
A Language for Specifying Type
Contracts in Erlang and its

Interaction with Success Typings
Miguel Jiménez1, Tobias Lindahl1,2, Konstantinos Sagonas3,1

1 Department of Information Technology, Uppsala University, Sweden
2 Ericsson AB, Sweden

3 School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

Contracts and Success Typings – p.1

Erlang and Types
Types are anonymous but important in Erlang

Erlang is strongly typed
The compiler uses types for optimizations

Pattern matching, removing type checks, ...
Types have gained importance for users

Used as documentation
Dialyzer uses types for defect detection
Refactoring tools can use (are using?) type
information

We believe there is more to gain by exposing
types to the programmer!

Contracts and Success Typings – p.2

Types for Documentation
Type signatures are used in the Erlang documentation
Projects use type signatures in comments (edoc, or
home-brewed)
Comments have a tendancy to rot if not checked
Tools need to parse comments to get the information

Define a contract/type language that:
1. Has a defined syntax and meaning
2. Is parsed and stored in the beam file

Contracts and Success Typings – p.3

An Informal Specification for append
Consider the following implementation of append

%% @spec append([any()],[any()])->[any()]
append([], List) -> List;
append([H|T], List) -> [H|append(T, List)].

Two interpretations of the type signature:
1. Append can only take two lists and return a list.

FALSE

2. Append will return a list if given two lists, otherwise the
behaviour is undefined.

LIMITED USE FOR ANALYSES

Contracts and Success Typings – p.4

An Informal Specification for append
Consider the following implementation of append

%% @spec append([any()],[any()])->[any()]
append([], List) -> List;
append([H|T], List) -> [H|append(T, List)].

Two interpretations of the type signature:
1. Append can only take two lists and return a list. FALSE

2. Append will return a list if given two lists, otherwise the
behaviour is undefined.

LIMITED USE FOR ANALYSES

Contracts and Success Typings – p.4

An Informal Specification for append
Consider the following implementation of append

%% @spec append([any()],[any()])->[any()]
append([], List) -> List;
append([H|T], List) -> [H|append(T, List)].

Two interpretations of the type signature:
1. Append can only take two lists and return a list. FALSE

2. Append will return a list if given two lists, otherwise the
behaviour is undefined. LIMITED USE FOR ANALYSES

Contracts and Success Typings – p.4

A Slightly More Formal Specification
... that might not be so different syntactically

-spec(append/2::([any()],[any()])->[any()]).
append([], List) -> List;
append([H|T], List) -> [H|append(T, List)].

The interpretation of the new specification:
Append will return a list if given two lists and

should not be used in any other way
Differences:

The specification is a contract
The specification is an attribute rather than a comment

Contracts and Success Typings – p.5

Some Benefits of Contracts
Static analysis

Dialyzer
SOMETOOLNAME

Testing
Instrument the code to log contract violations
Test case generation

Documentation
The meaning of specifications become more clear
Edoc

...

Contracts and Success Typings – p.6

The Type Domain
All Erlang terms belong to the universal type any()
However, some operations are only defined on
subtypes of this type
Basic types

integer()
atom()
pid()
...

Type unions
atom() | tuple()
integer() | float() (syntactic sugar: number()

Contracts and Success Typings – p.7

The Type Domain (cont)
Structured types

Lists: [atom()] , [integer()]
Tuples: {atom(), integer()}
Funs: fun((tuple()) -> integer())

Some basic types have more precision (subtypes)
Atoms: bool(), ’foo’ , ’bar’
Integers: pos_integer(), byte(), 1..42, 42
Tuples: {’ok’, integer()} | {’error’, string()}
Lists: [] , [atom(),...]

Contracts and Success Typings – p.8

Basic Contracts
A contract for a function is given using the attribute -spec

-spec(length/1::([any()])->non neg integer()).

Optionally, the module can be given

-spec(my lists:length/1::([any()])->non neg integer()).

Also optionally, the name of arguments can be given

-spec(length/1::(MyList::[any()])->non neg integer()).

Contracts and Success Typings – p.9

Overloaded and Parametric Contracts
When a function have an overloaded behavior, this can be
specified by using multiple clauses.

-spec(inc/1::(integer())->integer();
(float())->float()).

Types can be parametrized with type variables. Type
variables have the same syntax as Erlang variables.

-spec(hd/1::([X,...])->X).

It is also possible to put constraints on type variables
-spec(my hd/1::([X,...])->X when is atom(X)).

Contracts and Success Typings – p.10

Type Declarations
Type aliases can be declared using the attribute -type

-type(int list() :: [integer()]).

