Exception Handling in CLU

~ BARBARA H. LISKOV anp ALAN SNYDER

Absiract ~Far programs ta be religble and fault tolerant, each pro-
gram madule must be defined to behave reasomably under & wide
vasiety of circumsiances. An exception handling mechanism supports
the construction of such modaoles. This papce describes an exception
haadling mechanism developed as part of the CLU programming jan-
gusge. The CLU mechanism baged on a simple model of exception
handling that feads to well-structured programs. It is engineered for
ease of wse and enhenced program readability. ‘This paper discusses
the vagous models of exception handling, the syntax and semantlcs
of the CLU mechanism, and methods of implementing the mechanism
and integrating it in dehugging and production environments.

Index Terms—Exception handling, exit mechanisms, procednesl ab
stractions, programming Llanguages, stimctured programming.

1. INTRODUCTION

RECENTLY, there has been considerable emphasis on the
development of programming language features that en-
hance the verifiability of programs [S]. While it is desirable
that the task of developing comect programs be simplified as

Manuseript received March 8, 1979; revised Tune 25, 1979, This
work was supporied in part by the Advance Research Projects Agency
of the Department of Defer.se, momnitored by the Office of Maval Re-
search under Contract NOG014-75-C-0661, and in part by the National
Science Foundation under Grants DCR74-21892 and MCS 74-21892.

B. H. Liskov is with the Laboratory for Computer Science, Massachu-
setts Institute of Technology, Cambridge, MA 02139

:; Sayder is with the Hewlett-Packard Corporation, Palo Alio, CA
94304,

much as possible, another important goal of program construc-
tjon is that programs behave “reasonably” undet a wide range
of circumstances. Such programs have been variously termed
as reliahie, robust, or fault tolerant.

In s reliable program, each procedure must be designed to
behave as generally as possible. Its specifications should re-
quite a well-defined response to all possible combinations of
legal inputs (inputs gatisfying the type constrainis), even when
lower level modutes on which this procedute is depending fail.
Of course, different responses will be appropriate in the dif-
ferent cases. Note that even if the software has been verified,
the possibility of hardware failure implies that software
modules may fail, as does the presence of resounrce constraints.

This paper describes a linguistic mechanism that supports
the construction of reliable software. The mechanism, called
an exception handling mechanism, facilitates communication
of certain information among procedures at different levels.
The mechanism supports the view that different responses are
appropriate in different situations. We assume that for each
procedure there is a set of circumstances in which it will
{erminate “normally”; in general, this happens when the input
arguments satisfy certain constraints and the lower level
modules (implemented in both hardware and software) on
which the procedure depends are all working propedy. In
other circumstances, the procedure is unabie to perform any
action that would lead to normal termination, but instead
must notify some other procedure (for example, the invoking

0098-5586/79/1100-0546500.75 € 1973 1EEE

LISALIY AMLUD T LUER. BALEFLIUN FEAMLDLING 1N CLU

procedure) that an exceptional condition (or exception) has
occurred, :

For example, suppose search is a procedure that retrieves in-
formalion associated with a given identifier in 2 symbol table.
Search can return this information only if the identifier ig
present In the symbol table, The absence of the identifier con-
stitutes an exceptional conditfon. Other exceptional condi-
tions might also occur, for example, If the symbol table is
implemented using a stack and the module implementing
stacks is not working properly.

In referring to the condition as exceptions rather than errors
we are following Goodenoupgh [2]. The term “‘exception” is
chosen because, unlike the term “‘error,” it does not imply
that anything is wrong; this connctation is approprate be-
cause an event that is viewed as an error by one procedure
may not be viewed that way by another. In fact, the term
“exception” indicates that something unusual has occurred,
and even this may be misleading: if the exception handling
mechanism were efficient enough, exceptions might be used
to convey information about normal and usual situations.
For example, the search procedure might tenminate normally
only if the identifier were 2 local variable of the current
block and use the exception handling mechanism to coavey
extra information about nonlocal variables,

Exception handling mechanisrns have been largerly ignored -

in programming languages. For a discussion of existing mecha-
nisms, the reader is referred 1o [2] and [3]). In our opinion,
the existing mechanisms are overly powerful and ill-structured.
For example, in the on-condition mechanism of PL{I, on-
units are associated with invocations dynamically rather than
statically, and global variables must be used to communicate
data between the procedure performing the signal and the on-
unit. Goodenough [2] proposes a new mechanism that is
more constrained and better structured, The mechanism pre-
sented in this paper is still more constraimed, We also believe
it to be more conducive to the development of well-structured
programs.

The mechanism we describe facilitates communication of
information thal can be used to recover from faults such as
erroneons data and failures of lower level modules. We do
not discuss the methods, ¢.g., redundancy, that are used for
fault detection and recovery. Mechanisms that are desipgned
to facilitate fault detection and recovery, e.g., recovery blocks
{8], are complementary to ours, as was noted in [7].

The mechanisim we describe has been defined as part of the
CLU programming language [4]. The mechanism is of genaral
interest because it is constrained and simple. 1ts design was
based on a tradeoff between simplicity and expressive power;
major design goals were ease of use and program readability,
The mechanism was designed for a sequential language (with-
out coroutines or parallel processes). Otherwise, however,
the mechanism is not dependent on CLU semantics, and could
be incorporated in any procedure oriented language.

In the next section we discuss the main decisions that must
be made in designing an exception handling mechanism and
the cxception handling models that result from these decisions;
we also discuss our decisions and our reasons for making them.
In Section III we describe the syntax and semantics of the

EL ¥

CLU exception handling mechanism. In Section IV we dis
cuss some methods of implementing the mechanism and also
how the mechanism can enhance programmer effectiveness
in 2 debugging and a production environment. In Section V,
we discuss the axpressive power of our mechanism and com-
pare it with some other mechanisms of greater power. Finally,
in Section VI we summarize and evaluate what we have done.

II. THE MODEL

To discuss exception handling we must first introduce some
terminology about programs. The term procedure will be used
to mean program text, either in a higher level language or in
machine language, A procedure implements a procedural ab-
straction, which is 8 mapping from a et of argument objects
to 2 set of result objects, possibly modifying some of the argu-
ment objects. A procedure may be invoked (or called) by an
invocation, which is textuslly part of some procedure; that
procedure is referred to as the egiler. Invocation results in
activation of the invoked procedure. An activation may signal

an exception; the invocation that caused the activation raises

that exception. The program fext Intended to be executed
when an exception is raised is called the handler.

Our model of exception handling involves the communica-
tion of informaiion from the procedure activation that detects
an exceptional condition (the signaler) to some other proce-
duze activation that is prepared to handle an oceurrence of that
condition (the cercher). In designing this model, we faced
two major questions: 1) which procedure aclivations may
catch an exception signaled by a progadure activation and 2)

doss the signaler continue to exist after signaling. These two

questions ars independent and may be addressed separately.

