o N

A Language for Specifying Type
Contracts in Erlang and its
Interaction with Success Typings

Miguel Jiménezl, Tobias Lindahl1’2, Konstantinos Sagonas3’1

1 Department of Information Technology, Uppsala University, Sweden
2 Ericsson AB, Sweden
3 School of Electrical and Computer Engineering,

National Technical University of Athens, Greece

Contracts and Success Typings — p.1

Erlang and Types

-

Types are anonymous but important in Erlang
s Erlang is strongly typed
s The compiler uses types for optimizations
s Pattern matching, removing type checks, ...
Types have gained importance for users
» Used as documentation
s Dialyzer uses types for defect detection

» Refactoring tools can use (are using?) type
information

We believe there is more to gain by exposing
types to the programmer!

Contracts and Success Typings — p.2

Types for Documentation

-

-

Type signatures are used in the Erlang documentation

Projects use type signatures in comments (edoc, or
home-brewed)

Comments have a tendancy to rot if not checked
Tools need to parse comments to get the information

Define a contract/type language that:
1. Has a defined syntax and meaning

2. Is parsed and stored in the beam file

|

Contracts and Success Typings — p.3

An Informal Specification for append

-

-

Consider the following implementation of append

%% @spec append([any()],[any()])->[any()]
append([], List) —> List;
append([H|T], List) —-> [H|append(T, List)].

Two interpretations of the type signature:
1. Append can only take two lists and return a list.

2. Append will return a list if given two lists, otherwise the
behaviour is undefined.

|

Contracts and Success Typings — p.4

An Informal Specification for append

-

-

Consider the following implementation of append

%% @spec append([any()],[any()])->[any()]
append([], List) —> List;
append([H|T], List) —-> [H|append(T, List)].

Two interpretations of the type signature:
1. Append can only take two lists and return a list. FALSE

2. Append will return a list if given two lists, otherwise the
behaviour is undefined.

|

Contracts and Success Typings — p.4

An Informal Specification for append

-

-

Consider the following implementation of append

%% @spec append([any()],[any()])->[any()]
append([], List) —> List;
append([H|T], List) —-> [H|append(T, List)].

Two interpretations of the type signature:
1. Append can only take two lists and return a list. FALSE

2. Append will return a list if given two lists, otherwise the
behaviour is undefined. LIMITED USE FOR ANALYSES

|

Contracts and Success Typings — p.4

A Slightly More Formal Specification
- -

.. that might not be so different syntactically

—spec(append/2::([any()],lany()])->[any()]).
append([], List) —> List;
append([H|T], List) —-> [H|append(T, List)].

The interpretation of the new specification:

Append will return a list if given two lists and
should not be used in any other way

Differences:
The specification is a contract
The specification is an attribute rather than a comment

|

Contracts and Success Typings — p.5

Some Benefits of Contracts

-

o Static analysis
s Dialyzer
s SOMETOOLNAME

Testing
s Instrument the code to log contract violations
s Test case generation

#® Documentation
s The meaning of specifications become more clear
s Edoc

|

Contracts and Success Typings — p.6

The Type Domain

-

-

o All Erlang terms belong to the universal type any()

#® However, some operations are only defined on
subtypes of this type
Basic types
s Integer()
s atom()
s pid()
o ...
Type unions
s atom() [tuple()
s Integer() | float() (syntactic sugar: number()

|

Contracts and Success Typings — p.7

The Type Domain (cont)

-

Structured types
s Lists: [atom()], [integer()]
s Tuples: fatom(), integer()}
s Funs: fun((tuple()) -> integer())

#® Some basic types have more precision (subtypes)
s Atoms: bool(), ‘foo’, ‘bar’
s Integers: pos integer(), byte(), 1..42, 42
s Tuples: {'ok’, integer()} | {’error’, string()}
s Lists: [], [atom(),...]

Contracts and Success Typings — p.8

Basic Contracts

-

A contract for a function is given using the attribute —spec

—spec(length/l::([any()])—->nonneg_integer()).

Optionally, the module can be given

—spec(my_lists:length/l::([any()])->nonneg_integer()).

Also optionally, the name of arguments can be given

—spec(length/1l:: (MyList::[any()])—->nonneg_integer()).

|

Contracts and Success Typings — p.9

Overloaded and Parametric Contracts

=

B

When a function have an overloaded behavior, this can be
specified by using multiple clauses.

—spec(inc/1l::(integer())—->integer();
(float())—-—>float()).

Types can be parametrized with type variables. Type
variables have the same syntax as Erlang variables.

—spec(hd/1::([X,...])—>X).