Type aliases can also be recursive
-type(tree(X) :: {X,tree(X),tree(X)} | nil).

Types can also be declared in record declarations
-record(foo, {bar::integer(),

baz::atom()}).

Records can be used as types in contracts

-spec(update bar :: (#foo{},integer())->#foo{}).

Contracts and Success Typings – p.11

Dialyzer and Contracts
Dialyzer - A Discrepancy Analyzer of Erlang Programs.

Finds software defects (discrepancies) in Erlang code.
Warnings are sound (never wrong).
Dialyzer’s analysis is based on Success Typings
Contracts can help refine the information.
Dialyzer can find if a contract for a function describes
the implementation.

Contracts and Success Typings – p.12

Success Typings
Definition:

A success Typing of a function, f , is a type
signature, (~α) → β, such that whenever an

application f(~p) reduces to a value v, then ~p ∈ ~α

and v ∈ β.
Intuition:

If the arguments of an application are in the
function domain, the application might succeed,
but if they are not the application will definitely
fail.

Contracts and Success Typings – p.13

A Success Typing for append
Using success typings we get a description that is closer to
the truth in Erlang

-spec(append/2::([any()],any())->any())
append([], List) -> List;
append([H|T], List) -> [H|append(T, List)].

Success Typings are sound for failure

Contracts and Success Typings – p.14

A Success Typing for append
Using success typings we get a description that is closer to
the truth in Erlang

-spec(append/2::([any()],any())->any())
append([], List) -> List;
append([H|T], List) -> [H|append(T, List)].

Success Typings are sound for failure

Contracts and Success Typings – p.14

Function Domains

Static type domain
Dynamic type domain
Success typing domain

Contracts and Success Typings – p.15

A Contract for append
We wanted to specify that append can only be used with
lists.

-spec(append/2::([any()],[any()])->[any()])
append([], List) -> List;
append([H|T], List) -> [H|append(T, List)].

This specification is not a success typing

Contracts and Success Typings – p.16

Refined Success Typings
Definition:

Let f be a function with success typing (~α) → β.
A refined success typing for f is a typing on the
form, (~α′) → β′, such that
1. ~α′ ⊆ ~α and β′ ⊆ β.
2. For all ~p ∈ ~α′ for which the application f(~p)

reduces to a value, f(~p) ∈ β ′.
Intuition:

A refined success typing is also a success typ-
ing, but for one reason or another, we have con-
strained the domain and can thus possibly con-
strain the range as well.

Contracts and Success Typings – p.17

Contracts as Success Typings
Our contract is a refined success typing for append

%% Success Typing: ([any()],any())->any()
-spec(append/2 :: ([any()],[any()])->[any()]).
append([], List) -> List;
append([H|T], List) -> [H|append(T, List)].

Basic intuition about contract violations
C is an instance of ST OK

ST is an instance of C OK

C and ST are overlapping OK

C and ST are not overlapping NOT OK

Contracts and Success Typings – p.18

Contracts as Success Typings
Our contract is a refined success typing for append

%% Success Typing: ([any()],any())->any()
-spec(append/2 :: ([any()],[any()])->[any()]).
append([], List) -> List;
append([H|T], List) -> [H|append(T, List)].

Basic intuition about contract violations
C is an instance of ST OK

ST is an instance of C OK

C and ST are overlapping OK

C and ST are not overlapping NOT OK

Contracts and Success Typings – p.18

Checking Contracts with Dialyzer
Some observations:

Dialyzer warnings should be sound. Only warn when:
The contract is not possible for the function
The arguments at call sites violates the contract

However, making mistakes is easy
Dialyzer can warn about other contract
discrepancies if asked to.

Dialyzer is not a type checker
You only know that Dialyzer cannot find a violation.

Contracts and Success Typings – p.19

Concluding Remarks
Contracts

Expose intentions with code
Can be checked
Serves as documentation

Current and future work
Erlang Extension Proposal (EEP)
Contracts for Erlang/OTP libraries
Tools:

TypEr
Dialyzer
Dynamic contract checking

Contracts and Success Typings – p.20

	Erlang and Types
	Types for Documentation
	An Informal Specification for append
	A Slightly More Formal Specification
	Some Benefits of Contracts
	The Type Domain
	The Type Domain (cont)
	Basic Contracts
	Overloaded and Parametric Contracts
	Type Declarations
	Dialyzer and Contracts
	Success Typings
	A Success Typing for append
	Function Domains
	A Contract for append
	Refined Success Typings
	Contracts as Success Typings
	Checking Contracts with Dialyzer
	Concluding Remarks

