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ABSTRACT

Database management system (DBMS) configuration tuning is an
essential aspect of any data-intensive application effort. But this
is historically a difficult task because DBMSs have hundreds of
configuration “knobs” that control everything in the system, such
as the amount of memory to use for caches and how often data
is written to storage. The problem with these knobs is that they
are not standardized (i.e., two DBMSs use a different name for the
same knob), not independent (i.e., changing one knob can impact
others), and not universal (i.e., what works for one application may
be sub-optimal for another). Worse, information about the effects
of the knobs typically comes only from (expensive) experience.

To overcome these challenges, we present an automated approach
that leverages past experience and collects new information to tune
DBMS configurations: we use a combination of supervised and un-
supervised machine learning methods to (1) select the most impact-
ful knobs, (2) map unseen database workloads to previous work-
loads from which we can transfer experience, and (3) recommend
knob settings. We implemented our techniques in a new tool called
OtterTune and tested it on three DBMSs. Our evaluation shows that
OtterTune recommends configurations that are as good as or better
than ones generated by existing tools or a human expert.

1. INTRODUCTION

The ability to collect, process, and analyze large amounts of data
is paramount for being able to extrapolate new knowledge in busi-
ness and scientific domains [35, 25]. DBMSs are the critical com-
ponent of data-intensive (“Big Data”) applications [46]. The per-
formance of these systems is often measured in metrics such as
throughput (e.g., how fast it can collect new data) and latency (e.g.,
how fast it can respond to a request).

Achieving good performance in DBMSs is non-trivial as they are
complex systems with many tunable options that control nearly all
aspects of their runtime operation [24]. Such configuration knobs
allow the database administrator (DBA) to control various aspects
of the DBMS’s runtime behavior. For example, they can set how
much memory the system allocates for data caching versus the
transaction log buffer. Modern DBMSs are notorious for having
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many configuration knobs [22, 47, 36]. Part of what makes DBMSs
so enigmatic is that their performance and scalability are highly de-
pendent on their configurations. Further exacerbating this problem
is that the default configurations of these knobs are notoriously bad.
As an example, the default MySQL configuration in 2016 assumes
that it is deployed on a machine that only has 160 MB of RAM [1].

Given this, many organizations resort to hiring expensive experts
to configure the system’s knobs for the expected workload. But as
databases and applications grow in both size and complexity, opti-
mizing a DBMS to meet the needs of an application has surpassed
the abilities of humans [11]. This is because the correct configura-
tion of a DBMS is highly dependent on a number of factors that are
beyond what humans can reason about.

Previous attempts at automatic DBMS configuration tools have
certain deficiencies that make them inadequate for general purpose
database applications. Many of these tuning tools were created
by vendors, and thus they only support that particular company’s
DBMS [22, 33, 37]. The small number of tuning tools that do sup-
port multiple DBMSs still require manual steps, such as having the
DBA (1) deploy a second copy of the database [24], (2) map depen-
dencies between knobs [49], or (3) guide the training process [58].
All of these tools also examine each DBMS deployment indepen-
dently and thus are unable to apply knowledge gained from previ-
ous tuning efforts. This is inefficient because each tuning effort can
take a long time and use a lot of resources.

In this paper, we present a technique to reuse training data gath-
ered from previous sessions to tune new DBMS deployments. The
crux of our approach is to train machine learning (ML) models
from measurements collected from these previous tunings, and use
the models to (1) select the most important knobs, (2) map previ-
ously unseen database workloads to known workloads, so that we
can transfer previous experience, and (3) recommend knob settings
that improve a target objective (e.g., latency, throughput). Reusing
past experience reduces the amount of time and resources it takes
to tune a DBMS for a new application. To evaluate our work, we
implemented our techniques using Google TensorFlow [50] and
Python’s scikit-learn [39] in a tuning tool, called OtterTune,
and performed experiments for two OLTP DBMSs (MySQL, Post-
gres) and one OLAP DBMS (Vector). Our results show that Ot-
terTune produces a DBMS configuration for these workloads that
achieves 58-94% lower latency compared to their default settings
or configurations generated by other tuning advisors. We also show
that OtterTune generates configurations in under 60 min that are
within 94% of ones created by expert DBAs.

The remainder of this paper is organized as follows. Sect. 2 be-
gins with a discussion of the challenges in database tuning. We then
provide an overview of our approach in Sect. 3, followed by a de-
scription of our techniques for collecting DBMS metrics in Sect. 4,


mailto:dvanaken@cs.cmu.edu
mailto:pavlo@cs.cmu.edu
mailto:ggordon@cs.cmu.edu
mailto:bohan@pku.edu.cn
http://dx.doi.org/10.1145/3035918.3064029

)
&20 30
215 s
= @
® 1.0 L0
> 0.0 i 10
Lo, 200 s

g%‘?f 800 1500 1000 %9 0.0

86{44 2500 2000 size (MB) ’ 500 1000 1500 2000 2500 3000
8 puffer PO \ Buffer pool size (MB)

(a) Dependencies (b) Continuous Settings

99th %-tile (sec)

(¢) Non-Reusable Configurations

6.0

A Workload #1

@ = MySQL
N Workload #2 ke Post

4.0 = Workload #3 < 400 = Postgres
k)
@

2.0 2
£ 200
=1
z

Config #1 ~ Config#2  Config #3 oo 2004 2008 2072 2076
Release date

(d) Tuning Complexity

Figure 1: Motivating Examples — Figs. la to lc show performance measurements for the YCSB workload running on MySQL (v5.6) using different
configuration settings. Fig. 1d shows the number of tunable knobs provided in MySQL and Postgres releases over time.

identifying the knobs that have the most impact in Sect. 5, and rec-
ommending settings in Sect. 6. In Sect. 7, we present our experi-
mental evaluation. Lastly, we conclude with related work in Sect. 8.

2. MOTIVATION

There are general rules or “best practice” guidelines available
for tuning DBMSs, but these do not always provide good results
for a range of applications and hardware configurations. Although
one can rely on certain precepts to achieve good performance on a
particular DBMS, they are not universal for all applications. Thus,
many organizations resort to hiring expensive experts to tune their
system. For example, a 2013 survey found that 40% of engagement
requests for a large Postgres service company were for DBMS tun-
ing and knob configuration issues [36].

One common approach to tuning a DBMS is for the DBA to copy
the database to another machine and manually measure the perfor-
mance of a sample workload from the real application. Based on
the outcome of this test, they will then tweak the DBMS’s configu-
ration according to some combination of tuning guidelines and in-
tuition based on past experiences. The DBA then repeats the exper-
iment to see whether the performance improves [47]. Such a “trial-
and-error” approach to DBMS tuning is tedious, expensive, and
inefficient because (1) many of the knobs are not independent [24],
(2) the values for some knobs are continuous, (3) one often cannot
reuse the same configuration from one application to the next, and
(4) DBMSs are always adding new knobs.

We now discuss these issues in further detail. To highlight their
implications, we ran a series of experiments using MySQL (v5.6)
that execute variations of the YCSB workload with different knob
settings. We present the details of our operating environment for
these experiments in Sect. 7.

Dependencies: DBMS tuning guides strongly suggest that a
DBA only change one knob at a time. This is wise but woefully
slow given the large number of knobs. It is also not entirely helpful
because changing one knob may affect the benefits of another. But
it is difficult enough for humans to understand the impact of one
knob let alone the interactions between multiple ones. The differ-
ent combinations of knob settings means that finding the optimal
configuration is /N P-hard [49]. To demonstrate this point, we mea-
sured the performance of MySQL for different configurations that
vary the size of its buffer pool' and the size of its log file.> The
results in Fig. 1a show that the DBMS achieves better performance
when both the buffer pool and log file sizes are large. But in gen-
eral, the latency is low when the buffer pool size and log file size
are “balanced.” If the buffer pool is large and the log file size is
small, then the DBMS maintains a smaller number of dirty pages
and thus has to perform more flushes to disk.

Continuous Settings: Another difficult aspect of DBMS tuning
is that there are many possible settings for knobs, and the differ-

"MySQL Knob: innodb_buffer_pool_size
2MySQL Knob: innodb_log_file_size
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ences in performance from one setting to the next could be irreg-
ular. For example, the size of the DBMS’s buffer pool can be an
arbitrary value from zero to the amount of DRAM on the system.
In some ranges, a 0.1 GB increase in this knob could be incon-
sequential, while in other ranges, a 0.1 GB increase could cause
performance to drop precipitously as the DBMS runs out of phys-
ical memory. To illustrate this point, we ran another experiment
where we increase MySQL’s buffer pool size from 10 MB to 3 GB.
The results in Fig. 1b show that the latency improves continuously
up until 1.5 GB, after which the performance degrades because the
DBMS runs out of physical memory.

Non-Reusable Configurations: The effort that a DBA spends
on tuning one DBMS does not make tuning the next one any eas-
ier. This is because the best configuration for one application may
not be the best for another. In this experiment, we execute three
YCSB workloads using three MySQL knob configurations. Each
configuration is designed to provide the best latency for one of the
workloads (i.e., config #1 is the best for workload #1, same for #2
and #3). Fig. 1c shows that the best configuration for each workload
is the worst for another. For example, switching from config #1 to
config #3 improves MySQL’s latency for workload #3 by 90%, but
degrades the latency of workload #1 by 3500%. Config #2 provides
the best average performance overall. But both workloads #1 and
#3 improve by over 2x using their optimized configurations.

