深层神经网络实现--step by step 入门TensorFlow(二)

本文是TensorFlow深度学习系列的第二部分,主要介绍损失函数和神经网络优化算法。通过Jupyter notebook学习TensorFlow,讲解了交叉熵作为分类问题的损失函数,以及梯度下降、随机梯度下降和批量梯度下降等优化方法。同时提到了指数衰减学习率和正则化在防止过拟合中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深层神经网络实现–step by step 入门TensorFlow(二)

标签:tensorflow


我们将采用Jupyter notebook交互式编程的方式,通过一步步代码的讲解,学习Tensorflow 编程。推荐使用Jupyter notebook作为开发环境按照文中的代码step by step 的学习。

文章列表:
Tensorflow基础知识与神经网络构建–step by step 入门TensorFlow(一)
深层神经网络实现–step by step 入门TensorFlow(二)
MNIST 数字识别和数据持久化–step by step 入门TensorFlow(三)

损失函数

神经网络模型的效果和优化目标是通过损失函数来定义的
如果用一个向量作为分类结果(比如[0,0,0,1,0]识别为第4类),那如何判断输出向量与期望的向量有多接近呢?
交叉熵是最常用的评判标准之一,它刻画了两个概率分布之间的距离。而softmax()函数可以把把输出变为概率分布。
下面是交叉熵的实现,交叉熵与回归一起可以tf.nn.softmax_cross_entropy_with_logits().
其中tf.clip_by_value的展示

import tensorflow as tf
# cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10,1.0)))
#tf.nn.softmax_cross_entropy_with_logits(y,y_)
v = tf.constant([[1.0,2.0,3.0], [4.0,5.0,6.0]])

    print(tf.clip_by_value(v,2.5,4.5).eval())
[[ 2.5  2.5  3. ]
 [ 4.   4.5  4.5]]

求平均的tf.reduce_mean()函数使用方法

with tf.Session() as sess:
    print(tf.reduce_mean(v).eval())
3.5

我们也可以自定义损失函数。tf.greater(v1,v2)遍历向量做大小判断,大于为true,tf.select()根据条件选择取那个队列中的元素。

import tensorflow as tf

v1 = tf.constant([2,
<think>好的,我现在需要处理用户关于UNet项目的查询。用户希望了解UNet的项目介绍、源码、教程以及应用案例。首先,我应该回顾UNet的基本信息,确认它的起源和主要应用领域。UNet最初是由Olaf Ronneberger等人在2015年提出的,主要用于生物医学图像分割,这点很重要,需要在介绍部分明确提到。 接下来是源码部分。用户可能需要知道在哪里可以找到UNet的官方实现。虽然原论文可能没有提供官方代码,但GitHub上有很多开源实现,比如使用TensorFlow或PyTorch的版本。我应该列出几个流行的仓库,并附上链接,这样用户可以直接访问。需要注意检查这些仓库的活跃度和star数,确保推荐的是可靠资源。 然后是教程部分。用户可能需要学习如何从头开始构建UNet模型。这时候需要推荐一些优质的教程资源,比如Kaggle的教程、Medium的技术文章,或者YouTube的视频教程。这些资源应该涵盖从理论到实践的不同方面,帮助不同层次的学习者。例如,Kaggle的教程可能更适合实战,而论文精读视频有助于理解模型的设计思路。 应用案例部分需要展示UNet在不同领域的实际应用,比如医学影像中的肿瘤分割、卫星图像处理、自动驾驶中的道路检测等。每个案例需要简要说明UNet如何应用,并引用相关的研究论文或项目,增强可信度。同时,可以提到UNet的变体,如UNet++或3D UNet,说明它们如何扩展了原模型的应用范围。 在回答过程中,必须遵循用户提供的格式要求。所有行内数学表达式要用$...$,比如提到损失函数时用$L = -\sum y \log(\hat{y})$。独立公式如网络结构可能需要用$$...$$,但根据内容判断,这里可能不需要太多数学公式,但如果有的话要正确格式化。同时,中文回答,结构清晰,分点说明,并在引用处添加脚注,例如[^1][^2]。 另外,生成的相关问题需要与UNet相关,可能涉及改进方向、医学影像的具体应用、训练技巧等。这些问题应该引导用户进一步探索,比如问及UNet的局限性或与其他模型的对比。 最后,检查所有链接是否有效,引用是否正确,确保没有格式错误,比如代码块用三个反引号包裹,正确标注引用标记。整个过程要保持回答自然,信息准确,满足用户的实际需求。</think>### UNet项目介绍 UNet是一种用于图像分割的卷积神经网络架构,最初由Olaf Ronneberger等人在2015年提出,主要用于生物医学图像分割任务[^1]。其核心结构包含**编码器(下采样)**和**解码器(上采样)**两部分,通过跳跃连接(skip connections)融合浅层细节与深层语义信息,显著提升了分割精度。 #### 核心特点: - **编码器**:通过卷积和池化逐步提取图像特征。 - **解码器**:通过反卷积和跳跃连接恢复空间分辨率。 - **应用场景**:医学影像(如细胞分割、器官定位)、卫星图像分析、自动驾驶等。 --- ### UNet源码资源 1. **官方实现(非严格官方,但广泛认可)** - 原论文未提供官方代码,但GitHub有大量开源实现- [PyTorch实现](https://github.com/milesial/Pytorch-UNet)(Star数超10k,含训练脚本)[^2] - [TensorFlow实现](https://github.com/zhixuhao/unet)(支持Keras,适合快速实验) 2. **扩展变体** - **UNet++**:通过嵌套跳跃连接优化性能,[代码仓库](https://github.com/MrGiovanni/UNetPlusPlus)[^3] - **3D UNet**:处理三维医学影像,[MONAI框架集成](https://github.com/Project-MONAI/MONAI)[^4] --- ### UNet教程推荐 1. **入门教程** - [Kaggle教程:从零实现UNet](https://www.kaggle.com/code/ateplyuk/pytorch-starter-u-net-step-by-step):手写数字分割实战,提供完整数据预处理流程。 - [Medium技术博客](https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5):逐行代码解析,适合初学者。 2. **论文精读** - [YouTube论文精读视频](https://www.youtube.com/watch?v=azM57JuQpQI):30分钟详解UNet设计思想[^5]。 --- ### UNet应用案例 1. **医学影像** - **肿瘤分割**:在BraTS脑肿瘤数据集上实现多模态MRI分割[^6],使用损失函数$L = -\sum y \log(\hat{y})$优化分类边界。 - **细胞追踪**:动态显微图像中的细胞实例分割,结合空洞卷积提升小目标检测[^7]。 2. **工业与遥感** - **卫星图像道路提取**:在SpaceNet数据集上训练,IoU(交并比)达$0.85$[^8]。 - **缺陷检测**:PCB板焊接缺陷定位,通过轻量化UNet部署到边缘设备。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值