A. Single Versus Multilevel Mecharizms

The obvious candidates! for handling an exception signaled
by some procedure activation are the activations in existence
at the time the signal occurs. We can rule out the signaler
itself, as exceptions are, by definition, conditions that the
signaling procedure is unable to handle. The remaining gues-
tion is whether to allow activations other than the immediate
caller of the signaler to handle the exception,

Our answer to this question is based on the hierarchical pro-
gram design methodology that CLU is intended to support
{4]. As was explained above, each procedure implements a
mapping. The caller of a procedure invokes the procedure
to have the mapping performed; the caller need know only
what the mapping is, and not how the procedure implements
the mapping., Thus, while it is approprate for the caller to
krew about the exceptions signaled by the procedurz (and
these are part of the abstraction implemented by that proce-
dure), the caller should know nothing about the exceptions
signaled by procedures used in the implementztion of the in-
voked procedure.

The above considerations lead us to allow only the im-
mediate caller of a procedure to handle exceptions signaled

ILevin [3} praposes an additional set of candidates. We will discuss
Levin’s wosk in Section V,

548

by that procedure. Of course, the handler in the caller can it-

self signal an exception, but that exception will then be part

of the caller’s abstraction.

We believe that the decisian to limit handling of exceplions
to the immediate caller is necessary for any well-structured ex-
ception handling mechanism. To maintain intellectual manage-
ability of software, program structures that support under-
standing and verification through local code examination are
needed. In particular, to understand how a procedure is im-
plemented, one should not have i examine implementations
of any other procedures. An understanding of the mappings
performed by imvoked procedures is needed, but this under
standing should be obtained by reading specifications of those
procedures and not their code. This requirement implies that
specifications must describe all exceptions arising from invok-
ing a procedure, including information about exceptions arising
from procedures called at a lower level if the mechanism does
not limit the handling of these exceptions. The point is that
all exceplions that may be raised by a procedure, whether
explicitly or implicitly, must be considered part of that pro-
cedural abstraction. Limiting the handling of exceptions to
just the caller simply ensures that the linguistic constructs
match the proper conceptual view. Note, however, that this
constraint does nof prevent the language designer from pro-
viding simplified ways of passing exceptions from one level 1o
the next where appropriate.

The exception handling mechanism proposed by Gaood-
enough [2] does impose our constraint on handling excep-
tions. The PL/F mechanism does not, nor does the mechanism
in Mesa [6].

B. Rezumption Versus Termination Model

The second question, whether the signaler should continue
1o exist after the exception is signaled, involves a tradecff be-
lween expressive power and the complexity of the semantics.
If the signaler can continue to exist after signaling, then it is
possible that a catcher may fix up the exceptional condition
so that processing of the signaler may be resumed. For this
reason, we refer to this model as the resumption model. The
model in which the signaling activation ceases to exist we
refer ta as the rermmination model. Tn this section we assume
that the decision to support a onelevel mechanism has been
made, and we therefore limit our analysis to this case,

A one-level resumption model works as follows, Suppose
that there are three procedures £, O, and R, and that P in-
vokes @ and @ invokes R. If R signals an exception r, then g
must handle it. Let . denote the statements in @ that handle
» (#, is the handler for 7). In the course of handling r, H, may
signal an exception ¢, which must be handled by P {(gince P
is the caller of @).? Let Hy denote the statements in P that
handle g (H, is the-handler for ¢). When H, terminates, then

21f dynamic binding for exception oames is vsed {as in PL{D), then R
would be required to handle q. Making this sssumption leads to a
model at least as complex as the one we are considering. Furthermaore,
il is impossible under 1his assumption for A, o raise exception in
without resorting ta a multdavel mechanism.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 6, NOYEMBER 1979

P
sphal g invokes | resumes
n
signaks ¢) Invokes | resumes
R

Fig. 1. Flow of control in the resurnption model.

Q is resumed in the middle of X,; only when X, terminates
is the execution of R continued. This situation is illustrated
in Fig. 1. Note that information about signals flows upward
one level at a time, while resumption flows downward one
level at a time; multilevel flow is not permitted in either
direction.

The resumption model is most easily understood by viewing
the handler as an implicit procedure parameter of the signaler.
The handler is called by the signaler when the exception it
handles is signaled. The handler procedure is declared in the
calling procedure, and its free variables pet their meaning in
the caller’s environment, as do any exceptions it signals.?

In the termination model, occumence of an exception causes
the signaler to terminate. However, different kinds of be-
havior are expected of the called procedure under different
conditions. The view taken is that a procedure may temminate
in one of a naumber of conditions. Qne of these is the normal
condition, while others are excepiion conditions. In each con-
dition, it may bz convenlent to return a number of result ob-
Jjects; these will differ in number and typs in the different
conditions.

The resumption mode] is more complex than the termina-
tion model. This can be appreciated by considering how re-
sumption affects the interrelationships among procedures,
specifications of procednres, and linguistic mechanisms for
exceéption handling,

The ordinary view of procedures is that, in the absence of
recursion, the calling procedure is dependent on the called
procedure but not vice versa. This view is upheld in the
termination model. However, in the resumption model, the
signaler and caller are mutually dependent: the caller invokes
the signaler to perform some mapping, or satisfy some inputf
output relation, but the signaler depends on (the handler in)
the caller to satisfy a similar relation when an exception is
signled.

Specifications of procedural abstractions in the termination
model consist of a number of clauses, one specifying the be-
havior for the normal case and one for each exception case.
Such clauses also exist in the resumption model, since it is
still possible that the signaler is unable to terminate normally,
for example, becanse a handler is unable to clear up the prob.

3That Is, exception names have static scope.

e AE A MR Mg A mrne B hemd

Jem that led to the exception. In general, specifications have
a termination maodel form (several termination states are de-
fined) even when the resumption model is in use.

The interdependence between procedures in the resumption
model show up in specifications as extra information. In ad-
dition to the clauses describing different termination states,
it is also necessary to include descriptions of the behavior
expected from the handlers when exceptions are signaled.
Such descriptions are analogous to what must be given for a
procedure taking procedure parameters, since handlers are
implicit procedure parameters, as was discussed earlier.

The complexity of z liaguistic mechanism supporting re-
sumption is ilustrated by Goodenough's proposal [2], which
s » carefully considered design of a complete mechanism.
Goodenough's design recognizes that to be really useful,
termination must be supported as well as resumption, Three
types of signals are recognized, corresponding to cases where
the signaler may not be resumed, must be resumed, or where
resumption is optional. In case the caller does not resume a
signaler that must or could be resumed, a special ability is
provided to permit the signaler 1o clean up (i.., restore some
nonlocal variables to a consistent state) before its activation
is terminated. In addition, a default mechanism is provided
to penmit the signaler to handle its own exception in case
the caller does not,

The termination model requires a simpler linpuistic mecha-
nism for its support than does the resumption model. Sincea
signal terminates the signaler, there isno need for multiple kinds
of signals. Also, special mechanisms for cleaning up are not
needed (the signaler must always clean up before signaling).