Tuning Complexity: Lastly, the number of DBMS knobs is al-
ways increasing as new versions and features are released. It is
difficult for DBAS to keep up to date with these changes and under-
stand how that will affect their system. The graph in Fig. 1d shows
the number of knobs for different versions of MySQL and Postgres
dating back to 2001. This shows that over 15 years the number of
knobs increased by 3 x for Postgres and by nearly 6 x for MySQL.

The above examples show how tricky it is to configure a DBMS.
This complexity is a major contributing factor to the high total cost
of ownership for database systems. Personnel is estimated to be
almost 50% of the total ownership cost of a large-scale DBMS [43],
and many DBAs spend nearly 25% of their time on tuning [21].

A better approach than examining each database application sep-
arately is to use an automated tool that leverages the knowledge
gained from one application to assist in the tuning of others.

3. SYSTEM OVERVIEW

We now present our automatic database tuning tool that over-
comes the problems that we described above. OtterTune is a tuning
service that works with any DBMS. It maintains a repository of
data collected from previous tuning sessions, and uses this data to
build models of how the DBMS responds to different knob configu-
rations. For a new application, it uses these models to guide experi-
mentation and recommend optimal settings. Each recommendation
provides OtterTune with more information in a feedback loop that
allows it to refine its models and improve their accuracy.
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Figure 2: OtterTune Architecture — An overview of the components in
the OtterTune system. The controller connects to the DBMS and collects
information about the performance of the system. This information is then
sent to the tuning manager where it is stored in its repository. It then builds
models that are used to select an optimal configuration for the DBMS.

Fig. 2 shows an overview of OtterTune’s architecture. The sys-
tem is comprised of two parts. The first is the client-side controller
that interacts with the target DBMS to be tuned. It collects runtime
information from the DBMS using a standard API (e.g., JDBC), in-
stalls new configurations, and collects performance measurements.

The second part is OtterTune’s tuning manager. It receives the
information collected from the controller and stores it in its reposi-
tory with data from previous tuning sessions. This repository does
not contain any confidential information about the DBMSs or their
databases; it only contains knob configurations and performance
data. OtterTune organizes this data per major DBMS version (e.g.,
Postgres v9.3 data is separate from Postgres v9.4). This prevents
OtterTune from tuning knobs from older versions of the DBMS
that may be deprecated in newer versions, or tuning knobs that
only exist in newer versions. The manager is also supported by
background processes that continuously analyze new data and re-
fine OtterTune’s internal ML models. These models allow it to
identify the relevant knobs and metrics without human input, and
find workloads in the repository that are similar to the target.

3.1 Example

At the start of a new tuning session, the DBA tells OtterTune
what metric to optimize when selecting a configuration (e.g., la-
tency, throughput). The OtterTune controller then connects to the
target DBMS and collects its hardware profile and current knob
configuration. We assume that this hardware profile is a single
identifier from a list of pre-defined types (e.g., an instance type on
Amazon EC2). We defer the problem of automatically determining
the hardware capabilities of a DBMS deployment to future work.

The controller then starts the first observation period. This is
some amount of time where the controller will observe the DBMS
and measure DBMS-independent external metrics chosen by the
DBA (e.g., latency). The DBA may choose to execute either a set
of queries for a fixed time period or a specific workload trace. If
the DBA chooses the first option, then the length of the observation
period is equal to the fixed time period. Otherwise, the duration
depends on how long it takes for the DBMS to replay the work-
load trace. Fixed observation periods are well-suited for the fast,
simple queries that are characteristic of OLTP workloads, whereas
variable-length periods are often necessary for executing the long-
running, complex queries present in OLAP workloads.

At the end of the observation period, the controller then col-
lects additional DBMS-specific internal metrics. Examples include
MySQL’s counters for pages read to or written from disk. Other
DBMSs provide similar metrics, but OtterTune does not require
any information from the DBA about their meaning, whether they
are indicative of good or bad performance, or whether metrics with
different names mean the same thing in different DBMSs. We dis-
cuss this metric collection in further detail in Sect. 4, along with our
approach to rank the DBMS’s knobs by their importance in Sect. 5.
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When OtterTune’s tuning manager receives the result of a new
observation period from the controller, it first stores that informa-
tion in its repository. From this, OtterTune then computes the next
configuration that the controller should install on the target DBMS.
As we discuss in Sect. 6, selecting this next configuration is the crit-
ical task in OtterTune. There are two distinct steps that take place
after each observation period that determine what kind of configu-
ration the system will recommend. In the first step, OtterTune tries
to “understand” the target workload and map it to a workload for
the same DBMS and hardware profile that it has seen (and tuned)
in the past. Once the tuning manager has found the best match
using the data that it has collected so far, it then starts the second
step where it recommends a knob configuration that is specifically
designed to improve the target objective for the current workload,
DBMS, and hardware. To assist the DBA with deciding whether
to terminate the tuning session, OtterTune provides the controller
with an estimate of how much better the recommended configura-
tion is compared to the best configuration that it has seen so far.
This process continues until the DBA is satisfied with the improve-
ments over the initial configuration.

3.2 Assumptions & Limitations

There are several aspects of OtterTune’s capabilities that we must
address. Foremost is that we assume that the controller has admin-
istrative privileges to modify the DBMS’s configuration (including
restarting the DBMS if necessary). If this is not possible, then the
DBA can deploy a second copy of the database on separate hard-
ware for OtterTune’s tuning trials. This requires the DBA either to
replay a workload trace or to forward queries from the production
DBMS. This is the same approach used in previous tools [24].

Restarting the DBMS is often necessary because some knobs
only take effect after the system is stopped and started. Some knobs
also cause the DBMS to perform extra processing when it comes
back on-line (e.g., resizing log files), which can potentially take
several minutes depending on the database and the hardware. Ot-
terTune currently ignores the cost of restarting the DBMS in its
recommendations. We defer the problem of automatically identify-
ing these knobs and taking the cost of restarting into consideration
when choosing configurations as future work.

Because restarting the DBMS is undesirable, many DBMSs sup-
port changing some knobs dynamically without having to restart
the system. OtterTune stores a list of the dynamic knobs that are
available on each of the DBMS versions that it supports, as well as
the instructions on how to update them. It then restarts the DBMS
only when the set of knobs being tuned requires it. The DBA can
also elect to tune only dynamic knobs at the start of the tuning
session. This is another alternative that is available to the DBA
when restarting the DBMS is prohibited. We maintain a curated
black-list of knobs for each DBMS version that is supported by Ot-
terTune. The DBA is provided with this black-list of knobs at the
start of each tuning session. The DBA is permitted to add to this
list any other knobs that they want OtterTune to avoid tuning. Such
knobs could either be ones that do not make sense to tune (e.g.,
path names of where the DBMS stores files), or ones that could
have hidden or serious consequences (e.g., potentially causing the
DBMS to lose data). Again, automatically determining whether
changing a knob will cause the application to potentially lose data
is beyond the scope of our work here.

Lastly, we also assume that the physical design of the database
is reasonable. That means that the DBA has already installed the
proper indexes, materialized views, and other database elements.
There has been a considerable amount of research into automatic
database design [16] that the DBA can utilize for this purpose. As
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Figure 3: OtterTune Machine Learning Pipeline — This diagram shows the processing path of data in OtterTune. All previous observations reside in its
repository. This data is first then passed into the Workload Characterization (Sect. 4) component that identifies the most distinguishing DBMS metrics.
Next, the Knob Identification (Sect. 5) component generates a ranked list of the most important knobs. All of this information then fed into the Automatic
Tuner (Sect. 6) component where it maps the target DBMS’s workload to a previously seen workload and generates better configurations.

discussed in Appendix C, we plan to investigate how to apply these
same techniques to tune the database’s physical design.

In the sections that follow, we describe how OtterTune collects
runtime metrics from the DBMS during a tuning session. It then
creates models from this data that allow it to (1) select the most
impactful knobs, (2) map previously unseen database workloads to
known workloads, and (3) recommend knob settings. We start with
discussing how to identify which of the metrics gathered by the tun-
ing tool best characterize an application’s workload. An overview
of this entire process is shown in Fig. 3.

4. WORKLOAD CHARACTERIZATION

The first step in the tuning system is to discover a model that best
represents the distinguishing aspects of the target workload so that
it can identify which previously seen workloads in the repository
are similar to it. This enables OtterTune to leverage the information
that it has collected from previous tuning sessions to help guide the
search for a good knob configuration for the new application.

We might consider two approaches to do this. The first is to ana-
lyze the target workload at the logical level. This means examining
the queries and the database schema to compute metrics, such as the
number of tables/columns accessed per query and the read/write ra-
tio of transactions. These metrics could be further refined using the
DBMS’s “what-if” optimizer API to estimate additional runtime
information [15], like which indexes are accessed the most often.
The problem with this approach, however, is that it is impossible
to determine the impact of changing a particular knob because all
of these estimates are based on the logical database and not the
actual runtime behavior of queries. Furthermore, how the DBMS
executes a query and how the query relates to internal components
that are affected by tuning knobs is dependent on many factors of
the database (e.g., size, cardinalities, working set size). Hence, this
information cannot be captured just by examining the workload.

