
 Version: 1

Functional Specification for Object
Caching Service for Java (OCS4J), 2.0

Author: Jerry Bortvedt

Project Manager: jerry.bortvedt@oracle.com

Functional Specification

 2

Table of Contents

1. Project Overview __3

2. Concepts ___4

2.1. Description __4
2.1.1. Object Types __5
2.1.2. Object Attributes ___6

2.2. Naming Convention ___9

2.3. Distributed Cache Consistency __9

3. Requirements __11

3.1. Functionality __11

3.2. Performance __11

3.3. Availability ___12

3.4. Scalability __12

3.5. System/Database Management ___12

3.6. Ease-of-Use __12

3.7. Usage Model ___12

3.8. Reliability __13

3.9. Maintainability __13

3.10. Security___13

3.11. Compatibility___13
3.11.1. Distribution/Replication __13
3.11.2. Internationalization __14

4. Client Interfaces__15

4.1. User Interface___15

4.2. Administrative Interface __21

4.3. Configuration Files ___26

 Version: 3

1. Project Overview

The Internet in its most basic form is just a series of requests and responses. A client sends a request to a
server, the server creates a response and returns it to the user. To service these requests, a server must
manage information and executable objects that fall into 3 basic categories, objects that never change, objects
that are different with every request and everything in between. Java is well equipped to handle the first two
cases but offers little help for the third. If the object never changes, create a static object when the server is
initialized. If the object is unique to every request, create a new object each time. For everything in between,
objects or information that can change and is shared across requests, between users or between processes,
there is the “Object Caching Service for Java”.

The Object Caching Service for Java (OCS4J), allows applications to share objects across requests, across
users and coordinates the life cycle of the objects across processes. This system can manage any Java object.
All objects are located by name and can be shared by all threads in a process. Creation of objects is handled
by a user defined loader object. Creations are coordinated by the caching system to avoid creating an object
unnecessarily. Objects can be invalidated explicitly by the application, by associating a “time to live” or
“idle time” with an object or if the capacity of the caching system has been reached (this is a configurable
value), objects that have not been used recently will be removed by the caching system. When an object is
removed from the memory cache by the system, if may be spooled to disk. The spooling decision is based on
the user defined attribute associated with the object. A callback method can be registered with the cache to
be called when an object is invalidated or removed from the system. Objects within the cache can be viewed
as individual objects or as a group of related objects. Objects are updated by creating a new version of the
object. This allows access to objects without requiring any read locks.

For simplicity, availability, and performance, the object cache is specific to each process. There is no
centralized control of object creation within the caching system. However, there is coordination of updates
and invalidations between processes. If an object is explicitly invalidated or update in one process, the
name and associated information is broadcast to all other instances of the cache. This allows the entire
system of processes to stay synchronized without the overhead of centralized control.

Functional Specification

 4

2. Concepts

2.1. Description
The primary purpose of the caching service is to improve server performance by managing static and non-
static java objects. The performance gain is from reducing the number of trips to the database or other
external sources of information, avoiding the cost of repeatedly recreating objects, sharing objects between
threads in a process and, when possible between processes, and efficient use of process resources.

The object caching service is designed for general application use. All objects within the cache are accessed
by name. The name can be any Java object, however the Object used must override the Object.equals and
Object.hashCode methods. A String object would typically be used. This makes it easy for various
applications within a process to share an object without having to define common global structures. The
caching service doesn’t impose a structure on objects being cached. The name, structure, type and original
source of the object are all defined by the application.

To maximize system resources, all objects within the cache are shared. However, access to cached objects is
not serialized by access locks, allowing for a high level of concurrent access. Objects managed by the cache
remain in the cache as long as they are being referenced. When an object is invalidated or updated the
invalid version of the object will remain in the cache as long as there are references to that particular version
of the object. It is thus possible to have multiple versions of an object in the cache at the same time, however,
there is never more than 1 valid version of the object. The old or invalid versions of an object are only visible
to applications that had references to the version before it was invalidated. If an object is updated a new
copy of the object is created in the cache and the old version is marked as invalid. An object implementing
the CacheEventListener interface may be associated with a cached object. When the cached object is
invalidated, the CacheEventListener.handleEvent() method is called.

Since objects are shared in the cache, they should not be modified directly. A private copy of the object
should be created, modified, then placed back into the cache using the replace method.