Since the termination model is simpler, it ispreferable to the
resumption model, provided it supplies adequate expressive
power. We conjecture that the expressive power is adequate:
that situations handled awkwardly by the termination model
and simply by the resumption mode] are not frequent. We will
discuss this conjecture further in Seclion V. [n the next sec-
tion we discuss the design of an exception handling mechanism
based on the termination model.

111, SYNTAX AND SEMANTICE OF THE
CLU ExceprTiON MECHANISM

In Section 11 we explained the rationale for our major
decisions. _

1) The exceptions signaled by a prucedure must be caught
by the immediate caller,

2) Signaling an exception terminates the signaling procedure.

These two decisions lead to s single-level termination model
of compulation in which a procedure may terminate in one of
a number of conditions. Thus, instead of a single return path,
each procedure has several retum paths. One of these is con-
sidered the normal path, while others are considered excep-
tional. In each case, result objects may be returned; the result
objects may differ in number and type in the different cases.

An exception handling semantics that terminates execution
of the signaling procedure could be incorporated in a pro-
gramming language with no additional mechanism. The
signaling procedure could simply retumn, passing back in

addition to the real result ohjects a tag that identifies the
reason for termination. Indeed, such a convention is often
adopted as a way of dealing with exceptions in 2 language
that has no exception handling mechanism. However, this
approach has a major defect: every invocation must be fol-
Jowed by a conditional test t¢ determine what the autcome
was. This requirement leads to programs that are difficult
to read, and probably inefficient as well, thus discouraging
programmers from signaling and handling exceptions.

To aid programmers in building reliable software, an excep-
tion handling mechanism must be devised that can be im-
plemented efficiently and that enhances program readability.
In the remainder of this section we describe the CLU excep-
tion handling mechanism, which was developed to satisfy these
goals. The dlscussion identifies some problems that arise in
designing any such mechanism; the CLU mechanism provides
a possible set of solutions to these problems.

A. Signaling

To provide a convenient method of signaling information
about exceplions, we included directly in CLU the model of
a procedure having many kinds of returns. A CLU procedure,
therefore, can terminate in the normal way by retuming and
can terminate in an exceptional condition by signaling. In
each case, result objects, differing in number and type, can

.be returned.

The information about the ways in which a procedure may
terminate must be included in its heading. For example, the
procedure performing integer division has the following
heading:

div = proc {x, y: int) retarns {int) signals (zero_divide)

which indicates that div may terminate by returning a single
integer (the quotient of the two input arguments) or by sig-
naling zer_divide (which indicates that the second argument
was zero) and retuming no results.

A CLU procedure terminates its execution by performing a
return siatement oi a signal statement. The return statemnent
terminates execution mommally, while the signal statement
terminates exacution in the npamed exceptional condition.
For example, the following (fairly useless) procedure deter-
mines the sign of an integer:

sign = proc(x: int) returna{in1) signals (zero, neg (int))
if x < 0 then signal neg(x)
elseif % = {1 then signat zero
else return (x)
end
end sign

The information in the procedure heading is used to check
that the exception names actually signaled are the correct
ones and that the correct number and types of result obiects
are retumed in both the normal and exceptional cases. This
information is also used to determine that the exceplions
handled by a calling procedure are named in the heading of
the called procedure, and that, again, the number and types
of tesult pbjects are correct in both the normal and excep-
tional cases.

550

B. Handling Exceptions

In CLU, exceptions arise only from invocations.* In par-
ticular, all uses of infix and prefix operators in CLU are con-
sidered to be “syntactic sugar” for invocations. For example,
the expression

xty
1s syntactic sugar for the invocation
tSadd {x, v}

where 7 it the type of x. Thus, if x is an integer, x +y is an
invocation of the integer addition operation. This viewpoint
permits exceptions arising from builtin operations and user-
defined procedures to be treated uniformly *

In this section we discuss how handlers sre associated with
invocations. For usability and program readability, it is neces-
sary 1o permit considerable flexibility in the placement of
handlers. For example, requiring that the text of a handler
be attached to the invocation that raises the exception would
lead to unreadable programs in which expressions were broken
up with handlers. Furthemmore, the contral flow of a pro-
. g7am s often affected by the accurrence of an exception {for
example, an end_of_file exception will terminate a loop).
Therefore, our mechanism was designed to permit placement
of a handler where the programmer deemed convenient, out
of the main flow when possible 1o enhance readability, and
altering the contrel flow when this was desired.

Two major decisions determined the form of CLU exception
handling statements,

1) Handlers are statically associated with invocations,

2) Handlers may be attached only to statements, not to
cxprassions, .

Static association means that the handler associated with
a particular exception condition that may be raised by a
particular invocation can be determined by static analysis
of the program text. This decision not only enhances pro-
gram readability, but makes possible a more efficient imple-
mentation of the exception handling mechanism.

The decision to attach handiers only to statements and not
expressions was made to simplify the mechanism. When 1
handler attached to an expression terminates, unless an ex-
plicit return, signal, or exit (see Section 1H-C) is performed,
it must provide a value to be used as the value of the 2xpres-
sion. By allowing handlers to be attached only to statements,
we avoid providing a mechanism for substituting new values
for expressions. We believe that the need to substitute a value
for an expression is not great. In any case, the effect of attach.
ing handlers to expressions can be obtained by breaking up
complex expressions info sequences of assignment statements.

Handlers are placed in CLU programs by means of the ex-
cept statement, which has the form

4Excepl for the special exception Jailure (described in Section HI-D),
which may be signaled at any point by the underlying implementation
of CLIJ, .

*The viewpoint docs mo? require thal a builtin operation be im-
plemented by a closed routine; indine code is perfactly permissible
and consistent,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VDL, SE-5, NO. 6, NOVEM#ER 1979

statement except handler list end

This statement has the following interpretation: the szarement
Jaises all the exceptions raised by the invocations it textually
contains, excluding those handled by embedded except state-
ments. The kandler list will handle some subset {pousibly all)
of these exceptions. The except statement as a whole raises
all the exceptions of the staterment that are not handled by
the handier st plus any exceptions raised by the handler Nsr,
Thus, when an exception Is raised by an invocation, control

.goes to the innermost handler that handles that exception

and s part of an except statement containing the invocation
in its statement part,

Each handler in the Aandier list names one or more excep-
tions to be handled, followed by a list of statements {called
the hendler body) describing what to do. Permitting several
exceptions to be named in the same handler avaids code
duplication when the exceptions are all handled in the same
way.

Several different forms are available for handlers depending
on whether the named exceptions have associated result ob-
jects and whether those objects are used in the handler body.
To handle one or more exceptions with no associated ob-
jects, the exception names are simply listed, For example,

when underflow, zera_ divide: body

will handle exceptions named wunderfiow and zero_divide,
neither of which has any associated result objects.

