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Salvador Dali
“Gala Contemplating the Mediterranean Sea, 
which at 30 meters becomes the portrait 
of Abraham Lincoln”, 1976







A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.



Jean Baptiste Joseph Fourier (1768-1830)
had crazy idea (1807):

Any univariate function can 
be rewritten as a weighted 
sum of sines and cosines of 
different frequencies. 

Don’t believe it?  
• Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

• Not translated into 
English until 1878!

But it’s (mostly) true!
• called Fourier Series
• there are some subtle 

restrictions

...the manner in which the author arrives at these 

equations is not exempt of difficulties and...his 

analysis to integrate them still leaves something to 

be desired on the score of generality and even 

rigour.

Laplace

Lagrange
Legendre



A sum of sines
Our building block:

Add enough of them to get 
any signal f(x) you want!

How many degrees of 
freedom?

What does each control?

Which one encodes the 
coarse vs. fine structure of 
the signal?
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Fourier Transform
We want to understand the frequency ω of our signal.  So, 
let’s reparametrize the signal by ω instead of x:
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f(x) F(ωωωω)Fourier 
Transform

F(ωωωω) f(x)Inverse Fourier 
Transform

For every ω from 0 to inf, F(ωωωω) holds the amplitude A 
and phase φ of the corresponding sine  

• How can F hold both?  Complex number trick!
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We can always go back:



Time and Frequency

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)



Time and Frequency

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)
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Frequency Spectra

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)

= +



Frequency Spectra
Usually, frequency is more interesting than the phase
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Frequency Spectra



Extension to 2D

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));



Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



Signals can be composed

+ =

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Man-made Scene



Can change spectrum, then reconstruct



Low and High Pass filtering



The Convolution Theorem
The greatest thing since sliced (banana) bread!

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

• The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two 
inverse Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!
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2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|



Why does the Gaussian give a nice smooth 

image, but the square filter give edgy artifacts?

Gaussian Box filter

Filtering



Gaussian



Box Filter



Fourier Transform pairs



Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:



Edges in images



What does blurring take away?

original



What does blurring take away?

smoothed (5x5 Gaussian)



High-Pass filter

smoothed – original



Band-pass filtering

Laplacian Pyramid (subband images)
Created from Gaussian pyramid by subtraction

Gaussian Pyramid (low-pass images)



Laplacian Pyramid

How can we reconstruct (collapse) this 
pyramid into the original image?

Need this!

Original
image



Why Laplacian?

Laplacian of Gaussian

Gaussian

delta function



Project 1g: Hybrid Images

http://www.cs.illinois.edu/class/fa10/cs498dwh/projects/hybrid/ComputationalPhotography_ProjectHybrid.html

Gaussian Filter!

Laplacian Filter!

Project Instructions: 

A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

Gaussianunit impulse Laplacian of Gaussian



Early processing in humans filters for various orientations and scales 
of frequency

Perceptual cues in the mid frequencies dominate perception
When we see an image from far away, we are effectively subsampling

it

Early Visual Processing: Multi-scale edge and blob filters

Clues from Human Perception



Frequency Domain and PerceptionFrequency Domain and Perception

CampbellCampbell--Robson contrast sensitivity curveRobson contrast sensitivity curve



Unsharp Masking

400 600 800
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Freq. Perception Depends on Color

R G B



Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)



Using DCT in JPEG 

The first coefficient B(0,0) is the DC component, 
the average intensity

The top-left coeffs represent low frequencies, 
the bottom right – high frequencies



Image compression using DCT
Quantize 

• More coarsely for high frequencies (which also tend to have smaller 
values)

• Many quantized high frequency values will be zero

Encode
• Can decode with inverse dct

Quantization table

Filter responses

Quantized values



JPEG Compression Summary

Subsample color by factor of 2
• People have bad resolution for color

Split into blocks (8x8, typically), subtract 128
For each block

a. Compute DCT coefficients for
b. Coarsely quantize

– Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG



Block size in JPEG 

Block size
• small block

– faster 
– correlation exists between neighboring pixels

• large block
– better compression in smooth regions

• It’s 8x8 in standard JPEG



JPEG compression comparison

89k 12k



Image gradient
The gradient of an image: 

The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

• how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude



Effects of noise

Consider a single row or column of the image
• Plotting intensity as a function of position gives a signal

Where is the edge?

How to compute a derivative?



Where is the edge?  

Solution:  smooth first

Look for peaks in 



Derivative theorem of convolution

This saves us one operation:



Laplacian of Gaussian

Consider  

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph



2D edge detection filters

is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian



Try this in MATLAB

g = fspecial('gaussian',15,2);
imagesc(g);  colormap(gray);

surfl(g)
gclown = conv2(clown,g,'same');

imagesc(conv2(clown,[-1 1],'same'));

imagesc(conv2(gclown,[-1 1],'same'));
dx = conv2(g,[-1 1],'same');

imagesc(conv2(clown,dx,'same'));
lg = fspecial('log',15,2);

lclown = conv2(clown,lg,'same');
imagesc(lclown)

imagesc(clown + .2*lclown)