A better approach is to use the DBMS’s internal runtime met-
rics to characterize how a workload behaves. All modern DBMSs
expose a large amount of information about the system. For ex-
ample, MySQL’s InnoDB engine provides statistics on the number
of pages read/written, query cache utilization, and locking over-
head. OtterTune characterizes a workload using the runtime statis-
tics recorded while executing it. These metrics provide a more
accurate representation of a workload because they capture more
aspects of its runtime behavior. Another advantage of them is that
they are directly affected by the knobs’ settings. For example, if the
knob that controls the amount of memory that the DBMS allocates
to its buffer pool is too low, then these metrics would indicate an
increase in the number of buffer pool cache misses. All DBMSs
provide similar information, just with different names and different
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granularities. But as we will show, OtterTune’s model construction
algorithms do not require metrics to be labeled.

4.1 Statistics Collection

OtterTune’s controller supports a modular architecture that en-
ables it to perform the appropriate operations for different DBMSs
to collect their runtime statistics. At the beginning of each observa-
tion period, the controller first resets all of the statistics for the tar-
get DBMS. It then retrieves the new statistics data at the end of the
period. Since at this point OtterTune does not know which metrics
are actually useful, it collects every numeric metric that the DBMS
makes available and stores it as a key/value pair in its repository.

The main challenge in this collection process is how to repre-
sent metrics for sub-elements of the DBMS and database. Some
systems, like MySQL, only report aggregate statistics for the en-
tire DBMS. Other systems, however, provide separate statistics for
tables or databases. Commercial DBMSs even maintain separate
statistics for individual components (e.g., IBM DB2 tracks statistics
per buffer pool instance). The problem with this fine-grained data
is that the DBMS provides multiple metrics with the same name.

One potential solution is to prefix the name of the sub-element
to the metric’s name. For example, Postgres’” metric for the number
of blocks read for the table “foo” would be stored in the repository
as foo.heap_blks_read. But this approach means that it is unable
to map this metric to other databases since they will have different
names for their tables. OtterTune instead stores the metrics with the
same name as a single sum scalar value. This works because Otter-
Tune currently only considers global knobs. We defer the problem
of tuning table- or component-specific knobs as future work.

4.2 Pruning Redundant Metrics

The next step is to automatically remove the superfluous met-
rics. It is important to remove such elements so that OtterTune only
has to consider the smallest set of metrics that capture the variabil-
ity in performance and distinguishing characteristics for different
workloads. Reducing the size of this set reduces the search space
of ML algorithms, which in turn speeds up the entire process and
increases the likelihood that the models will fit in memory on Ot-
terTune’s tuning manager. We will show in subsequent sections
that the metrics available to OtterTune are sufficient to distinguish
between workloads for DBMSs deployed on the same hardware.

Redundant DBMS metrics occur for two reasons. The first are
ones that provide different granularities for the exact same metric in
the system. For example, MySQL reports the amount of data read
in terms of bytes® and pages.* The two metrics are the same mea-
surement just in different units, thus it is unnecessary to consider

3MySQL Metric: innodb_data_read
4MySQL Metric: innodb_pages_read



both of them. The other type of redundant metrics are ones that
represent independent components of the DBMS but whose values
are strongly correlated. For example, we found from our experi-
ments that the Postgres metric for the number of tuples updated®
moves almost in unison with the metric that measures the number
of blocks read from the buffer for indexes.®

We use two well-studied techniques for this pruning. The first is
a dimensionality reduction technique, called factor analysis (FA) [5],
that transforms the (potentially) high dimensional DBMS metric
data into lower dimensional data. We then use the second tech-
nique, called k-means [6], to cluster this lower dimensional data
into meaningful groups. Using a dimensionality reduction tech-
nique is a preprocessing step for many clustering algorithms be-
cause they reduce the amount of “noise” in the data [31, 30]. This
improves the robustness and the quality of the cluster analysis.

Given a set of real-valued variables that contain arbitrary corre-
lations, FA reduces these variables to a smaller set of factors that
capture the correlation patterns of the original variables. Each fac-
tor is a linear combination of the original variables; the factor co-
efficients are similar to and can be interpreted in the same way as
the coefficients in a linear regression. Furthermore, each factor has
unit variance and is uncorrelated with all other factors. This means
that one can order the factors by how much of the variability in the
original data they explain. We found that only the initial factors are
significant for our DBMS metric data, which means that most of
the variability is captured by the first few factors.

The FA algorithm takes as input a matrix X whose rows corre-
spond to metrics and whose columns correspond to knob configu-
rations that we have tried. The entry X;; is the value of metric ¢
on configuration j. FA gives us a smaller matrix U: the rows of
U correspond to metrics, while the columns correspond to factors,
and the entry Uy; is the coefficient of metric ¢ in factor 5. We can
scatter-plot the metrics using elements of the ith row of U as coor-
dinates for metric . Metrics ¢ and j will be close together if they
have similar coefficients in U — that is, if they tend to correlate
strongly in X. Removing redundant metrics now means removing
metrics that are too close to one another in our scatter-plot.

We then cluster the metrics via k-means, using each metric’s row
of U as its coordinates. We keep a single metric for each cluster,
namely, the one closest to the cluster center. One of the drawbacks
of using k-means is that it requires the optimal number of clusters
(K) as its input. We use a simple heuristic [40] to fully automate
this selection process and approximate K. Although this approach
is not guaranteed to find the optimal solution, it does not require a
human to manually interpret a graphical representation of the prob-
lem to determine the optimal number of clusters. We compared
this heuristic with other techniques [55, 48] for choosing K and
found that they select values that differ by one to two clusters at
most from our approximations. Such variations made little differ-
ence in the quality of configurations that OtterTune generated in
our experimental evaluation in Sect. 7.

The visualization in Fig. 4 shows a two-dimensional projection
of the scatter-plot and the metric clusters in MySQL and Postgres.
In the MySQL clusters in Fig. 4a, OtterTune identifies a total of
nine clusters. These clusters correspond to distinct aspects of a
DBMS’s performance. For example, in the case of MySQL, the
metrics that measure the amount of data written’, the amount of
data read®, and the time spent waiting for resources’ are all grouped

Postgres Metric: pg_stat_database. tup_updated

Postgres Metric: pg_statio_user_tables.idx_blks_hit

MySQL Metrics: innodb_data_written, innodb_buffer_pool_write_requests
MySQL Metrics: innodb_rows_read, bytes_sent

- N - N |

MySQL Metrics: innodb_log_waits, innodb_row_lock_time_max
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Figure 4: Metric Clustering — Grouping DBMS metrics using k-means
based on how similar they are to each other as identified by Factor Analysis
and plotted by their (f1, f2) coordinates. The color of each metric shows
its cluster membership. The triangles represent the cluster centers.

into the same cluster. In Fig. 4b we see that OtterTune selects eight
clusters for Postgres’ metrics. Like MySQL, the metrics in each
cluster correspond to similar measurements. But in Postgres the
metrics are clustered on specific components in the system, like the
background writer'®>!! and indexes.'*'!?

An interesting finding with this clustering is that OtterTune tends
to group together useless metrics (e.g., SSL connection data). It
does not, however, have a programmatic way to determine that they
are truly useless and thus it has to include them in further compu-
tations. We could provide the system with a hint of one or more of
these metrics and then discard the cluster that it gets mapped to.

From the original set of 131 metrics for MySQL and 57 met-
rics for Postgres, we are able to reduce the number of metrics by
93% and 82%, respectively. Note that OtterTune still collects and
stores data for all of the DBMS’s metrics in its repository even if
they are marked as redundant. The set of metrics that remain after
pruning the FA reduction is only considered for the additional ML
components that we discuss in the next sections.

S. IDENTIFYING IMPORTANT KNOBS

After pruning the redundant metrics, OtterTune next identifies
which knobs have the strongest impact on the DBA’s target ob-
jective function. DBMSs can have hundreds of knobs, but only a
subset actually affect the DBMS’s performance. Thus, reducing the
number of knobs limits the total number of possible DBMS config-
urations that must be considered. We want to discover both nega-
tive and positive correlations. For example, reducing the amount of
memory allocated for the DBMS’s buffer pool is likely to degrade
the system’s overall latency, and we want to discover this strong
(albeit negative) influence on the DBMS’s performance.

OtterTune uses a popular feature selection technique for linear
regression, called Lasso [54], to expose the knobs that have the
strongest correlation to the system’s overall performance. In order
to detect nonlinear correlations and dependencies between knobs,
we also include polynomial features in our regression.

OtterTune’s tuning manager performs these computations con-
tinuously in the background as new data arrives from different tun-
ing sessions. In our experiments, each invocation of Lasso takes
~20 min and consumes ~10 GB of memory for a repository com-
prised of 100k trials with millions of data points. The dependencies
and correlations that we discover are then used in OtterTune’s rec-
ommendation algorithms, presented in Sect. 6.