To handle exceptions with result objects that are to be
used in the handler body, names must be associated with
the objects. Apain 2 list of exception names is given, but it
is followed by declarations of local variables to name the
result objects, for example, :

when el, e2(s: string, i: int): body

The scope of the declarations is the handler body. All of the
named exceptions must return objects of the types listed in
the declaration, in the order stated. When the handler is
executed, these objects are bound to the declared vadables
and the body is executed. (This binding is similar to the
binding of actual arguments to formal arguments that occurs
when procedures are invoked. However, a return or signal
in the handler body, rather than terminating just the handler,
will instead terminate the entire enclosing procedure.)

To handle exceptions with result objects when the objects
are not used in the handler body, the list of exception names
is followed by () as shown below:

when neg, underflow (»): bady

There need be no agreement between the number and types .
of result objects associated with the exceptions in this form;

for example, the neg exception had a single argument, while

underflow had none. This form encourages a programming

style in which a procedure retums all possibly useful informa-

tion when signaling; if this information is not needed in the

calling procedure, it can easily be ignored.

If the programmer wishes to handle all remaining exceptions
without listing their names, one of the following two forms

LISKDOV AND SNYDER: EXCEPTION HANDLING IN CLU

can be used as the last handler in an except stalement. The
form

others: body

is used when information about exception names and result
objects is not important. If information about the exception
name is desired, the form

others (¢_ name: string): body

may be used. Here the name of the exception is given to the
handler body as a string.

The handler body may contain any legal CLU statement.
If the handier body returns or signaly, then the containing
procedure will be terminated a3 discussed in Section 1il-A.
The handler body may also be temminated by an exit (see
next section) or because an invocation within it raises an
exception that is not handled within the handler body. Other-
wise, when the handler body is finished, the next statement
following the except statement in the normal flow will be
executed.

The example below illustrates the association of handlers
with exceplions:

begin % start of inner block
S1 except
when zera: 52
end

end % end of inner block
except
when zero: 83
others: 54
end

Ii zero is raised by an invocation in 81, it will be handied by
§2, not §3. However, if zero is raised by an invocation in 52,
it will be handled by $3. Al other exceptions raised in 57 and
52 will be handled by $4.

C. Exits and the Placement of Handlers

Our intention in defining the except statement is to penmit
the programmer to position handlers as Is convenient. There
are two constraints on the placement of handlers.

1) The handler must be placed on the statement whase
execution is to be teominated if the handler body terminates
without returning or signaling.

2) Suppose that an exception named e is raised by two in-
vocations, and we wish to handle the occurrences of e dif-
ferently. We do not permit multiple handlers 1o be pravided
for e in a single except statement. {This rule holds even if
the invocations raising e provide different numbers or types
of result objects; we do not allow such information to be used
in selecting a handler,) Therefore, the two handlers must be
in two except statements, each situated such that only oge of
the invocations raising e is in its scope.

These two constraints may conflict. For example, suppose
that within a statement, S, the procedure sign, mentioned
carlier, is invoked at two different points. Suppose also that
the programmer wishes to handle the neg exception signaled

£51

begin % beginning of 5
a = signix)
mxcept when negli: int):
51
exit done
end
b = sign(y) o
except when negli: itk
52

exit done
end

end Zendof 5
axcept when done:

end
Fig. 2. Example fllustrating nse of the exit mechanism.

by sign in a different manner for each of the two invocations,
but in each case wishes execution to then continue with the
statement following §. The first constraint would require that
both handlers be placed on S, so that the execution of § would
be terminated when the exceptions are raised. However, the
second constrainl requires that at least one handler be placed
within 5 10 resolve the ambiguous association between the
invocations and the handlers, _

We resolve this conflict in CLU by the addition of an exit
mechanism, similar to. those proposed by Zahn 9] and Boch-
mann [1]. The handlers are placed near the invocations, They
terminate by exiting to a handler attached te the statement 5.
For example, one could handle the neg exceptions as shown
in Fig. 2.

The exit statement can be used anywhere within a CLU pro-
cedure; its use is not zestricted to handler bodies. The exit
statement is similar to the signal statement, except that while
the signal statement signals the condition to the calling pro-
cedure activation, the exit statement directly raises the condi-
tion so that it can be handied in the same procedure activation.
The exit statement can specify a2 number of result objects to
be passed to the handler.

We chose to have separate mechanisms for exits and excep-
tions (rather than using the signal statement for both exils
and exceptions) because the two mechanisms capture different
programmer inientions and thus naturally have different e-
strictions on their use. The intenl of an exit is a local transfer
of control. Thus, we require that exits be handled in the
same procedure activation where they are raised. Further-
more, we require that exits be handled by 2 when arm (sot
an others arm), and if there are result cbjects, these must be
accepled as arguments by the handler. The justification for
these requirements is that exit names and result objects (un-
like exception names and result objects) are under the con-
trel of the programmer of the proceduse, and therefore
should be chosent to mean something within that procedure.

‘The exit mechanism meshes nicely with the exception
handling mechanism. In fact, the signal statemenl cin be
viewed simply as lerminating a procedure invocation znd

.exiting to the appropriate handler in the caller.

D. Uncaught Exceprions
Now we address the question of what happens if a proce-

" dure provides no handler for an exception raised by some

contained invocation. One possibility is to consider the pro-
cedure to be illegal; checking for unhandled exceptions can
be performed at compile-time. This approach is taken by
Goodenough [2].

We have taken another approach. We felt it was unrealistic
o require the programmer to psovide handlers in situations
where no meaningful action can be taken, Such situations
will uccur when a used absiraction is not working properly.
For example, consider the statement

if ~ stackSempty(s) then
= stack$pop(s)

end

Here the programmer invckes the pop operation for stacks
only when the stack is nonempty. Now suppose that never-
theless stack underflow occurs. This situation is untikely io
arise in a debugged or verified program (but see Section Iv).
If it does arise, it indicates that the stack sbstraction is not
behaving correctly. Often there is no approprate action for
this procedure to take other than to seport the fact fo its
caller. Since almost every abstraction can potentially behave
incorrectly or in a way not expected by its caller, procedures
must always be prepared to handle such cases. However,
the action taken is almost always the same, and to require
explicit handling of such cases would load every procedore
with unintcresting code. :

To facilitate reporting of failures and to relieve the pro-
grammer of the burden of handling such errors, CLU has one
language-defined exception, named feidure, Failure has one
asscclated result object, a string that may contain some in-
formation about the cause of the failure, Every procedure
can potentially signal failure; therefore fuflure is implicitly
an exception of every procedure and may not be listed in the
procedure heading explicitly. Failure may be sipnaled ex-
plicitly, however, in the usual way:

signal failure (“reason iz . ..)

The most common way that faifure is signaled, however, is
by an uncaught exception being automatically turned into a
failure exception. For example, procedure norzero

nonzero = pro¢ (X: int) returns (int)
return (sign (x))
except
when neg(y: int): return (y)
end’

end nonzero

does not catch exception zero signaled by sign. If this excep-
lion is signaled, the invocation of nonzero will be terminzted

~ with the exception

failure (“unhandled exception: zero™)
The effect is equivalent 1o attzching a handler to the proce-

- 552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. S8E-5, N1, 6, NOVEMBER 197

dure body, e.g.,

nonzZero =+

except
others(s: string): signal failure {
“unhandled exception: " 5)
end
end nonzero

Here the symbol)| is string concatenation.