Objects within the cache can be declared as local or distributed. For local objects, updates and invalidations
are not propagated outside of the process. For distributed objects, the caching service provides a mechanism
for maintaining object consistency across a distributed server. This allows for both distributed update and
distributed object invalidation. If an application allows updates from multiple locations, the cache can
synchronize the updates across a distributed server. The caching service provides a mechanism for
applications to achieve various levels of consistency between objects outside the cache and their cached
copies. See the section on distributed cache consistency for more detail.

Cached objects can be invalidated explicitly by an application or automatically by the cache based on a
specified “time to live” or “idle time”. When an application explicitly invalidates an object, the invalidation
will be propagated based on the local/distributed attribute of the object. Time based invalidation only

 Version: 5

affects the local copy of the object, it is never propagated to other caches.

Valid objects remain in the cache as long as there is space available. When the cache is nearing its capacity,
unreferenced valid objects will be discarded from the cache based on their usage patterns. Memory objects
may be spooled to the disk cache rather than being discarded. Objects in the disk cache may be removed as
well to meet space restrictions, however, the disk cache is presumably much larger than the memory cache
so objects will be less likely to be purged. Invalid objects are removed from both the memory and disk cache
when their reference count reaches zero.

2.1.1. Object Types

To help applications organize objects within the cache, five general categories of objects are defined,
regions, memory objects, disk objects and group objects.

2.1.1.1. Region Object

A region object is used to define a private name space within the cache. All other objects (excluding
other regions) in the cache are managed within a region. A user may define as many regions as
necessary for an application, although generally one per application should be sufficient. All
access to the cache is based on a CacheAccess “handle” associated with a region. Region names are
user defined.

2.1.1.2. Memory Objects

Memory objects are stored in process private memory. They are typically loaded from an external
source such as a database or directory. Objects are loaded using an application supplied loader
object so the source of the object is not controlled by the caching service. Objects in the cache are
shared by all threads within a process. To update a cached object a private copy should be
obtained. Once the required changes to the object have been made, the object can be placed back into
the cache with the appropriate CacheAccess.replace call. If the cache is distributed, the update will
be propagated based on the object’s attributes.

An application can request a memory object be spooled to local disk. This is useful if the object is
large or is costly to recreate and is seldom updated. Objects on disk will tend to stay in the disk
cache longer than objects in memory as the disk cache is presumably much larger than the memory
cache. The write to disk is done asynchronously by default to limit the impact on the loading
application. An object will be written to disk either when it is removed from the memory cache by
the caching system or when it is loaded. This decision is based on the attributes associated with the
object.

2.1.1.3. Group Objects

Group objects can be created to associate other objects. This allows related objects to be
manipulated together. Any type of object can be associated within a group, (memory, disk or group),
however all members of a group must be in the same region (see section 2.2 Naming Convention). An
object can belong to only one group at a time. The attributes of a group object may apply to the
group as a whole or be inherited by the members of the group. See section 2.1.2, Object Attributes, for
details. Inherited attributes can be over ridden by explicitly setting the attributes of a particular
member. Objects in a group can be invalidated individually or as a group. Invalidating a group will

Functional Specification

 6

invalidate all non-group objects within the group. If there are other group objects within the group
the invalidation will cascade to all sub-objects. Groups can be invalidated explicitly or with a “time
to live” attribute. Explicit invalidation of groups are propagated to other caches by the group name
so it is important to group objects in the same way in all caches. There is currently no concept of a
group update. Members of a group need to be updated individually.

Group objects must be explicitly created before objects can be associated in the group. Groups are
not implicitly created. When a group is invalidated, all non-group objects within the group are
invalidated and subject to removal from the cache when the reference count is zero. The group
objects will remain valid in the cache so they are available when new objects are loaded. A group
can be removed with the destroy command. Destroying a group will destroy/invalidate all
members of the group including the group itself.

A group is typically used to associate objects that should be invalidated together or to associate
object with a common set of attributes.

2.1.1.4. Disk Objects

Disk objects are stored on a local disk and accessed directly from the disk by the application. Disk
objects may be shared by all server processes on a node or be local to a particular process based on
the local/distributed attribute of the object. They are managed in the same way as memory objects.
That is they can be invalidated explicitly, with a time to live or idle time, they can be updated by
obtaining a private copy of the file and objects not being referenced may be removed from the cache
if space is required. Distributed objects (objects not marked as local to a process) on disk (including
spooled memory objects) will survive process termination if the validity of the object can be
confirmed when the server becomes available again. The validity of an object is based on the “time
to live” value. If no time to live is specified the object is assumed to be valid.