We now describe how to use Lasso to identify important knobs
and the dependencies that may exist between them. Then we dis-
cuss how OtterTune uses this during the tuning process.

1OPostgres Metric: pg_stat_bgwriter.buffers_clean

llPostgres Metric: pg_stat_bgwriter.maxwritten_clean
12Postgres Metric: pg_statio_user_tables.idx_blks_read

13Postgrf:s Metric: pg_statio_user_indexes.idx_blks_read



5.1 Feature Selection with Lasso

Linear regression is a statistical method used to determine the
strength of the relationship between one or more dependent vari-
ables (y) and each of the independent variables (X). These re-
lationships are modeled using a linear predictor function whose
weights (i.e., coefficients) are estimated from the data.

The most common method of fitting a linear regression model
is ordinary least squares (OLS), which estimates the regression
weights by minimizing the residual squared error. Such a model
allows one to perform statistical tests on the weights to assess the
significance of the effect of each independent variable [14]. Al-
though OtterTune could use these measurements to determine the
knob ordering, OLS suffers from two shortcomings that make it an
unsatisfactory solution in high(er) dimensional settings. First, the
estimates have low bias but high variance, and the variance con-
tinues to increase as more features are included in the model. The
latter issue degrades the prediction and variable selection accuracy
of the model. Second, the estimates become harder to interpret
as the number of features increases, since extraneous features are
never removed (i.e., OLS does not perform feature selection).

To avoid these problems, OtterTune employs a regularized ver-
sion of least squares, known as Lasso, that reduces the effect of ir-
relevant variables in linear regression models by penalizing models
with large weights. The major advantage of Lasso over other reg-
ularization and feature selection methods is that it is interpretable,
stable, and computationally efficient [54, 26]. There is also both
practical and theoretical work backing its effectiveness as a consis-
tent feature selection algorithm [56, 57, 64, 9].

Lasso works by adding an L; penalty that is equal to a con-
stant \ times the sum of absolute weights to the loss function. Be-
cause each non-zero weight contributes to the penalty term, Lasso
effectively shrinks some weights and forces others to zero. That is,
Lasso performs feature selection by automatically selecting more
relevant features (i.e., those with non-zero weights), and discarding
the others (i.e., those with zero weights). The number of features
that it keeps depends on the strength of its penalty, which is con-
trolled by adjusting the value of A. Lasso improves the prediction
accuracy and interpretability of the OLS estimates via its shrinkage
and selection properties: shrinking small weights towards zero re-
duces the variance and creates a more stable model, and deselecting
extraneous features generates models that are easier to interpret.

As in the usual regression scenario, OtterTune constructs a set
of independent variables (X) and one or more dependent variables
(y) from the data in its repository. The independent variables are
the DBMS’s knobs (or functions of these knobs) and the dependent
variables are the metrics that OtterTune collects during an obser-
vation period from the DBMS. OtterTune uses the Lasso path al-
gorithm [29] to determine the order of importance of the DBMS’s
knobs. The algorithm starts with a high penalty setting where all
weights are zero and thus no features are selected in the regression
model. It then decreases the penalty in small increments, recom-
putes the regression, and tracks what features are added back to the
model at each step. OtterTune uses the order in which the knobs
first appear in the regression to determine how much of an impact
they have on the target metric (e.g., the first knob selected is the
most important). We provide more details and visualizations of
this process in Appendix A.

Before OtterTune computes this model, it executes two prepro-
cessing steps to normalize the knobs data. This is necessary be-
cause Lasso provides higher quality results when the features are
(1) continuous, (2) have approximately the same order of magni-
tude, and (3) have similar variances. It first transforms all of the
categorical features to “dummy” variables that take on the values
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of zero or one. Specifically, each categorical feature with n possible
values is converted into n binary features. Although this encoding
method increases the number of features, all of the DBMSs that we
examined have a small enough number of categorical features that
the performance degradation was not noticeable. Next, OtterTune
scales the data. We found that standardizing the data (i.e., sub-
tracting the mean and dividing by the standard deviation) provides
adequate results and is easy to execute. We evaluated more com-
plicated approaches, such as computing deciles, but they produced
nearly identical results as the standardized form.

5.2 Dependencies

As we showed in Sect. 2, many of a DBMS’s knobs are non-
independent. This means that changing one may affect another. It
is important that OtterTune takes these relationships into consid-
eration when recommending a configuration to avoid nonsensical
settings. For example, if the system does not “know” that it should
not try to allocate the entire system memory to multiple purposes
controlled by different knobs, then it could choose a configuration
that would cause the DBMS to become unresponsive due to thrash-
ing. In other cases, we have observed that a DBMS will refuse to
start when the requested configuration uses too much memory.

Within the feature selection method described above, we can
capture such dependencies between knobs by including polyno-
mial features in the regression. The regression and feature selection
methods do not change: they just operate on polynomial features of
the knobs instead of the raw knobs themselves. For example, to test
whether the buffer pool memory allocation knob interacts with the
log buffer size knob, we can include a feature which is the prod-
uct of these knobs’ values: if Lasso selects this product feature, we
have discovered a dependence between knobs.

5.3 Incremental Knob Selection

OtterTune now has a ranked list of all knobs. The Lasso path
algorithm guarantees that the knobs in this list are ordered by the
strength of statistical evidence that they are relevant. Given this,
OtterTune must decide how many of these knobs to use in its rec-
ommendations. Using too many of them increases OtterTune’s op-
timization time significantly because the size of the configuration
space grows exponentially with the number of knobs. But using too
few of them would prevent OtterTune from finding the best config-
uration. The right number of knobs to consider depends on both
the DBMS and the target workload.

To automate this process, we use an incremental approach where
OtterTune dynamically increases the number of knobs used in a
tuning session over time. Expanding the scope gradually in this
manner has been shown to be effective in other optimization algo-
rithms [27, 20]. As we show in our evaluation in Sect. 7.3, this
always produces better configurations than any static knob count.

6. AUTOMATED TUNING

Now at this point OtterTune has (1) the set of non-redundant
metrics, (2) the set of most impactful configuration knobs, and (3)
the data from previous tuning sessions stored in its repository.

OtterTune repeatedly analyzes the data it has collected so far in
the session and then recommends the next configuration to try. It
executes a two-step analysis after the completion of each obser-
vation period in the tuning process. In the first step, the system
identifies which workload from a previous tuning session is most
emblematic of the target workload. It does this by comparing the
session’s metrics with those from the previously seen workloads to
see which ones react similarly to different knob settings. Once Ot-
terTune has matched the target workload to the most similar one in



its repository, it then starts the second step of the analysis where it
chooses a configuration that is explicitly selected to maximize the
target objective. We now describe these steps in further detail.

6.1 Step #1 — Workload Mapping

The goal of this first step is to match the target DBMS’s work-
load with the most similar workload in its repository based on the
performance measurements for the selected group of metrics. We
find that the matched workload varies for the first few experiments
before converging to a single workload. This suggests that the qual-
ity of the match made by OtterTune increases with the amount of
data gathered from the target workload, which is what we would
expect. For this reason, using a dynamic mapping scheme is prefer-
able to static mapping (i.e., mapping one time after the end of the
first observation period) because it enables OtterTune to make more
educated matches as the tuning session progresses.

For each DBMS version, we build a set S of /N matrices — one
for every non-redundant metric — from the data in our repository.
Similar to the Lasso and FA models, these matrices are constructed
by background processes running on OtterTune’s tuning manager
(see Sect. 3). The matrices in S (i.e., Xo, X1,...Xn—_1) have
identical row and column labels. Each row in matrix X,, cor-
responds to a workload in our repository and each column corre-
sponds to a DBMS configuration from the set of all unique DBMS
configurations that have been used to run any of the workloads.
The entry X, ; 5 is the value of metric m observed when executing
workload 7 with configuration j. If we have multiple observations
from running workload ¢ with configuration j, then entry X, ; ; is
the median of all observed values of metric m.

The workload mapping computations are straightforward. Otter-
Tune calculates the Euclidean distance between the vector of mea-
surements for the target workload and the corresponding vector for
each workload ¢ in the matrix X,, (i.e., Xm,i,:). It then repeats
this computation for each metric m. In the final step, OtterTune
computes a “score” for each workload ¢ by taking the average of
these distances over all metrics m. The algorithm then chooses the
workload with the lowest score as the one that is most similar to the
target workload for that observation period.

Before computing the score, it is critical that all metrics are of
the same order of magnitude. Otherwise, the resulting score would
be unfair since any metrics much larger in scale would dominate
the average distance calculation. OtterTune ensures that all met-
rics are the same order of magnitude by computing the deciles for
each metric and then binning the values based on which decile they
fall into. We then replace every entry in the matrix with its cor-
responding bin number. With this extra step, we can calculate an
accurate and consistent score for each of the workloads in Otter-
Tune’s repository.

