, the subarray m quicksort IS
often already sorted by the time it IS passed to the msemon sort

4 Conclusions and Future Work

In thus paper, we have addressed query processmg Issues and
slgonthms for a mam memory database management system We
sketched an archnecture for such a system, the MM-DBMS archtec-
ture, pomtmg out the major dtfferences between disk-based data-
bases and memory resident databases We then addressed the prob-
lem of processmg relational quenes m the MM-DBMS architecture,
studying algonthms for the selection, Join, and proJechon operations

0 10000 20000 30000
Number of Tuples

Graph 11 - Vary Cardmahty

PROJECT TEST 2 (Vary Duphcate Percentage)
8

7

6

5

4

Seconds

3 Hash

0 25% 50% 75% 100%
Duphcate Percentage

Graph 12 - Vary Duphcate Percentage

249

- - - 1

A number of candldate algonthms were implemented for each opera-
uon, and their performance was expenmentally compared We
found that, for selection, the T Tree provides excellent overall per-
formance for quenes on ordered data, and that Modified Linear
Hashing 1s the best mdex structure (of those exammed) for unordered
data For JOHIS, when a precomputed JOIII does not exist, we found
that a T Tree based merge Join offers good performance if both
mdlces exist, and that hashmg tends to offer the best performance
otherwlse A mam memory vanant of the sort merge algorithm was
found to perform well for high output JOHIS Fmally, it was shown
that hashmg 1s the dominant algorithm for processmg proJections m
mam memory

In light of these results, query optimization m MM-DBMS
should be simpler than m convenuonal database systems, as the cost
formulas are less complicated [SAC791 The issue of clustenng and
proJection for size reduction has been removed from conslderauon,
thereby slmphfymg the choice of algonthms (ProJectlon may be
needed to reduce the number of duplicate entnes m a temporary
result, but it is never needed to reduce the szze of the result tuples,
because tuples are never copied, only pointed to) There are three
possible access paths for selection (hash lookup, tree lookup, or
sequential scan through an unrelated index), three mam Jom methods
(precomputed Join, Tree Merge Join, and Hash Join) and one method
for ehmmatmg duphcates (Hash) Moreover, the choice of w2llch
algorithm IS slmphfied because there 1s a more defimte ordenng of
preference a hash lookup (exact match only) IS always faster than a
tree lookup whch 1s always faster than a sequenhal scan, a precom-
puted Jam 1s always faster than the other Jam methods, and a Tree
Merge Jam IS nearly always preferred when the T Tree m&ces
already exist

5 References
[AHU74] A Aho, J Hopcroft and J Ullman, The Design and

Analysrs of Computer Algorrthms, Addison-Wesley
Pubhshmg Company, 1974

[AHK85]

[Bab79]

[BBD83]

[BlE77]

[Bra841

[Corn791

[Dat81]

[Dat85]

[DK084]

A Ammann, M Hanrahan and R Knshnamurthy,
Design of a Memory Resident DBMS, Proc IEEE
COMPCON, San Francisco, February 1985
E Babb, Implementing a Relational Database by Means
of Specialized Hardware, ACM Transactions on
Database Systems 4,l (March 1979), l-29
D Bltton, H Boral, D DeWltt and W Wllkmson,
Parallel Algonthms for the execution of Relational
Database Operatrons, ACM Transacnons on Database
Systems 8,3 (September 1983), 324
M Blasgen and K Eswaran, Storage and Access m
Relational Databases, IBM Systems Journal 16,4 (1977)
K Bratbeesengen, Hashing Methods and Relational
Algebra Operahons, Proc of 10th Znt Conf on Very
Large Data Bases, Singapore, August 1984,323
D Comer, The Ublqmtous B-Tree, Computrng Surveys
11,2 (June 1979)
C J Date, An Introductron to Database Systems,
Addison-Wesley, 1981 (3rd Ed)
C J Date, An Introductton to Database Systems,
Addison-Wesley, 1985 (4th Ed)
D Dewitt, R Katz, F Olken, L Shapiro, M
Stonebraker and D Wood, Implementahon Techmques
for Mam Memory Database Systems, Proc ACM
SIGMOD Conf, June 1984, l-8