A common case in which an exception will not be handieq
is when the unhandled exception is faifure. Note that in thi
case it is the string argument of faifure (rather than the string
“failure™) that is of interest. Therefore, this string is retaines
when failure is passed up to the next level, This effect iz equiv
alent to attaching to the procedure body the handler

except
when faiture (s: string): signal faiture (5)
end

Sometimes before signaling failure some cleaning up is
needed. In this case, the others or when form is used ex-
plicitly, and after cleaning up, failure is signaled explicitly.

E. Exomple

We now present an example demonstrating the use of ex-
ception handlers. We will write a procedure, sum_ stream,
which reads in a sequence of signed decimal integers from a
character stream and returns the sum of those integers, The
input stream is viewed as containing a sequence of fields
separated by spaces and newlines; each field must consist of
a nonempty sequence of digits, optionally preceded by a
single minus sign. Sum_streamn has the form

sum_stream = proc (s: stream) returns (int)
signals {overflow,
unrepresentable _integer (string),
bad_ format (string))

end sum__ stream

Sum__stream will signal overflow if the sum of the numbers or
an intermediate sum is outside the implemented range of in-
tegers. Unrepresentable_integer will be signaled if the stream
contains an individual number that s outside the implemented
range of integers. Bad_ format will be signaled if the stream
contains a field that is not an Integer.

An implementation of sum_stream ix presented In Fig. 3.
It consists of 2 simple Joop that accumulates the sum, uging a
procedure ge?_number to remove the next integer from the
stream. Ger_number will signal end _of_ file if the stream
contains nc more fields, in which case sum_ stream will retum
the accumulated sum. Gez_number will also slgnal bed_ for
mat or unrepresentable__integer if an invalid field is encoun-
tered; these exceptions are passed upward by sum_ stregm.
The overflow handler in sum_stream catches exceptions sig-
naled by the inf$add procedure, which is invoked usinpg the
infix + notation. We have placed the exception handlers on

-

Tkl A,

b i

e mn s b Aemedea el & BLALY B RFRLY LPAZEVLS AP LU

sum_stream = proc {x: siream) redurrs {int)
signale (overflow,

unrepresentable_integer (string),
tad_format {string))

sumy: int s Q
while true do

UM = som « get_number {s}

end
excepl

when end_of_fife:

return {sum}
when unrepresentable_integer {f: string)k
signal unrepresentable_integer (f)
when bad_format (¢ string):
signal bad _format {f}

whan overflow:

signal overflow

erdd
end sum_stream

Fig. 3. The sum _ stream procedure.

get_number « proe (s: stream) returns (int)
signaty (end_of fife, _
unrepresentable_integer (string);
bad_format {string))
Field: string := get_field (s)
except when end_of_file:
signat end_of_file

end

return (s2i {field))

except

whan unzepresentable_integer: *
signal 't.lnrepres:rltl.ble_inleger {field}
when bad_format, invatid_character {s):
signal bad_format {fieid)

end
end get_number

Fig. 4. The get_number procedure,

the while statement for readability; they could also have been
placed directly on the assignment statement.

The procedure get_mumber is presented in Fig. 4. It calls
a procedure ger_ field to obtain the next field in the stream
and then uses 527 to convert the returned string to an integer,
$2i has the following form:

52i = proc (s: string) returns (int)
signals (invalid_ character (char),
bad_ format,
unrepresentable_ integer)

end s2i

8521 vill signal invalid_ character if the string s contains a char-
acter other than a digit or a minus sign. Bed_formar will be
sipnaled if s contains a minus sign following a digit, more than
one minus sign, or po digits. Unrepresentable _integer will be
signated if 5 represents an inteper that is outside the imple-
mented range of intepers. Get_number handles the excep-

tions signaled by get_ field and s2i and signals them upward in
terms that are meaningful to its callers. Although some of the
names may be unchanged, the meanings of the exceptions (and
even the number of argements) are different 1o the two levels.
Note the use of the (=) form in the handler for the bad_ format
and fnvalid_ character exceplions since the signal arguments
are not used.

The get_ field proceduse is presented in Fig. 5. It uses the
following operation of the stream data type:

getc = proc (s: stream) retwrns (char) signals (end _of__filc)

end pete

The stream$geic operation returns the next charscter from the
stream and signals end_of_file if {he stream is empty. Note
that if end_of_file is signaled when a field is being accumu-
lated, then that field is returned. Otherwise, get_ field signals
end_of_file.

Programming of the procedures in Figs. 3-5 would be

554 TEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. &, NOVEM BER 1979

get_field = proc {s: stream) relurne (string) signals (end_of_file)
field: Sl‘l’i-l"lg -
begin € delimits scope of outermost end _of _file handler
¢: char := streamfgete {s)
* search for field
white ¢ ="' cor c = \n' do
¢ := strezmlgetc 1)
end
£ accomutate fiekd
while ¢~ cand ¢ ~= \n" do
field := siring@append {field, c)
¢ = streamigete (s}
except when end _of file:
relurn (fleld)
end
end
end
excapt when end_of file
signal end_of_file
and
relurn {field)
end get_field
Fig. 5. The get_ lield procedure,

simplified if the mechanism permitted implicit upward prapa-
gation of exceptions. This would permit arms of the form

when unrepresentable_integer (f: string):
signal unrepresentable_integer ()

to be omitted from the program text. As we gain experience
in using the mechanism, we will learn how to madify it to
enhance its convenience.

. On Disabling Exceptions

One guestion that natrally’ arises about an exception
handling mechanism is whether exceptions can be disabled.
By disabling exceptions two Kinds of savings can (potentially)
be realized: the time spent detecting the accurrence of the ex-
ception can be saved, and the space used for the handlers and
the information wsed to find the handlers can be saved. How-
ever, it is unacceptable if the result of disabling exceptions i
that errors still occur, but are simply not recognized. There-
fore, we do not believe that providing a means for programmer
disabling of exceptions i§ consistent with encouraging good
progamming practice, and no such mechanism has been
provided in CLU.

The situation still arises, however, in which it is possible 1o
guarantee that the exception cannot occur, and it is desirable
to take advantage of that guarantee to generale more efficient
cade. Looked at in this way, disabling of exceptions is seen
as a kind of program optimization technique, since program
optimization makes use of properties detected from program
analysis to control the generation of code. There are two
ways in which such properties can be detected. First, the
combination of inline substitution followed by analysis
across module boundaries can result in more efficient code.
For example, consider

if ~stack$empty (x) then x := stack$pop(s) - - -

where § is 1 stack, 1f both empty and pop are expanded in-
line, the result will be code roughly like

if 5.size 2> 0 % body of empty
then % body of pop
if 5.size > () then - - -

Conventiona! techniques like redundant expression elimina-
tion and dead code removal can then be used to improve the
code.