2.1.1.5. StreamAccess Objects

A streamAccess object is accessed by a user as a stream, loaded as an OutputStream and read as an
InputStream. The stream interface is a convenient way for some objects to be accessed by the user.
This also gives the cache more latitude as to how the object is stored. Smaller objects can be stored
in memory while larger objects can be streamed directly from disk. The cache will determine where
to store the object based on the size of the object and the capacity of the cache. The cache user
doesn’t need to worry about where the object is stored. Their access is always through an
InputStream. All the attributes that apply to memory and disk objects also apply to a streamAccess
object. If the object needs to survive process termination it should be explicitly saved to disk as
there is no guarantee it will automatically be store on disk. A streamAccess object is not a
mechanism to manage a stream, i.e., this could not be used to manage a socket endpoint.
InputStream and OutputStream objects are being used as an access method to fix sized (potentially
very large) objects.

2.1.2. Object Attributes

Each Object in the cache has attributes associated with it. These attributes affect how the object is managed
in the cache. The following attributes can be set by the application:

• Time to Live , Time to live establishes the maximum amount of time an object will remain in the cache before being
invalidated automatically by the cache. If this attribute is associated with a group or region, all objects in the
group or region will be invalidated when the time expires. If the group or region is not destroyed (destroy group

 Version: 7

on ttl is not set) the Time to live value will be reset. The default is no automatic invalidation.

• Default Time to Live The default time to live applies only to groups and regions. This attribute establishes a
default value for the time to live that is applied to all objects individually within the group or region. This value
can be overridden be setting the time to live on individual objects. The default is no automatic invalidation.

• Group TTL Destroy By default a group object is not invalidated when the associated “time to live” expires, only
the members of the group are invalidated. This flag indicates that the group object should also be destroyed
when the associated time to live expires.

• Idle Time is the amount of time an object may remain idle (with a reference count of 0) in the cache before being
invalidated. If the Time to Live or Default Time to Live attribute is set, the idle time attribute is ignored. The idle
time attribute is always applied to individual objects, so if this attribute is set for a region group it is interrupted
as a default to be applied individually to the objects in the region or group. The default is no automatic idle time
invalidation.

• Distributed vs Local, An object may be declared as a distributed object so updates and invalidations of the
object are propagated to other caches in the site. By default all objects are local.

• A reply is requested, Objects are expecting a reply from remote caches when a request for object update or
invalidation has completed. This flag should be set when a high level of consistency is required between cached
objects. By default no reply is sent. If the local attribute is set, the reply attribute is ignored.

• Synchronize updates, If updates can occur at multiple locations within a site, updates may need to be
synchronized. See the section on Distributed consistency for details. By default updates are not synchronized.

• Don’t flush the object if updates could be missed, In a distributed environment it is possible for a cache to be
isolated from other caches in the site for short periods of time. If an object is updated frequently, updates or
invalidations could be missed causing the cache object to become stale and inconsistent with other caches. An
application can determine whether the object should be flushed from the cache in this situation or whether it is
safe to allow it to remain cached. By default the object will be flushed from the cache. This attribute is ignored if
the object is marked as local or if a time to live has been established.

• Version number, An application may set a version number for each instance of an object in the cache. The
version number is available for application convenience and verification. It is not used by the caching system.
By default the version number is 0.

• Spool to disk, A memory object should be stored on disk rather than being lost when the cache system removes
it from memory to regain space. This attribute only applies to memory objects. An object must be serializable to
be spooled. If the object is distributed it will survive the death of the process that spooled it. Local objects are
only accessible by the process that spooled them, therefore if the process dies the object on disk will not be
available to subsequent processes.

• Original The original attribute is intended to be used to indicate objects that have been created by the
application in the cache rather than loaded from an external source. Original objects will not be removed from the
cache when the reference goes to zero. If allowed by the application, the object may be spooled to disk when not
being referenced. Original objects must be explicitly destroyed (invalidated) by the application when they are no
longer useful. These objects may be propagated to other caches using the update functionality. At remote
servers the object can be considered read only by declaring the object synchronized for update (see the section
on Distributed Cache Consistency). In this case only the process that created the object (the owner) can
invalidate or update the object. The “ownership” of an object can be transferred from one process to another.

The object attributes are set when the object is created or loaded into the cache. Attributes are inherited from
the region or group. These attributes can be overridden by explicitly setting the attributes of the object. If no
attributes are set for the object either explicitly or through inheritance then the default values are used. By
default the object is local with on time to live or idle time associated with it. The object will not be spooled, is
not synchronized and is not original. Not all attributes have meaning in all situations. The following table
describes which attributes are valid for each object type.

