
The Huawei System for 2020 Far-Field Speaker Verification Challenge 

Jinwen Huang, Weixiang Hu, Yu Lu, Lei Miao, Renyu Wang, Zhuzi Chen, Huan Zhou 

Huawei Technologies Co Ltd, China 

huangjinwen2@huawei.com 

 

Abstract 

This report describes the systems submitted to the Far-Field 

Speaker Verification Challenge (FFSVC2020) [1][2] by our 

team, named as try123. For this speaker verification system, 

two types of end-to-end multi-channel model like ResNet and 

Res2Net are used as backbone model, and three types of layer 

like GhostVlad [11], global statistics pooling (GSP) and global 

statistic plus max pooling (GSPMP) are used as following 

encoding layer. The final fusion system integrated 6 models 

from different backbone models and encoding layers. Finally, 

the submitted evaluation trail results (30% of test set) on 

leaderboard are (minDCF 0.3152, EER 3.03%) for task1, 

(minDCF 0.3632, EER 3.03%) for task2 and (minDCF 0.2849, 

EER 3.06%) for task3. 

Index Terms: speaker verification, far-field speech, ResNet, 

Res2Net, multi-channel 

1. Introduction 

Multi-channel training framework based on deep speaker 

embedding network like ResNet. Based on 2-dimensional (2D) 

or 3-dimensional (3D) convolution layer, the network is used to 

get the state of art performance for far-field speaker recognition 

under the reverberant and noisy environment with a multi-

channel microphone array in [3].  We use multi-channel ResNet 

[4] and multi-channel Res2Net [5] for this challenge. 

The following sections describes the details of our models 

and the fusion system. 

2. Data usage 

All training data comes from openslr.org and the FFSVC20 

Challenge Dataset as list in following Table 1. 

Table 1:  Datasets used for training models of the 

system 

Dataset Identifier 

Free ST Chinese Mandarin Corpus SLR38 

Aishell SLR33 

MAGICDATA Mandarin Chinese Read 

Speech Corpus 
SLR68 

Primewords Chinese Corpus Set1 SLR47 

aidatatang_200zh SLR62 

CN-Celeb SLR82 

VoxCeleb Data SLR49 

LibriSpeech SLR12 

HI-MIA SLR85 

FFSVC20 Challenge Dataset  

There are two stages for our model training, pre-train and 

fine-tune. Training data include SLR38, SLR33, SLR68, 

SLR47, SLR62, SLR82, SLR49 and SLR12 are used in pre-

train stage. 

For task1 and task3, training data include HI-MIA (SLR85) 

and the text-dependent dataset from FFSVC 2020 are used in 

the fine-tune stage.  

For task2, training data include HI-MIA (SLR85) and the 

text-independent part of FFSVC 2020 training dataset are used 

in the fine-tune stage. As HI-MIA (SLR85) is a text-dependent 

dataset, we use MultiReader method [6] to balance the training 

loss. 

3. System description 

3.1. Data augmentation 

In pre-train stage, with pyroomacoustics toolkit [7] for 

simulating the room acoustic condition, 35% of the training 

data are randomly selected to generate far-field multi-channel 

data for model training. 

Music, noise and speech part from MUSAN dataset [8] is 

used as additive noise with random SNR setting from 5db to 

30db both in pre-training and fine-tune stage.  In pre-train stage, 

noise is directly added in single-channel training data, and for 

multi-channel training data, pyroomacoustics toolkit is used for 

adding noise. In fine-tune stage, we only add noise to single-

channel data.  

The method of SpecAugment [9] is also applied in both pre-

train and fine-tune stage. 

Speed perturbation [10] used to get 3-times larger number 

of speaker IDs in fine-tune stage. 

3.2. Acoustic Feature Extraction 

All training are resampled to 16k Hz and pre-emphasized before 

feature extraction. The 64-dimensional Mel-log-filterbank 

energies is extracted with a frame length of 25ms and hop size 

of 10ms, and normalized through mean subtraction without 

voice activity detection. 

3.3. Deep Speaker Embedding 

Two different backbone were investigated: (1) ResNet34 and (2) 

Res2Net50. For each backbone, we use three different encoding 

layer: (1) GhostVlad [11], (2) global statistics pooling (GSP), 

(3) global statistic plus max pooling (GSPMP). Following 

encoding layer, a fully-connected layer is used to processes the 

utterance-level representation and finally get the speaker 

embedding after L2-normalization. Then we get six different 

models and integrate as the final fusion system. 