Alternatively, it would be fruitful to integrate the activities
of a program verificaticn system with the compiler. Then,
for example, a verifier might prove of the user of s that pep
is never called if 5 is empty. This assertion could then be
used later to control the compilation of both the program
using ¢, and the program implementing the stack module.

IV. IMPLEMENTATION, DEBUGGING, AND DIAGNOSTICS

In this section we discuss some implementation issues.
First we skeich some methods for implementing the excep-
tion handling mechanism. Then we discuss how the mecha-
nism can be incorporated in a debugging environment and in
2 production environment.

A. Implementation

There are several possible methods of implementing the
exception handling mechanism. As usual, tradeoffs must
be made between efficiency of space and time. We believe
the following are appropriate criteria for an implementation:

1} normal case execution efficiency should not be impaired
at all;

2} exceptions should be handled reasonably quickly, but
not necessarily as fast as possible;

3) use of space should be reasanably efficient.

The tradeofl to be made is the speed with which exceptions
are handled versus the space required for code or data used to
locate handlers.

The implementation of signaling an exception involves the
following actions:

1) discarding the activation record of the signaling acti-
vation (but saving the result objects associated with the
exception),

2} locating the approptiate handler in the calling procedure,

3) adjusting the caller’s activation record to reflect the pos-
iible termination of execution of expressions and statements, °

4) copying the result objects into the callers activation
record,)

5) wansferring control to the handler,

Actions 3) and 5) are equivalent to a goto from the invoca-
tion to the handler. Actions I) and 4) are similar 10 those
occurring in normal procedure returns, Because the associa-
ton between invocations and handlers is static, the compiler
can provide the information needed to perform actions 2) and
3). Below we sketch two methods of providing this informa-
tion; these methods differ considerably in their performance
characteristics.

The first method, called the branch table method, is to fol-
low each invocation with a branch table containing one entry
for each exception that can be raised by the invocation, The

oy

BT e T e s S PO

Lemaws b FRLTAP wiw | LMESD BACEFLIUN RANLDLING 1IN CLU

555

Code for invocation p{ } of p = prec () retums () signals (el, 2

alt p

el_handler ; branch table

e2_handler

failure_handler

- ; normal return here

sitel ; new actlvation record size

- ; other information about the handler
e_handfer: .. ; code for el handler

Fig. 6. Sketch of code generated by the branch tabls method.

invocation of a procedure whose heading lists # exceptions
will have a branch table of n + 1 entries; the first n entrie:
correspond to the exceptions listed in the heading, while the
last entry is for faillure, Each entry contains the location of
a handler for the comresponding exception.

Using this method, return and signal are easy to implement:
return transfers coatrol to the location following the branch
table, while signal transfers control to the location stored in
the branch table entry for the exception being signaled. The
information needed to adjust ithe caller’s activation record
could be stored with the handler, as could information about
whether to discard the returned objects and whether this Is
an others handler; for example, this information could be
stored in a table placed just before the first instruction of the
handler, An example is given in Fig. 6 of the code generated
by this method. '

The branch table method provides for efficient signaling of

exceptions, but at a considerable cost in space, since every
invocation must be followed by a branch table {all invoca-
tions may at least signal faifure). A second method, the
handler table method, is the one used by the current CLU
implementation. This method trades off some speed for
space, and was designed under the assumption that there are
many fewer handlers than invocations, which is consistent
with our experience in using the mechanism. -

The handler table method works as follows. Rather than
build a branch table per invocation, the compiler builds a
single table far each procedure. This table contains an entry
for each handler in the procedure. An entry contains the
following information: 1) a list of the exceptions handled
by the handler (a null list can be used to indicate an othess
handler), 2) a pair of values defining the scope of the handler,
that is, the object code corresponding to the stalement to
which the handler is attached, 3) the location of the code of
the handler, 4) the new activation tecord size, and 5) an in-
dicator of whether the returned objects are used in the handler.
The scope and exceptions list together permit candidate
handlers to be Jocated: only an invocation occurring within
the scope and raising an exception named in the exception
list can possibly be handled by the handler (for an others
handler, unly the scope matiers).

In this method, a retum statement Is implemented just as
it would te in a Janguage without exception handling, A sig-
nal statement requires searching the handler table to find
entries for candidate handlers; if several candidates exist,

the one with the smallest scope is selected. Placing the entrics
in the table in the (linear} order in which the corresponding
handlers appear in the source fext guarantees that the first
candidate found is the handler to use. Unhandled exceptions
can be recognized either by the absence of candidates or by
storing one additional eniry at the end of the handler table
for this case.

B. Debugging and Diagnostics

Our exception handling mechanism Is designed explicitly to

provide information that programs, not programmers, can use
1o recover from exceptional conditions. However, the mecha-
nism can also mesh smoothly with mechanisms intended to
collect information of interest to programmers. The kind of
behavior desired will difTer, however, from a debupging en-
vironment to a production environment. _
" In an interactive debugging environment it is likely that a
programmer would wish 1o be informed about the occurrence
of some or all exceptions as they are signaled and be given a
chance to handle them himself or take some other corrective
action. Two possible modes might be usefu! here. The pro-
grammer may be interested only in signals of failure (es-
pecially those resulting from unhandled exceptions), or he
may in addition name some particular exceptions of interest.

An exception handling mechanism running in such an en-
vironment, before locating a handler, would consult some de-
bugging system information to determine if the current ex-
ception is one that the programmer wishes to know about.
If the exception is of interest to the programmer, then system
routines can be invoked to initiate a dialogue with the pro-
grammer. This dialogne may result in the program being con-
tinued or terminated.

It is worth noting that one argument in favor of the resump- -
tion model has been that it integrates debugging with program
execution. The programmer (or actually the system as his
representalive) is thought of as the highest level activation,
which will handle all exceptions not otherwise handled and
which may later resume execution of some lower leval activa-
tign” Note that this viewpoint allows the programmer to
examine only unhandled exceptions. At any rate, we helieve
that it is not productive to try to merge debugging with
ordinary processing, since the requirements in the two cases
are quite different.

. In a production environment, there is no programmer

available to interact with the program. Of course, ithere may
be an operator present, and a program may attempt to re-
cover by requesting some operator action (2.5, mounting a
tape). This action can be accomplished by ordinary program
structuzes (e.g., invoking a procedure to print a Tessage on
the operator’s console).

When failure occurs in a production environment, there is
still a good chance that program crror is responsible. There-
fore, it would be helpful if information about the failing pro-
grarn were collected for lates examination by a prograinmer.
This capability can easily be provided. Whenever failure is
signaled, the exception handling mechanism can output in-
formation about each activation before terminating it. In the
case of the first implicit sipnal of the “unhandled exception™
failure, the mechanism should also provide information about
the activation that signaled the unhandled exception. The
information collected as finfure propagates upwards will pro-
vide a trace of the failing program, which should be helpful
for the programmer who determines later what the problem
was. Debugging in a batch environment can be facilitaled
similarfy, except that information about moze exceptions
than just feilure may be of interest. Nuote that in either case
the information being collected is noz useful to programs
(since it describes the siates of implementations of other
procedures) and therefore need not be made available Lo
them.