It is also possible to put constraints on type variables

—spec(my_hd/1::([X,...])->X when is_atom(X)).

|

Contracts and Success Typings — p.10

Type Declarations

-

Type aliases can be declared using the attribute -type

—type(int_list() :: [1nteger()]).

Type aliases can also be recursive

—type(tree(X) :: {X,tree(X),tree(X)} | nil).

Types can also be declared in record declarations

~record(foo, {bar::integer(),
baz::atom()}).

Records can be used as types in contracts

—spec(update bar :: (#foo{},integer())->#foo{}).

|

Contracts and Success Typings — p.11

-

o

© o o @

Dialyzer - A Discrepancy Analyzer of Erlang Programs.

Dialyzer and Contracts

-

Finds software defects (discrepancies) in Erlang code.
Warnings are sound (never wrong).

Dialyzer’s analysis is based on Success Typings
Contracts can help refine the information.

Dialyzer can find if a contract for a function describes
the implementation.

|

Contracts and Success Typings — p.12

Success Typings

-

Definition:

A success Typing of a function, f, is a type
signature, (&) — (, such that whenever an
application f(p) reduces to a value v, thenp e &
and v € (.

Intuition:

It the arguments of an application are in the
function domain, the application might succeed,
but if they are not the application will definitely
fail.

|

Contracts and Success Typings — p.13

A Success Typing for append

-

-

Using success typings we get a description that is closer to
the truth in Erlang

—spec(append/2::([any()],any())—>any())
append([], List) —> List;
append([H|T], List) —-> [H|append(T, List)].

|

Contracts and Success Typings — p.14

A Success Typing for append

-

-

Using success typings we get a description that is closer to
the truth in Erlang

—spec(append/2::([any()],any())—>any())
append([], List) —> List;
append([H|T], List) —-> [H|append(T, List)].

Success Typings are sound for failure

|

Contracts and Success Typings — p.14

Function Domains

Static type domain

Dynamic type domain

|

Contracts and Success Typings — p.15

A Contract for append

-

-

We wanted to specify that append can only be used with
lists.

—spec(append/2::([any()],lany()])->[any()])
append([], List) —> List;
append([H|T], List) —-> [H|append(T, List)].

This specification is not a success typing

|

Contracts and Success Typings — p.16

Refined Success Typings

-

Definition:
Let f be a function with success typing (&) — 5.
A refined success typing for f is a typing on the
form, (&') — [/, such that

1. & Caand g Cg.

2. For all p € & for which the application f(p)
reduces to a value, f(p) € 7.

Intuition:

A refined success typing is also a success typ-
Ing, but for one reason or another, we have con-
strained the domain and can thus possibly con-
strain the range as well.

|

Contracts and Success Typings — p.17

Contracts as Success Typings

o N

Our contract is a refined success typing for append

$% Success Typing: ([any()],any())->any()
—spec(append/2 :: (lany()],lany()])—>[any()]).
append([], List) —-> List;

append([H|T], List) —-> [H|append(T, List)].

|

Contracts and Success Typings — p.18

Contracts as Success Typings

-

Our contract is a refined success typing for append

$% Success Typing: ([any()],any())->any()
—spec(append/2 :: (lany()],lany()])—>[any()]).
append([], List) —-> List;

append([H|T], List) —-> [H|append(T, List)].

Basic intuition about contract violations

Cis aninstance of ST

ST is aninstance of C

o C and ST are overlapping

® C and ST are not overlapping NOT OK

|

Contracts and Success Typings — p.18

Checking Contracts with Dialyzer

-

#® Dia

»

Some observations:

-

yzer warnings should be sound. Only warn when:

The contract is not possible for the function

o

"'he arguments at call sites violates the contract

However, making mistakes is easy

s Dialyzer can warn about other contract
discrepancies if asked to.

Dialyzer is not a type checker
s You only know that Dialyzer cannot find a violation.

|

Contracts and Success Typings — p.19

Concluding Remarks
fCon’[rac’[s
Expose intentions with code
Can be checked
Serves as documentation
Current and future work
o Erlang Extension Proposal (EEP)
o Contracts for Erlang/OTP libraries

Tools:
s TypEr
s Dialyzer
s Dynamic contract checking

|

Contracts and Success Typings — p.20

	Erlang and Types
	Types for Documentation
	An Informal Specification for append
	A Slightly More Formal Specification
	Some Benefits of Contracts
	The Type Domain
	The Type Domain (cont)
	Basic Contracts
	Overloaded and Parametric Contracts
	Type Declarations
	Dialyzer and Contracts
	Success Typings
	A Success Typing for append
	Function Domains
	A Contract for append
	Refined Success Typings
	Contracts as Success Typings
	Checking Contracts with Dialyzer
	Concluding Remarks