To make full use of multi-channel data, we change the Conv 

and Batchnorm layers in the input stem and first stage of 

ResNet34 and Res2Net50 from 2d to 3d. For the single-channel 



data, we repeat the data four times to produce the multi-channel 

data. Furthermore, for matching the dimension between the 3D 

convolution feature maps (4D tensor) and 2D convolution 

feature maps (3D tensor), a 3D convolution layer with kernel 

size of 4 × 1 × 1 is used between first stage and second stage as 

described in [3]. 

All the models are trained with angular softmax loss [12] in 

both pre-train and fine-tune stage. 

3.4. Backend 

In this work, cosine similarity is used for scoring without score 

normalization. 

4. Experiment results 

In pre-train stage, all models were trained with the training data 

describe in section 2, using Adam optimizer with constant   

learning rate as 0.001. Table 2 show the performance of six 

individual pre-train models on task2 dev dataset. 

Table 2: pre-train performance on task2 dev 

Model EER (%) minDCF 

ResNet34 + GSP 5.4696 0.5453 

ResNet34 + GSPMP 5.1945 0.5450 

ResNet34 + GhostVlad 5.5599 0.6151 

Res2Net50 + GSP 5.1314 0.5489 

Res2Net50 + GSPMP 5.6631 0.5520 

Res2Net50 + GhostVlad 5.8394 0.5548 

In fine-tune stage, all models were trained with the training 

data describe in section 2, using Adam optimizer with the 

learning rate decreases from 0.0001 to 0 linearly. The final 

system is fused from the six individual models with score-level 

weighting, which is refined by different experiments. Table 3~5 

show the performance of six individual models and final fusion 

system after fine-tune on task1 dev, task2 dev and task3 dev 

respectively. 

In both pre-training and fine-tune stages, we used automatic 

search method for data augmentation and training hyper-

parameters. 

On task1, ResNet34 + GSP gets the best performance by 

minDCF, while Res2Net50 + GSP get the best performance by 

EER. On task2, ResNet34 + GhostVlad is the best model. On 

task 3, ResNet34 + GhostVlad and Res2Net + GSP obtain the 

best result by minDCF and EER respectively. From task1 and 

task3, we can see that the backbone of Res2Net50 performance 

better than ResNet34 by EER. 

Table 3:  Fine-tune performance of each model and the 

final fusion system on task1 dev 

Model EER (%) minDCF 

ResNet34 + GSP 2.3403 0.2539 

ResNet34 + GSPMP 2.9183 0.3042 

ResNet34 + GhostVlad 2.3673 0.2836 

Res2Net50 + GSP 2.0327 0.287 

Res2Net50 + GSPMP 2.1836 0.2567 

Res2Net50 + GhostVlad 2.4489 0.3057 

Fusion 1.8535 0.2127 

Table 4: Finetune performance of each single 

model and the fused system on task2 dev 

Model EER (%) minDCF 

ResNet34 + GSP 3.1167 0.3734 

ResNet34 + GSPMP 3.273 0.3841 

ResNet34 + GhostVlad 2.6685 0.3305 

Res2Net50 + GSP 3.268 0.3964 

Res2Net50 + GSPMP 3.1503 0.3868 

Res2Net50 + GhostVlad 3.5445 0.3899 

Fusion 2.4511 0.3036 

Table 5: Finetune performance of each single model 

and the fused system on task3 dev 

Model EER (%) minDCF 

ResNet34 + GSP 1.7951 0.2322 

ResNet34 + GSPMP 2.2837 0.2596 

ResNet34 + GhostVlad 2.0023 0.2263 

Res2Net50 + GSP 1.6373 0.2661 

Res2Net50 + GSPMP 1.6517 0.2303 

Res2Net50 + GhostVlad 1.8718 0.2525 

Fusion 1.4273 0.1878 

In the end, the final result from the fusion system is submitted 

and evaluation trial results (30% of test set) on task1, task2 and 

task3 are shown in Table 6.  

Table 6: Finetune performance of the final fusion 

system on all three tasks on leaderboards 

Tasks EER (%) minDCF 

task1 3.03 0.3152 

task2 3.03 0.3632 

task3 3.06 0.2849 

The results show that multi-channel ResNet and Res2Net are 

promising backbone models by taking advantage of multi-

channel information.  

5. Conclusions 

The report presents the system submitted to the Far-Field 

Speaker Verification Challenge 2020. In this system multi-

channel ResNet and Res2Net are used as backbone model, data 

augmentation like adding noise, room acoustic simulating, 

speed perturbation and SpecAugment are used in both pre-

training and fine-tune stages. Six models is fused with refined 

score-weighting to get the state of art performance in far-field 

scenario. Due to time constraints, we don’t try more. New data 

augmentation methods and better fusion method might achieve 

better results in the future. 
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