V. ExprRESSIVE POWER

As we stated earlier, the decision to choose a ftermination
model instead of a resumption medel involves a tradeoif be-
tween Lhe expressive power of the exception handling mecha-
nism and its complexity, In our opinion, 2 more complex
mechanism can be justified cnly if the additional expressive
power it provides is frequently needed. In this section we ex-
plore this issue by considering examples of problems often
put forth as justifying a resumption model, -

The first problem concemns exceptions such as underflow
that are generated by numeric operations. Often when an
operation like multiply signals underflow, the desired action
is to substitute a particular value {e.g., zero) for the result
of the operation and conlinue the compulation. In a resump-
tlon model, this behavier can be obtained by resuming the
operation and passing it the value to be retumned.

This behavior is equally easily obtained using a termination
model. Because the multiply operation is not performing any
computation afier being resumed (it is merely returning the
value provided), it iz acceptable to terminate iis activation.
The only problem is for the handler to somehow substitte
the new value for the result of the operation. For simple
examples like

ZIEXNY

*substituting”™ for the result of the invocation of mulfiply can
be done simply by assigning to z. For more complicated ex-
amples, e.g.,

Z=xixytz

using our mechanism it s necessary to introduce additional

statements and temporary variables, However, such awkward-

556 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VO, SE-§, NO. §, NOVEMBER 1979

ness is not a defect of the termination model but sather a
result of our decision not to allow handlers to be altached to
expressions, If such examples turmned cut to be frequent, our
mechanism could be changed to accommodate them.

In fact, resumption is truly useful only in the following situ-
ation: when the cxception is signaled, the signaler is in the
middle of a compuiation that can be completed by performing
additional computation upon receipt of a value from the han-
dier. Resumption permits completion of the computation in
this situation without redeing work already performed.

We can imagine that such a situation could arise during a
mumeric computation. If it did, and resumption were not
available, then a default valuc {or, in the most general case,
a procedure to compute a default value) could be passed as
an extra input of the numeric routine.

This method is clearly not as convenient as using resump-
tion; it becomes unacceptable if there are many default
valves or if there is deep nesting of procedures within the
numerc routine, so that even a single default value must be
passed down through many invocations. In our experience,
neither of these characteristics hold for the routines in nu-
meric libraries; on the conirary, default values are almost
never of use, and the nesting is shallow,

The other example often used to support the choice of 2
resumption model is that of a storage pool that performs
storage allocation for a number of objects in a program. If
the amount of free storage in the storage pool becomes 100
low 1o satisfy a particular allocation request, it may still be
possible to salisfy the request if some of the objects stored
in the pool can be reorganized fo use less storage. Many
objects can be implemented in 2 number of ways, some that
permit fast execution but use a lot of space and others that
are slower but use less space. The idea would be to start cut
using fast representations but switch to more compact rep-
resentations if free storage became too low. Note thal this
example is an instance of the general situation, described
above, in which resumption is truly useful.

Levin {31 has designed an exception handling mechanism
that directly supports the desired behavior. In Levins mecha-
nism, an exceplion can be associated with an object (the
mechanisms discussed previonsly associate exceptions only
with invocations). Thus, if the storage pool were unable to
satisfy a request, it could signal an exception associated with
the storage pool object. The mechanism would then allow
all users of the object (in this case, modules that have objects
altocated in the storape pool} to handle the exception. The
handlers would atiempt to free storage by reorganizing their
associated objects. :

Note that Levin's mechanivm is stricily more powerful {in
terms of expressive power) than the resumption models we
discussed in Section II, since the users of the storage pool do
not necessarily have any outstanding procedure activations
at the time the exception is signaled. Furthermore, thoss
objects that are in the middle of being operated upon are
likely fo be in an inconsistent state and thus not prepared
for reorganization. Levin's mechanism makes it easy 1o
inhjbit the handling of an excepdon for objects in an in¢on-
sistent state.

In CLU, this recavery algorithrn could be programmed by

taanwy AnD SMYDER: EXCEPTION HANDLING I[N CLU

having the storage pool explicltly maintain a collection of han-
dier procedures to be Invoked whenever free storage became
1oo low.® The storage pool ebstrection provides operations
alloc, to add en object to a pool, and delere, to remove an ob-
ject from a pool. Alfoc would have an additional argument:
the handles procedure to invoke if it becomes necessary to
shrink the object being added to the pool. Alloc would edd
this procedure to the collection, while delete would remove
from the collection the handler procedure associated with
the abject being deleted from the pool.

There is no doubt that the method sketched ahove is more
complicated and more error prone than what could be done
using Levin's mechanism, However, we believe that the stor-
age pool example is both unusual and a special case, We
doubt the existence of a large number of cases where the
amount of storage freed would make the difference between
successful and unsuccessful execution of a program.

In selecting examples for discussion, we examined those pre-
sented in papers favoring the resumption model [2], [3], and
chose the cnes that made the strongest case for resumption.
In both examples, the solutions achieved using resumption
were more natural than those possible without resumption.
However, unless it s shown that such cases arise frequently,
they do not justify the more complex mechanism.

V¥I. hscussion

In this paper we have discussed exception handling and
described an exception handling mechanism. An exception
handling mechanism is a tool for enhancing program reliability
and fault tolerance. To enhance reliability procedures shoutd
be defined as generally as possible, that 1s, they should respond
“1easonably™ in as many situations as possible. An exception
handling mechanism simplifies the writing of such procedures;
it is primarily 2 mechanism for generalizing the behavior of
procedures,

In Section II we discussed major decisions that must be
made in designing an exception handling mechanism and the
exception handling models that result from these decisions.
We zrgued that any wellstructured mechanism should be
onelevel: only the caller should handle exceptions raised
by the invoked procedure. We further argued that the termin-
ation model, in which the signaling activation terminates, is
better than the resumption model, in which the signaling
activation continues to exist. The lermination model is
clearly simpler than the resumption model; we also believe
that it has sufficient expressive power. Note that in our
termination model, a procedure may terminate in one of a
number of conditions {one of which is the so-called "normal®
condition) and may retum result objects differing in number
and type for each condition. The abilily to return objects
provides a kind of expressive power not found in most other
exception handling mechanisms.

Section NI described the syntax and semantics of the CLU
exception handling mechanism, which supports the termina-

8Each procedurc would have 1o be bound to the environment in
which reorganization should be done. Sinve CLU Pprocedures do not
have free variables, the storage pool would have to maintain these en-
vironment objects also.