6.2 Step #2 — Configuration Recommendation

In the next step, OtterTune uses Gaussian Process (GP) regres-
sion [42] to recommend configurations that it believes will improve
the target metric. GP regression is a state-of-the-art technique with
power approximately equal to that of deep networks. There are a
number of attractive features of GPs that make it an appropriate
choice for modeling the configuration space and making recom-
mendations. Foremost is that GPs provide a theoretically justified
way to trade off exploration (i.e., acquiring new knowledge) and ex-
ploitation (i.e., making decisions based on existing knowledge) [32,
45]. Another reason is that GPs, by default, provide confidence in-
tervals. Although methods like bootstrapping can be used to obtain
confidence intervals for deep networks and other models that do not
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give them, they are computationally expensive and thus not feasible
(yet) for an on-line tuning service.

OtterTune starts the recommendation step by reusing the data
from the workload that it selected previously to train a GP model.
It updates the model by adding in the metrics from the target work-
load that it has observed so far. But since the mapped workload
is not exactly identical to the unknown one, the system does not
fully trust the model’s predictions. We handle this by increasing
the variance of the noise parameter for all points in the GP model
that OtterTune has not tried yet for this tuning session. That is, we
add a ridge term to the covariance. We also add a smaller ridge
term for each configuration that OtterTune selects. This is help-
ful for “noisy” virtualized environments where the external DBMS
metrics (i.e., throughput and latency) vary from one observation
period to the next.

Now for each observation period in this step, OtterTune tries to
find a better configuration than the best configuration that it has
seen thus far in this session. It does this by either (1) searching
an unknown region in its GP (i.e., workloads for which it has lit-
tle to no data for), or (2) selecting a configuration that is near the
best configuration in its GP. The former strategy is referred to as
exploration. This helps OtterTune look for configurations where
knobs are set to values that are beyond the minimum or maximum
values that it has tried in the past. This is useful for trying cer-
tain knobs where the upper limit might depend on the underlying
hardware (e.g., the amount of memory available). The second strat-
egy is known as exploitation. This is where OtterTune has found a
good configuration and it tries slight modifications to the knobs to
see whether it can further improve the performance.

Which of these two strategies OtterTune chooses when selecting
the next configuration depends on the variance of the data points in
its GP model. It always chooses the configuration with the great-
est expected improvement. The intuition behind this approach is
that each time OtterTune tries a configuration, it “trusts” the result
from that configuration and similar configurations more, and the
variance for those data points in its GP decreases. The expected
improvement is near-zero at sampled points and increases in be-
tween them (although possibly by a small amount). Thus, it will
always try a configuration that it believes is optimal or one that it
knows little about. Over time, the expected improvement in the
GP model’s predictions drops as the number of unknown regions
decreases. This means that it will explore the area around good
configurations in its solution space to optimize them even further.

OtterTune uses gradient descent [29] to find the local optimum
on the surface predicted by the GP model using a set of configu-
rations, called the initialization set, as starting points. There are
two types of configurations in the initialization set: the first are the
top-performing configurations that have been completed in the cur-
rent tuning session, and the second are configurations for which the
value of each knob is chosen at random from within the range of
valid values for that knob. Specifically, the ratio of top-performing
configurations to random configurations is 1-to-10. During each
iteration of gradient descent, the optimizer takes a “step” in the
direction of the local optimum until it converges or has reached
the limit on the maximum number of steps it can take. OtterTune
selects from the set of optimized configurations the one that max-
imizes the potential improvement to run next. This search process
is quick; in our experiments OtterTune’s tuning manager takes 10—
20 sec to complete its gradient descent search per observation pe-
riod. Longer searches did not yield better results.

Similar to the other regression-based models that we use in Otter-
Tune (see Sects. 5.1 and 6.1), we employ preprocessing to ensure
that features are continuous and of approximately the same scale



and range. We encode categorical features with dummy variables
and standardize all data before passing it as input to the GP model.

Once OtterTune selects the next configuration, it returns this
along with the expected improvement from running this configu-
ration to the client. The DBA can use the expected improvement
calculation to decide whether they are satisfied with the best con-
figuration that OtterTune has generated thus far.

7. EXPERIMENTAL EVALUATION

We now present an evaluation of OtterTune’s ability to automat-
ically optimize the configuration of a DBMS. We implemented all
of OtterTune’s algorithms using Google TensorFlow and Python’s
scikit-learn.

We use three different DBMSs in our evaluation: MySQL (v5.6),
Postgres (v9.3), and Actian Vector (v4.2). MySQL and Postgres
were installed using the OS’s package manager. Vector was in-
stalled from packages provided on its website. We did not modify
any knobs in their default configurations other than to enable in-
coming connections from a remote IP address.

We conducted all of our deployment experiments on Amazon
EC2. Each experiment consists of two instances. The first instance
is OtterTune’s controller that we integrated with the OLTP-Bench
framework. These clients are deployed on m4. large instances with
4 vCPUs and 16 GB RAM. The second instance is used for the tar-
get DBMS deployment. We used m3. xlarge instances with 4 vC-
PUs and 15 GB RAM. We deployed OtterTune’s tuning manager
and repository on a local server with 20 cores and 128 GB RAM.

We first describe OLTP-Bench’s workloads that we used in our
data collection and evaluation. We then discuss our data collec-
tion to populate OtterTune’s repository. The remaining parts of this
section are the experiments that showcase OtterTune’s capabilities.

7.1 Workloads

For these experiments, we use workloads from the OLTP-Bench
testbed that differ in complexity and system demands [3, 23]:

YCSB: The Yahoo! Cloud Serving Benchmark (YCSB) [18] is
modeled after data management applications with simple work-
loads and high scalability requirements. It is comprised of six
OLTP transaction types that access random tuples based on a Zip-
fian distribution. The database contains a single table with 10 at-
tributes. We use a database with 18m tuples (~18 GB).

TPC-C: This is the current industry standard for evaluating the
performance of OLTP systems [51]. It consists of five transactions
with nine tables that simulate an order processing application. We
use a database of 200 warehouses (~18 GB) in each experiment.

Wikipedia: This OLTP benchmark is derived from the software
that runs the popular on-line encyclopedia. The database contains
11 tables and eight different transaction types. These transactions
correspond to the most common operations in Wikipedia for article
and “watchlist” management. We configured OLTP-Bench to load
a database of 100k articles that is ~20 GB in total size. Thus, the
combination of a complex database schema with large secondary
indexes makes this benchmark useful for stress-testing a DBMS.

TPC-H: This is a decision support system workload that simu-
lates an OLAP environment where there is little prior knowledge
of the queries [52]. It contains eight tables in 3NF schema and 22
queries with varying complexity. We use a scale factor of 10 in
each experiment (~10 GB).

For the OLTP workloads, we configure OtterTune to use five-
minute observation periods and assign the target metric to be the
99%-tile latency. We did not find that shorter or longer fixed peri-
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ods produced statistically significant differences in our evaluation,
but applications with greater variations in their workload patterns
may need longer periods. For the OLAP workloads, OtterTune uses
a variable-length observation period that is the total execution time
of the target workload for that period. The workload’s total execu-
tion time is the target metric for the OLAP experiments.

7.2 Training Data Collection

As discussed in Sect. 3, OtterTune requires a corpus of previous
tuning sessions that explore different knob configurations to work
properly. Otherwise, every tuning session would be the first time
that it has seen any application and it would not be able to leverage
the knowledge it gains from previous sessions. This means that
we have to bootstrap OtterTune’s repository with initial data for
training its ML models. Rather than running every workload in the
OLTP-Bench suite, we used permutations of YCSB and TPC-H.

We created 15 variations of YCSB with different workload mix-
tures. For TPC-H, we divided the queries into four groups that are
each emblematic of the overall workload [12]. All of the training
data was collected using the DBMSs’ default isolation level.

We also needed to evaluate different knob configurations. For
each workload, we performed a parameter sweep across the knobs
using random values. In some cases, we had to manually override
the valid ranges of these knobs because the DBMS would refuse to
start if any of the knob settings exceeded the physical capacity of
any of the machine’s resources (e.g., if the size of the buffer pool
was set to be larger than the amount of RAM). This would not be a
problem in a real deployment scenario because if the DBMS does
not start then OtterTune is not able to collect the data.

We executed a total of over 30k trials per DBMS using these
different workload and knob configurations. Each of these trials
is treated like an observation period in OtterTune, thus the system
collects both the external metrics (i.e., throughput, latency) and in-
ternal metrics (e.g., pages read/written) from the DBMS.

For each experiment, we reset OtterTune’s repository back to
its initial setting after loading our training data. This is to avoid
tainting our measurements with additional knowledge gained from
tuning the previous experiments. For the OLAP experiments, we
also ensure that OtterTune’s ML models are not trained with data
from the same TPC-H workload mixture as the target workload.

7.3 Number of Knobs

We begin with an analysis of OtterTune’s performance when op-
timizing different numbers of knobs during each observation pe-
riod. The goal of this experiment is to show that OtterTune can
properly identify the optimal number of knobs for tuning each DBMS.
Although using more knobs may allow OtterTune to find a better
configuration, it also increases the computational overhead, data
requirements, and memory footprint of its algorithms.