Functional Specification

 8

Region Group Memory StreamAccess Disk

Time To Live Applies to the
region as a
whole

Applies to
the group as
a whole

Applies to the
memory object

Applies to the
streamAccess
object

Applies to
the disk
object

Default Time
to Live

Default value
applied to
individual
objects in the
region

Default value
applied to
individual
objects in the
group

The same as
Time to Live.

TTL takes
precedence if
both set

The same as
Time to Live.

TTL takes
precedence if
both set

The same
as Time to
Live.

TTL takes
precedence
if both set

Group
destroy on
TTL

Region will
be destroyed
when TTL
expires

Group will
be destroyed
when TTL
expires

Doesn’t apply Doesn’t apply Doesn’t
apply

idle time Applies
individually
to objects in
the region

Applies
individually
to objects in
the group

Applies to the
memory object

Applies to the
streamAccess
object

Applies to
the disk
object

Distribute
flag

Default value
applied to
individual
objects in the
region

Default value
applied to
individual
objects in the
group

Applies to the
memory object

Applies to the
streamAccess
object

Applies to
the disk file.
File is
associated
with a
process

Reply flag Default value
applied to
individual
objects in the
region

Default value
applied to
individual
objects in the
group

Applies to the
memory object
(only
meaningful if
the object is
distributed)

Applies to the
streamAccess
object (only
meaningful if
the object is
distributed)

Applies to
the disk
object (only
meaningful
if the object
is
distributed)

Flush if net
down

Default value
applied to
individual
objects in the
region

Default value
applied to
individual
objects in the
group

Applies to the
memory object
(only
meaningful if
the object is
distributed)

Applies to the
streamAccess
object (only
meaningful if
the object is
distributed)

Applies to
the disk
object (only
meaningful
if the object
is
distributed)

Synchronize
updates

Default value
applied to
individual
objects in the
region

Default value
applied to
individual
objects in the
group

Applies to the
memory object

Applies to the
streamAccess
object

Applies to
the disk
object

Spool to
Disk

Default value
applied to

Default value
applied to

Applies to the
memory object

Applies to the
streamAccess

Doesn’t
apply

 Version: 9

individual
objects in the
region

individual
objects in the
group

object

Original Default value
applied to
individual
objects in the
region

Default value
applied to
individual
objects in the
group

Applies to the
memory object

Applies to the
streamAccess
object

Applies to
the disk
object

CacheEvent
Listener

Applies to the
region as a
whole not to
objects in the
region

Applies to
the group as
a whole not
to objects in
the group

Applies to the
memory object

Applies to the
streamAccess
object

Applies to
the disk
object

2.2. Naming Convention
The cache is divided into user defined regions. Each region is identified by name and defines a unique
name space. Within each region all objects are referenced by name. The combination of the region and the
object name must uniquely identify an object. Thus region names must be unique from other region names
and all objects within a region must be uniquely named relative to the region. As described above, objects
may be associated into groups. The group name is not however used in identifying individual objects. A
group should be thought of as defining a set or collection of objects that have something in common. It does
not define a hierarchical name space. Object type is also not used to distinguish objects, i.e., within a region
there could not be a group “foo” and a memory object “foo”.

 For individual objects in the cache, any Java Object may be used as the name. This “name” object must
override the the Object.equals and Object.hashCode methods. The equals method should not rely on
comparing reference ids. (addresses). The instance of the name object in the cache may not be the same as
that of the requester. In most cases a String object would be used. Region and group names are currently
restricted to Strings. Any legal string character can be used in the region name or group name. There are no
restrictions as to the length of the names, however excessively long names will add to the cost of object
lookups and stores.

2.3. Distributed Cache Consistency
The caching service maintains cache-to-cache consistency using a broadcast reply mechanism for object
invalidation and update. When an application invalidates or updates an object, the caching service
broadcasts the invalidation or update to all caches. To insure consistency of a cached object across caches
the application can request a reply from all remote caches indicating the modification has completed. If a
high level of consistency is required, the application should wait for the replies before committing the
change to the definitive storage (the database or directory). The replies are received asynchronously so the
application can do other work while waiting for the reply. If the consistency requirements are less stringent,
the application can do the invalidation or update without a reply or, for invalidation, a time to live attribute
can be used.