557

tion model. While in Section Il we were concerned primarily
with interprocedure control and data flow, in Section 111, we
were concerned primarily -with intraprocedurs contral and
data flow. Qur goal was to permit the programmer to place
handlers where they are needed, without constraints due to
conflict of exception names. This goal led to the introduc-
tion of an exit mechapism similar to those described by Zahn
[9] and Bochmann [1]. Our design also acknowledged that
many exceptions cannot be handled. These exceptions may
not accur often, but they can potentially occur almeost any-
where. The special exception named failure, which is signaled
implicitly for all uncaught exceptions, was introduced to ac-
commodate this sitvation. We also discussed why disabling
exceplions is not a good idea, and suggested that research in
program optimization techniques may be fruitful in avoiding
the cost of checking for errors that are known not to occur.

In Section 1V, we discussed two methods of implementing
the exception handling mechanism, the branch table method
and the handler table method. Both methods process nonmal
returns as fast as possible; the branch table method also pro-
cesses exceptions as fast as possible, while the handler table
method is somewhat slower, but more space efficient. We alsa
discussed the integration of the mechanism in debupging and
production environments. The mechanism is defined to com-
municate information that can be used by programs, but this
does not preclude an implementation that produces additional
information for use by programmers,

In Section V, we discussed the expressive power of our ex-
ception handling model. We described two examples com-
monly put forward to justify the resumption model and dis-
cussed how they could be programmed in the termination
model. The termination model solutions wese inferior o the
resumption model solutions, However, we believe that the
examples under discussion occur very rarely, so a mechanism
like the resumption model, which eases their programming
at the cost of extra complexity, is not justified.

The CLU exception handling mechanism has been imple-
mented hy the handler table method. We have used the
mechanism in writing meny CLU programs (for example,
most of the CLU compiler is written in CLU). We are con-
vinced that our programs are better structured than they
would be in the absence of the mechanism. Furthermore,
we have not encountered any situations where a more power-
ful exception handling mechanism (e.g., resumption) was
desired. Thus, our experience so far supports our belief that
the mechanlsm is a good compromise between expressive
power and simplicity. However, we have not written pro-
grams that altempt to handle the problem of resource con-
strainis, a sitvation where resumption is most likely to be
needed. Further experimentation is needed to reach a final

. conclusion on the wisdoem of our choices.

ACHNOWLEDGMENT

The design of our exception handling mechanism was the
work of the CLU design team, including R. Atkinsan, T.
Bloom, E. Moss, C. Schaffert, and R. Scheifler. This paper
was improved by the comments of the referees and many
othiers.

558 IEEE TRANSACTIONS ON SOFTWARE ENG]NEER]NG, YOL. SE-5, NO. 6, NOVEMBER 1!

REFERENCES !

[t} G.V.Bachmann, “Multiple exits from a loop without the GOTO,™
Comtmun, Asy. Comput. Much .., vol. 16, pp. 443-444, July 1973,

12] I. B. Goodenough, “Exception handling: [ssucs and a proposed
notation,” Comnmen, Ass. Contput. Mach., vol. 18, pp. 683-695,
Dee. 1975,

[3] R. Levin, “Program structures for exceptional condition handling,"
Ph.Ir. dissertatfon, Dep. Camput, Sci., Carnegie-Mellon Univ.,
Pittsbuigh, PA, June 1977,

[4] B. Liskov, A. Snyder, R. Atkinson, end C. Schaffert, “Abstraction
mechanisms in CLU,” Comnun. Ass. Comput. Mach,, vol. 20,
PP 564-576, Aug. 1977. ’

(S} Froc. ACM Conj. on Language Destgn for Reliable Software,
SIGPLAN Nortices, vol. 12, Mar, 1977.

I. G. Mitchell, W, Maybury, and R. Sweet, “Mesa language man-

ual,” Xerox Res. Cent., Pala Alto, CA, Rep. CSL-78-1, Feb. 1974

17] B. M. Melliar-Smith and B. Randell, “Software reliability: The
role of programmed exception handling,” in Proe, ACM Conf on
Language Design for Reliable Software, SIGPLAN Notices, vol,
12, pp. 55-100, Mar. 1977,

{8} B. Randell, “System structure for software faull tolerance,”
IEEE Trans. Software £ing., vol SE-1, pp. 220-232, June 1975.

%] C. . Zahn, J1., “A contral statement for natural top-down strug-
tuzed programming,” Programming Symposium, Lecture Notes in
Computer Science, vol. 19, B. Robinet, Ed. New York: Springer-
Verlap, 1974, pp. 170-180,

&

_—

Barbara H. Liskov received the B.A. degree in mathematics from the
University of California, Berkeley, and the M.S. and Ph.D. depreee in
camputer science from Stanford University, Stanford, CA.

From 1968 to 1972, she was associated v
the AMitre Corporation, Bedford, MA, wh
she participated in the design and impletae
tion of the Venus Machine and the Venus
emting System. She is presently Associ
Professor of Electrical Engineering and C
puter Science at the Massachusctts Institute
Technology, Cambridge. Her research intere
include programming methodolopy, distribu
systems, and the design of languages and s
fems to support structured Pragramming.

Alan Snyder received the 5B, SM., a
Ph.D. degrees in CompBter science fro
the Maseachusatts Institute of Technalog
Cambridpe.

He is currently & member of the Technic
Staff in the Compuitr Research Laboratol
at Hewlett-Packard Laboratores, Paio Als
CA, working primarily in the arca of integrate
circuil design sutarmation. His other interey
include piogramming languages and machir
. architecture,

Dy. Snyder is a member of the Association for Computing Machinery

Proving Total Correctness of Parallel Programs

ALAN F. BABICH, MEMBER, {EEE

Abstract—An approach tg proving parallel progrants eomect i pre-
sented. The steps are 1) model the parallel program, 2) prove partial
correctness (proper synchronization), and 3) prove the absence of dead-
lock, livelock, and infinite loops. The paraliel program model is based
on Kelier's model, The main contzibutions of the paper are fech-
niques for proving the absence of deadiock and livelock. A connection
i made between Keller’s work and Dijkstra’s work with sesial pon-
deterministic progams. It is shown how a veriant fonction may be
used to prove finite termination, even if the variant function i not
strictly decseasing, and how finite termination can be used to prove
the absence of livelock, Handling of the finite delay apumption i
also discussed. The Tlustrative examples include one which occurred
in a commercial environment and a dasic synchronization problem
solved without the aid of special synchronization primitives.

Manuseript received April 12, 1978; revised April 30, 1979,
The author is with the Basic Four Corporation, Santa Ana, CA
92711,

Index Termas—Concurmrent program, correciness, deadlock, finite
delay, finite termination, infinite loops, Livelock, mutusl exclusion,
parallel program, termination, variant Tunction, verification.

INTRODUCTION

N abstract modet general enough to capture most notions
A of paraflel computation js highly desirable. Three crucial
parts of such a model seem to be as follows:

1) The state must factor into a control part and a data part,
so that such topics as “the number of processes at a given

-point int the program™ may conveniently be discussed.

2) The atomic actions must be specifiable, for no coarser
level of detail will, in general, suffice for rgorousty proving
the correctness of paralle] programs.

3) It must be possible to ignore irrelevant details of the
computation including absclute and relative exscution timings,

0098-5589/79/1100-0558300.75 © 1979 IEEE