We use the TPC-C benchmark for the OLTP DBMSs (MySQL
and Postgres) and TPC-H for the OLAP DBMS (Vector). We eval-
uate two types of knob count settings. The first is a fixed count
where OtterTune considers the same set of knobs throughout the
entire tuning session. The second is our incremental approach from
Sect. 5.3 where OtterTune increases the number the knobs it tunes
gradually over time. For this setting, the tuning manager starts with
four knobs and then increases the count by two every 60 min. With
each knob count setting, we select the top-k knobs ranked by their
impact as described in Sect. 5. We use 15 hour tuning sessions to
determine whether the fixed setting can ever achieve the same per-
formance as the incremental approach; we note that this is longer
than we expect that a DBA would normally run OtterTune.
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Figure 5: Number of Knobs — The performance of the DBMSs for TPC-C and TPC-H during the tuning session using different configurations generated by

OtterTune that only configure a certain number of knobs.

MySQL: The results in Fig. 5a show that the incremental ap-
proach enables OtterTune to find a good configuration for MySQL
in approximately 45 min. Unlike Postgres and Vector, the incre-
mental approach provides a noticeable boost in tuning performance
for MySQL in contrast to the fixed knob settings. The next best
knob count setting for MySQL is the fixed four knobs. These
four knobs include the DBMS’s buffer pool and log file sizes, (see
Fig. 1a), as well as the method used to flush data to storage. The
larger knob count settings include the ability to control additional
thread policies and the number of pages prefetched into the buffer
pool. But based on our experiments we find that these have min-
imal impact on performance for a static TPC-C workload. Thus,
including these less impactful knobs increases the amount of noise
in the model, making it harder to find the knobs that matter.

Postgres: The results in Fig. 5b show that the incremental ap-
proach and the fixed four knob setting provide OtterTune with the
best increase in the DBMS’s performance. Similar to MySQL,
Postgres has a small number of knobs that have a large impact on
the performance. For example, the knob that controls the size of
the buffer pool and the knob that influences which query plans are
selected by the optimizer are both in the four knob setting. The
larger fixed knob settings perform worse than the four knob setting
because the additional knobs that they contain have little impact on
the system’s performance. Thus, also tuning these irrelevant knobs
just makes the optimization problem more difficult. The incremen-
tal method, however, proves to be a robust technique for DBMSs
that have relatively few impactful knobs for the TPC-C workload
since it slightly outperforms the four knob setting. Its performance
continues to improve after 400 min as it expands the number of
knobs that it examines. This is because the incremental approach
allows OtterTune to explore and optimize the configuration space
for a small set of the most impactful knobs before expanding its
scope to consider the others.

Vector: As shown in Fig. 5c, OtterTune achieves the best tuning
performance with the eight, 16, and the incremental knob settings.
In contrast to MySQL and Postgres, tuning only four knobs does
not provide the best tuning performance. This is because some of
Vector’s more impactful knobs are present in the eight knob setting
but not in the four knob one. The top four knobs tune the level of
parallelism for query execution, the buffer pool’s size and prefetch-
ing options, and the SIMD capabilities of the DBMS. There is one
knob that replaces Vector’s standard LRU buffer replacement algo-
rithm with a policy that leverages the predictability of disk page ac-
cess patterns during long-running scans. This knob can incur over-
head due to contention waiting for mutexes. Since the eight knob
setting always disables this knob, it is likely the one that prevents
the four knob setting from achieving comparable performance.
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The optimal number of knobs for a tuning session varies per
DBMS and workload, thus it is impossible to provide a univer-
sal knob setting. These results show that increasing the number
of knobs that OtterTune considers over time is the best approach
because it strikes the right balance between complexity and per-
formance. Using this approach, OtterTune is able to tune DBMSs
like MySQL and Postgres that have few impactful knobs, as well
as DBMSs like Vector that require more knobs to be tuned in order
to achieve good performance.

7.4 Tuning Evaluation

We now demonstrate how learning from previous tuning sessions
improves OtterTune’s ability to find a good DBMS knob configu-
ration. To accomplish this, we compare OtterTune with another
tuning tool, called iTuned [24], that also uses Gaussian Process
models to search for an optimal DBMS configuration.

Unlike OtterTune, iTuned does not train its GP models using data
collected from previous tuning sessions. It instead uses a stochas-
tic sampling technique (Latin Hypercube Sampling) to generate an
initial set of 10 DBMS configurations that are executed at the start
of the tuning session. iTuned uses the data from these initial experi-
ments to train GP models that then search for the best configuration
in same way as described in Sect. 6.2.

For this comparison, we use both the TPC-C and Wikipedia bench-
marks for the OLTP DBMSs (MySQL and Postgres) and two vari-
ants of the TPC-H workload for the OLAP DBMS (Vector). Ot-
terTune trains its GP models using the data from the most similar
workload mixture determined in the last workload mapping stage.
Both tuning tools use the incremental knob approach to decide how
many knobs to tune during each observation period (see Sect. 5.3).
The difference is that iTuned starts using this approach only after it
has finished running its initial set of experiments.

TPC-C: The results in Fig. 6 show that both OtterTune and
iTuned find configurations early in the tuning session that improve
performance over the default configuration. There are, however,
two key differences. First, OtterTune finds this better configura-
tion within the first 30 min for MySQL and 45 min for Postgres,
whereas iTuned takes 60—120 min to generate configurations that
provide any major improvement for these systems. The second
observation is that OtterTune generates a better configuration than
iTuned for this workload. In the case of MySQL, Fig. 6a shows that
OtterTune’s best configuration achieves 85% lower latency than
iTuned. With Postgres, it is 75% lower. Both approaches choose
similar values for some individual knobs, but iTuned is unable to
find the proper balance for multiple knobs that OtterTune does. Ot-
terTune does a better job at balancing these knobs because its GP
models have a better understanding of the configuration space since
they were trained with more data.
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Wikipedia: We next compare the two tuning approaches on
MySQL and Postgres using a more complex workload. Like with
TPC-C, the results in Fig. 7 show that OtterTune has the same re-
duction in the transaction latency over the default configuration
within the first 15 min of the Wikipedia benchmark. Postgres has
the similar gradual reduction in the latency over a 100 min period.
We found that again iTuned failed to generate a good configuration
for the most important knobs at the beginning of its tuning session
because it had to populate its initialization set. In total, OtterTune
is able to achieve lower latency for both DBMSs.

TPC-H: In this last experiment, we compare the performance of
the configurations generated by the two tuning tools for two TPC-H
workload mixtures running on Vector. Fig. 8 show that once again
OtterTune produces better configurations than iTuned, but that the
difference is less pronounced than in the OLTP workloads. The
reason is that Vector is less permissive on what values the tuning
tools are allowed to set for its knobs. For example, it only lets
the DBA set reasonable values for its buffer pool size, otherwise it
will report an error and refuse to start. Compare this to the other
DBMSs that we evaluate where the DBA can set these key knobs
to almost anything. Thus, tuning Vector is a simpler optimization
task than tuning MySQL or Postgres since the space of possible
configurations is smaller.

7.5 Execution Time Breakdown

To better understand what happens to OtterTune when comput-
ing a new configuration at the end of an observation period, we
instrumented its tuning manager to record the amount of time that
it spends in the different parts of its tuning algorithm from Sect. 6.
We used TPC-C for MySQL and Postgres, and TPC-H for Vector.
The four categories of the execution time are as follows:

o Workload Execution: The time that it takes for the DBMS to
execute the workload in order to collect new metric data.

o Prep & Reload Config: The time that OtterTune’s controller
takes to install the next configuration and prepare the DBMS
for the next observation period (e.g., restarting if necessary).

e Workload Mapping: The time that it takes for OtterTune’s
dynamic mapping scheme to identify the most similar work-
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Figure 9: Execution Time Breakdown — The average amount of time that
OtterTune spends in the parts of the system during an observation period.

load for the current target from its repository. This corre-
sponds to Step #1 from Sect. 6.1.

o Config Generation: The time that OtterTune’s tuning man-
ager takes to compute the next configuration for the target
DBMS. This includes the gradient descent search and the GP
model computation. This is Step #2 from Sect. 6.2.

The results in Fig. 9 show the breakdown of the average times
that OtterTune spends during a tuning session. The workload ex-
ecution time is the largest portion of OtterTune’s total time for
MySQL and Postgres. This is expected since both of these DBMSs
execute the target workload for the 5 min observation period. In
contrast, Vector executes a sequence of TPC-H queries that take an
average of 5 sec to finish. These results show that it takes Otter-
Tune’s controller 62 sec to restart MySQL for each new configu-
ration, whereas Postgres and Vector take an average of 3 min and
6.5 min to restart, respectively. Postgres’ longer preparation time
is a result of running the vacuum command between observation
periods to reclaim any storage that is occupied by expired tuples.
For Vector, the preparation time is longer because all data must be
unloaded and then reloaded into memory each time the DBMS is
restarted. All three DBMSs take between 30-40 sec and 5-15 sec
to finish the workload mapping and configuration recommendation
steps, respectively. This is because there is approximately the same
amount of data available in OtterTune’s repository for each of the
workloads that are used to train the models in these steps.