[DeC85]

[ElC86]

[ElB84]

[FNP791

[FE861

[CiLV83]

[HoT85]

[IBM791

[Knu73]

[LeC851

IWW

&in841

&t80]

[SAC791

[Sha86]

[Sno84]

[VaG84]

mar8 11

D DeWltt and R Gerber, Multiprocessor Hash-Based
Jom Algonthms, Proc of Ilth Int Conf on Very Lurge
Data Bases, Stockholm, Sweden, August 1985
M Elch, MMDB Recovery, Southern Methodist Umv
Dept of Computer Sciences Tech Rep # 86-CSE-11,
March 1986
K Elhardt and R Bayer, A Database Cache for &gh
Performance and Fast Restart m Database Systems,
ACM Transacttons on Database Systems 9,4 (December
1984), 503-526
R Fagm, J Nlevergelt, N Pippenger and H Strong,
Extenhble Hashmg - A Fast Access Method for
Dynanuc Rles, ACM Transactions on Database Systems
4,3 (Sept 1979)
M Fishem, Techology ‘86 Solid State, IEEE Spectrum
23,l (January 1986)
H Garcia-Mohna, R J Lipton and J Valdes, A Massive
Memory Machme, Prmceton Umv EECS Dept Tech
Rep # 315, July 1983
S Horwltz and T Teltelbaum, Relations and Attnbutes
A Symblotlc Basis for Edmng Environments, Proc of
the ACM SIGPLAN Notrces Conf on Language Issues m
Programmrng Envrronments, Seattle, WA, June 1985
IBM, IMS Verwn I Release I5 Fast Path Feature
Descnptron and Destgn Gut&, IBM World Trade
Systems Centers (G320-5775), 1979
D Knuth, Sortzng and Searchmng, Addison-Wesley,
1973
T Lehman and M Carey, A Study of Index Structures
for Mam Memory Database Management Systems, UW
CS Tech Rep # 605, July 1985 (A revised version has
been submttted for pubhcauon)
M Leland and W Roome, The S&on Database
Machme, Proc 4th Int Workhop on Database
Machtnes, Grand Bahama Island, March 1985
M Lmton, Implementmg Relational Views of Programs,
Proc of the ACM Software Eng NoteslSlGPLAN
Nohces Sofhvare Eng Symp on PraChCal Sofhvare
Development Envwonments, Pmsburgh, PA, Apnl 1984
W Lltwm, Linear Hashmg A New Tool For File and
Table Addressing, Proc of 6th Int Conf on Very Large
Data Bases, Montreal, Canada, October 1980
P Sehnger, M Astrahan, D Chamberhn, R Lone and
T Price, Access Path Selection m a Relational DBMS,
Proc ACM SIGMOD Conf, June 1979
L D Shapiro, Jom Processing m Database Systems with
Large Mam Memones, ACM Transachons on Database
Systems, 1986 (to appear)
R Snodgrass, Momtonng m a Software Development
Environment A Relauonal Approach, Proc of the ACM
Software Eng NoteslSIGPLAN Nottces Sofrware Eng
Symp on Pracncal Sojlware Development
Envaronments, Pmsburgh, PA, Apnl1984
P Valdunez and G Gardann, Jom and SemiJoin
Algonthms for a Mmluprocessor Database Machme
Transacuons on Database Systems, ACM Transachons
on Database Systems 9,1 (March 1984), 133
D H D Warren, Efficient Processing of Interactive
Relational Database Quenes Expressed m Loge, Proc
of 7th Int Conf on Very Large Data Bases, Cannes,
Fance, September, 198 1

250