7.6 Efficacy Comparison

In our last experiment, we compare the performance of MySQL
and Postgres when using the best configuration selected by Otter-
Tune versus ones selected by human DBAs and open-source tuning
advisor tools."* We also compare OtterTune’s configurations with
those created by a cloud database-as-a-service (DBaaS) provider
that are customized for MySQL and Postgres running on the same
EC2 instance type as the rest of the experiments. We provide the
configurations for these experiments in Appendix B.

Each DBA was provided with the same EC2 setup used in all of
our experiments. They were allowed to tune any knobs they wanted
but were not allowed to modify things external to the DBMS (e.g.,

14We were unable to obtain a similar tuning tool for Vector in this experiment.



OS kernel parameters). On the client instance, we provided them
with a script to execute the workload for the 5 min observation
period and a general log full of previously executed queries for that
workload. The DBAs were permitted to restart the DBMS and/or
the workload as many times as they wanted.

For the DBaaS, we use the configurations generated for Ama-
zon RDS. We use the same instance type and DBMS version as
the other deployments in these experiments. We initially executed
the workloads on the RDS-managed DBMSs, but found that this
did not provide a fair comparison because Amazon does not allow
you to disable the replication settings (which causes worse perfor-
mance). To overcome this, we extracted the DBMS configurations
from the RDS instances and evaluated them on the same EC2 setup
as our other experiments. We disable the knobs that control the
replication settings to be consistent with our other experiments.

MySQL: Our first DBA is the premiere MySQL tuning and op-
timization expert from Lithuania with over 15 years of experience
and also works at a well-known Internet company. They finished
tuning in under 20 min and modified a total of eight knobs.

The MySQL tuning tool (MySQLTuner [2]) examines the same
kind of DBMS metrics that OtterTune collects and uses static heuris-
tics to recommend knob configurations. It uses an iterative ap-
proach: we execute the workload and then run the tuning script.
The script emits suggestions instead of exact settings (e.g., set the
buffer pool size to be at least 2 GB). Thus, we set each knob to
its recommended lower bound in the configuration file, restarted
the DBMS, and then re-executed the workload. We repeated this
until the script stopped recommending settings to further improve
the configuration. This process took 45 min (i.e., eight iterations)
before it ran out of suggestions, and modified five knobs.

Fig. 10 shows that MySQL achieves approximately 35% better
throughput and 60% better latency when using the best configura-
tion generated by OtterTune versus the one generated by the tun-
ing script for TPC-C. We see that the tuning script’s configuration
provides the worst performance of all of the (non-default) config-
urations. The reason is that the tuning script only modifies one of
the four most impactful knobs, namely, the size of the buffer pool.
The other knobs that the tuning script modifies are the number of
independent buffer pools and the query cache settings. We found,
however, that these knobs did not have a measurable effect. These
results are consistent with our findings in Sect. 7.3 that show how
most of the performance improvement for MySQL comes from tun-
ing the top four knobs.

Both the latency and the throughput measurements in Fig. 10
show that MySQL achieves ~22% better throughput and ~57%
better latency when using OtterTune’s configuration compared to
RDS. RDS modified three out of the four most impactful knobs:
the size of the buffer pool, the size of the log file, and the method
used to flush data to disk. Still, we see that the performance of the
RDS configuration is only marginally better than that of the tuning
script. An interesting finding is that RDS actually decreases the
size of the log file (and other files) to be smaller than MySQL’s de-
fault setting. We expect that these settings were chosen to support
instances deployed on variable-sized EBS storage volumes, but we
have not found documentation supporting this.

OtterTune generates a configuration that is almost as good as the
DBA. The DBA configured the same three out of four top-ranking
knobs as RDS. We see that OtterTune, the DBA, and RDS update
the knob that determines how data is flushed to disk to be the same
option. This knob’s default setting uses the fsync system call to
flush all data to disk. But the setting chosen by OtterTune, the
DBA, and RDS is better for this knob because it avoids double
buffering when reading data by bypassing the OS cache. Both the
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DBA and OtterTune chose similar sizes for the buffer pool and log
file. The DBA modified other settings, like disabling MySQL’s
monitoring tools, but they also modified knobs that affect whether
MySQL ensures that all transactions are fully durable at commit
time. As discussed in Sect. 3.2, OtterTune is forbidden from tuning
such knobs.

Postgres: For the next DBMS, our human expert was the lead
DBA for a mid-western judicial court system in the United States.
They have over six years of experience and have tuned over 100
complex production database deployments. They completed their
tuning task in 20 min and modified a total of 14 knobs.

The Postgres tuning tool (PGTune [4]) is less sophisticated than
the MySQL one in that it only uses pre-programmed rules that gen-
erate knob configurations for the target hardware and does not con-
sider the DBMS’s metrics. We found, however, that using the Post-
gres tuning tool was easier because it was based on the amount of
RAM available in the system and some high-level characteristics
about the target workload (e.g., OLTP vs. OLAP). It took 30 sec-
onds to generate the configuration and we never had to restart the
DBMS. It changed a total of eight knobs.

The latency measurements in Fig. 11b show that the configura-
tions generated by OtterTune, the tuning tool, the DBA, and RDS
all achieve similar improvements for TPC-C over Postgres’ de-
fault settings. This is likely because of the overhead of network
round-trips between the OLTP-Bench client and the DBMS. But the
throughput measurements in Fig. 11 show that Postgres has ~12%
higher performance with OtterTune compared to the DBA and the
tuning script, and ~32% higher performance compared to RDS.

Unlike our MySQL experiments, there is considerable overlap
between the tuning methods in terms of which knobs they selected
and the settings that they chose for them. All of the configura-
tions tune the three knobs that OtterTune finds to have the most
impact. The first of these knobs tunes the size of the buffer pool.
All configurations set the value of this knob to be between 2—8 GB.
The second knob provides a “hint” to the optimizer about the total
amount of memory available in the OS and Postgres’ buffers but
does not actually allocate any memory. The DBA and RDS select
conservative settings of 10 GB and 7 GB compared to the settings
of 18 GB and 23 GB chosen by OtterTune and the tuning script,
respectively. The latter two overprovision the amount of memory
available whereas the settings chosen by the DBA and RDS are
more accurate.

The last knob controls the maximum number of log files writ-
ten between checkpoints. Setting this knob too low triggers more
checkpoints, leading to a huge performance bottleneck. Increasing
the value of this knob improves I/O performance but also increases
the recovery time of the DBMS after a crash. The DBA, the tuning
script, and AWS set this knob to values between 16 and 64. Otter-
Tune, however, sets this knob to be 540, which is not a practical
value since recovery would take too long. The reason that Otter-
Tune chose such a high value compared to the other configurations
is a result of it using the latency as its optimization metric. This
metric captures the positive impact that minimizing the number of
checkpoints has on the latency but not the drawbacks of longer re-
covery times. We leave this problem as a goal for future work.

8. RELATED WORK

Much of the previous work on automatic database tuning focused
on choosing the best logical or physical design of a database [16,
65], such as selecting indexes [28, 17, 59], partitioning schemes [8,
38, 41, 19], or materialized views [7]. A physical design is the
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configuration of the data that determines how queries will access it,
whereas a knob configuration affects the DBMS’s internals.

Others have looked at tuning a subset of DBMS knobs that have
the most impact on performance [49, 21, 24]. Unlike physical
database design tools, configuration tools cannot use the built-in
cost models of DBMSs’ query optimizers. Such models generate
estimates based on the amount of work that the system is expected
to perform for a particular query. These estimates are intended to
compare alternative query execution strategies for a single DBMS
with a fixed execution environment [44]. As such, they are not able
to properly capture bottlenecks in the same way that the DBMS’s
metrics can when executing concurrent queries or transactions [63].

In the 2000s, IBM released the DB2 Performance Wizard tool
that asks the DBA questions about their application (e.g., whether
the workload is OLTP or OLAP) and then provides knob settings
based on their answers [34]. It uses models manually created by
DB2 engineers and thus may not accurately reflect the actual work-
load or operating environment. IBM later released a version of
DB2 with a self-tuning memory manager that uses heuristics to de-
termine how to allocate the DBMS’s memory [47, 53].

Oracle developed a similar internal monitoring system to iden-
tify bottlenecks due to misconfigurations in their DBMS’s internal
components [22, 33]. It then provides the DBA with actionable
recommendations to alleviate them. Like IBM’s tool, the Oracle
system employs heuristics based on performance measurements to
manage memory allocation and thus is not able to tune all possible
knobs. Later versions of Oracle include a SQL analyzer tool that
estimates the impact on performance from making modifications to
the DBMS, such as upgrading to a newer version or changing the
system’s configuration [62, 10]. This approach has also been used
with Microsoft’s SQL Server [37]. But for both DBMSs, using this
tool is still a manual process: the DBA provides the knob settings
that they want to change and then the tool executes experiments
with and without applying that change. The DBA then decides
what action to take based on the results that the tool reports.

More automated feedback-driven techniques have been used to
iteratively adjust DBMS configuration knobs to maximize certain
objectives [13, 24, 60]. These tools typically contain an experi-
ment “runner” that executes a workload sample or benchmark in
the DBMS to retrieve performance data. Based on this data, the
tool then applies a change to the DBMS configuration and then re-
executes that workload again to determine whether the performance
improves [61]. This continues until the DBA either halts the pro-
cess or the tool recognizes that additional performance gains from
running more experiments are unlikely.

The COMFORT tool uses this on-line feedback approach to solve
tuning issues like load control for locking [60]. It uses a technique
from control theory that can adjust a single knob up or down at a
time, but cannot uncover dependencies between multiple knobs.
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Other work for BerkeleyDB uses influence diagrams to model
probabilistic dependencies between configuration knobs [49]. This
approach uses the knobs’ conditional independences to infer ex-
pected outcomes of a particular DBMS configuration. The prob-
lem, however, is that these diagrams must be created manually by
a domain expert and thus they only tune four knobs at a time.

The DBSherlock tool helps a DBA diagnose problems by com-
paring regions in the DBMS’s performance time-series data where
the system was slow with regions where it behaved normally [63].

The iTuned tool is the closest work that is related to our method [24].

It continuously measures the impact of changing certain knobs on
the system’s performance using a “cycle stealing” strategy that makes
minor changes to the DBMS configuration and then executes a
workload sample whenever the DBMS is not fully utilized. It uses
a Gaussian Process model to explore the solution space and con-
verge to a near-optimal configuration. The initial model is trained
from data gathered from executing a set of experiments that were
selected using an adaptive sampling technique. The iTuned tool
can take up to seven hours to tune the DBMSs, whereas our results
in Sect. 7.4 show that OtterTune achieves this in less than 60 min.

An alternative technique is to use linear and quadratic regression
models to map knobs to performance [58]. Others have looked at
using hill-climbing techniques for this problem [61]. This work,
however, does not address how to retrain these models using new
data or how to guide the experiment process to learn about new
areas in the solution space.

All of these feedback-driven tools must determine which config-
uration knobs are likely to improve the DBMS’s performance and
their value ranges. This allows the tool to execute the minimum
number of experiments that provide an approximate sampling of
the entire search space [24]. The SARD tool generates a relative
ranking of a DBMS’s knobs based on their impact on performance
using a technique called the Plackett-Burman design [21]. Others
have developed statistical techniques for inferring from these ex-
periments how to discretize the potential values for knobs [49].

9. CONCLUSION

We presented a technique for tuning DBMS knob configurations
by reusing training data gathered from previous tuning sessions.
Our approach uses a combination of supervised and unsupervised
machine learning methods to (1) select the most impactful knobs,
(2) map previously unseen database workloads to known work-
loads, and (3) recommend knob settings. Our results show that
OtterTune produces configurations that achieve up to 94% lower la-
tency compared to their default settings or configurations generated
by other tuning advisors. We also show that OtterTune generates
configurations in under 60 min that are comparable to ones created
by human experts.
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APPENDIX
A. IDENTIFYING IMPORTANT KNOBS

This section extends the discussion of the Lasso path algorithm
presented in Sect. 5.1. The results in Figs. 12 to 14 show the Lasso
paths computed for the 99th percentile latency for MySQL, Post-
gres, and Vector, respectively. For clarity, we show only the eight
most impactful features in these results. Each curve represents a
different feature of the regression model’s weight vector. These
figures show the paths of these weights by plotting them as a func-
tion of the L; penalty. The order in which the weights appear in
the regression indicates how much of an impact the corresponding
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knobs (or function of knobs) have on the 99th percentile latency.
OtterTune uses this ordering to rank the knobs from most to least

important.

As described in Sect. 5.2, OtterTune includes second-degree poly-
nomial features to improve the accuracy of its regression models.
The two types of features that result from the second-order poly-
nomial expansion of the linear features are products of either two
distinct knobs or the same knob. The first type are useful for detect-
ing pairs of knobs that are non-independent. For example, Fig. 13
shows that a dependency exists between two of the knobs that con-
trol aspects of the query optimizer: default_statistics_target
and effective_cache_size.

The second type reveals whether a quadratic relationship exists
between a knob and the target metric. When we say that a relation-
ship is “quadratic”, we do not mean that it is an exact quadratic, but
rather that it exhibits some nonlinearity. If the linear and quadratic
terms for a knob both appear in the regression around the same
time, then its relationship with the target metric is likely quadratic.
But if the linear term for a knob appears in the regression much
earlier than the quadratic term then the relationship is nearly linear.
One knob that the DBMSs have in common is the size of the buffer
pool. Figs. 12 to 14 show that, as expected, the relationship be-
tween the buffer pool size knob and the latency is quadratic for all
of the DBMSs (the quadratic term for Postgres’ knob is not shown
but is the 13th to enter the regression).

B. EFFICACY COMPARISON

This section is an extension of Sect. 7.6, where we provide the
DBMS configurations generated by OtterTune, the DBA, the tuning
script, and Amazon AWS that were used in the evaluation. Tables 1
and 2 show the configurations for the TPC-C workload running on
MySQL and Postgres, respectively. For the configurations gener-
ated by OtterTune, the tables display only the 10 most impactful
knobs, which are ordered by importance. For all other configura-
tions, the knobs are presented in lexicographical order.

C. FUTURE WORK

There are important problems that remain unsolved in this line
of work. Foremost is that we want to enable OtterTune to automat-
ically detect the hardware capabilities of the target DBMS. This is
tricky because it must be able to do so with only remote access to
the DBMS’s host machine. This restriction is necessary because
of the prevalence of database-as-a-service deployments where such
access is not available. One approach might be for OtterTune to
execute a microbenchmark before it begins the workload mapping
step that would stress different resources in the DBMS separately.

Another problem that we plan to explore is how to adapt the auto-
tuning techniques described in this paper to optimize the physical
design of a database. In particular, we are interested in leverag-
ing data from previous tunings to speed up the process of tuning
a new application. Similar to tuning DBMS configurations, tun-
ing the physical design is becoming increasingly complex to the
point where techniques that are able to reduce the complexity of
the problem are becoming more and more necessary.
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(a) OtterTune Configuration (Postgres) (a) OtterTune Configuration (MySQL)

shared_buffers 4G innodb_buffer_pool_size 8.8G
checkpoint_segments 540 innodb_thread_sleep_delay 0
effective_cache_size 18G innodb_flush_method O_DIRECT
bgwriter_lru_maxpages 1000 innodb_log_file_size 1.3G
bgwriter_delay 213 ms innodb_thread_concurrency 0
checkpoint_completion_target 0.8 innodb_max_dirty_pages_pct_lwm 0
deadlock_timeout 6s innodb_read_ahead_threshold 56
default_statistics_target 78 innodb_adaptive_max_sleep_delay 150000
effective_io_concurrency 3 innodb_buffer_pool_instances 8
checkpoint_timeout 1h thread_cache_size 9
(b) DBA Configuration (Postgres) (b) DBA Configuration (MySQL)

bgwriter_lru_maxpages 1000 innodb_buffer_pool_dump_at_shutdown 1
bgwriter_lru_multiplier 4 innodb_buffer_pool_load_at_startup 1
checkpoint_completion_target 0.9 innodb_buffer_pool_size 12G
checkpoint_segments 32 innodb_doublewrite 0
checkpoint_timeout 60 min innodb_flush_log_at_trx_commit 0
cpu_tuple_cost 0.03 innodb_flush_method O_DIRECT
effective_cache_size 10G innodb_log_file_size 1G
from_collapse_limit 20 skip_performance_schema -
r3| gi;;zz;:}izs“z;iim;:m 12((}) (c) Tuning Script Conﬁ.guration (MySQL)

- - innodb_buffer_pool_instances 4
random_page_cost 1 innodb_buffer_pool_size 4G
shared_buffers 2G query_cache_limit 2G
wal_buffers 2M query_cache_size 2G
work_mem 150 M query_cache_type 1
(C?elc‘;““ﬁ tsccr“r’nt lcg’t“iﬁgn“rt‘;‘:‘"e‘t(l) ostgres) o5 (@ Amazon RDS Configuration (MySQL)
checkzgint_sZgrzentso -targ 64 innodb_buffer_pool_size 109G
default_statistics_target 100 z:gggg_ii??ﬂ:t';?:e O_DISZCJI
effective_cache_size 233G key bu;fer_size_ 16 M
maintenance_work_mem 1.9G T T
shared_buffers 7.8 G max_blnlog_sge 128 M

- read_buffer_size 256 k
wal_buffers 16M read_rnd_buffer_size 512M
work_mem 4O0M table_open_cache_instances 16
(d) Amazon RDS Configuration (Postgres) thread_cache_size 20
checkpoint_completion_target 0.9
checkpoint_segments 16 Table 1: DBMS Configurations (MySQL) — The best configurations
effective cache size 72G for the TPC-C workload running on MySQL generated by (a) OtterTune,
maintenan;e wor; mem U3 M (b) the DBA, (c) the tuning script, and (d) Amazon RDS.
max_stack_depth 6 M
shared_buffers 36G
wal_buffers 16 M

Table 2: DBMS Configurations (Postgres) — The best configurations
for the TPC-C workload running on Postgres generated by (a) OtterTune,
(b) the DBA, (c) the tuning script, and (d) Amazon RDS.
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