To help coordinate multiple updates within the cache, the cache manager offers a concept of object

Functional Specification

 10

ownership. Cached objects can be owned by a reference to the object. If an object is declared for
synchronized update, the updating reference must “own” the object before the update can occur. Only one
reference can own an object at a time. A reference can request ownership of an object at anytime. If the
current owner is not updating the object the ownership will be transferred to the requester. If an update is
underway, it must complete before ownership can be transferred. If ownership currently resides at the
requesting process, the request is a local operation. Otherwise the request is broadcast to all caches in the
site. Synchronized updates only synchronize between objects in the cache. There is no relationship with
external data sources. Synchronized updates are not defined for group objects. Object ownership has no
effect on read access to an object.

Cache updates are not inherently transactional. If an object in the cache is updated before the database
update commits, then the database update fails, the cache update is not automatically rolled back.

 Version: 11

3. Requirements

3.1. Functionality
The main purpose of the Object Caching Service is to provide an easy to use mechanism to manage
instances of Java objects to improve the performance of the server using it. Maintaining a copy of an object
in memory and/or on local disk can improve response time by avoiding the cost of finding or creating the
object on each request, improve throughput by making more efficient use of resources and improve
scalability by making more copies of the object available thus avoiding centralized accesses. To accomplish
these goal the service must meet the following requirements:

• Easy to Use

• Be able to manage any Java object

 There should be no restrictions on the type of object that can be cached. (Not all objects will
be able to take advantage of all cache functionality i.e., if the object can’t be serialized it can’t
be spooled or distributed)

• Manage objects loaded from any source

 There should be no restrictions on the original source of the data being cached.

• Allow sharing of objects within a process

 Since the assumption is that objects in the cache are read mostly, they should be shared by all
threads within a process, one instance per process.

• Should be able to run in a zero configuration mode and or be integrated into an existing management
system.

 The basic cache functionality should be usable without any configuration.

• Object updates and invalidation should be coordinated across multiple processes

 Since most servers are multi-process the caches within each process need to be coordinated
so that the cached objects meet the consistency requirements of the user.

• Be able to invalidate a collection of objects with a single operation.

 It should be possible to associate objects in the cache so they can be managed as a group. In
particular, it should be possible to invalidate a group of objects with a single call.

• Manage objects on disk as well as in memory

 The cache should manage objects on disk as well as in memory. This includes spooling
objects to disk as well as managing objects that are typically read directly from disk.

3.2. Performance

The cache can be used in many different scenarios, managing many different types of objects. The exact
gain in performance will vary significantly depending on the cost of creating or acquiring the object and
what the ratio of reads to writes is . The more costly the object is to create and the more reads per write, the
greater the benefit the cache can provide. One of the most common uses will likely be managing objects
created from data in the database. Using a database request as the standard, the goal is to have the retrieval

Functional Specification

 12

from the cache to be many times faster (100x) than retrieving from a the database even in the simplest case.
The simplest case being, fetching a single row from a small table. To evaluate the overhead of using the
cache we will compare the cache to using the Java Hashtable class. A hash table is often used as a very
simple cache mechanism for static data. The goal here is, for simple retrievels, to be within percentages (<
2x) of retrieving from a hash table. Ideally it would be nice to be as fast or faster than a simple hash table
even in the simplest cases but with the significantly richer set of functionality available in the cache it may
not realistic.

3.3. Availability
The cache service itself should not degrade the availability of the server using it. It can in some cases be
used to improve availability. By maintaining local copies of objects, some operations can continue locally
even though the original source is unavailable. It is also possible to build a state management system such
as HttpSessions, on top of the cache which uses the distributed aspects of the cache to increase
availability.

3.4. Scalability
Like availability, scalability of a server can be improved by using the cache to manage multiple copies of an
object across multiple processes and nodes.

3.5. System/Database Management
To totally integrate the cache into a server, the servers system management will need to provide a
mechanism to get and set the cache configuration values and possibly to display monitoring information.
The cache will provide API’s to set and retrieve this information.

3.6. Ease-of-Use
The object cache should be very easy to use. There are two aspects of usage that need to be addressed.
One is the user interface to the cache, the other is how easy is it to integrate into an existing system. The
interface should be easy to understand, and easy to incorporate into an application. The interface to the
cache consists of a small number of Java methods and 3 to 4 Java interfaces that can be implemented by the
user to more efficiently use the cache. See the API section for more detail.

The cache service itself has no configuration management or configuration file. It is intended to be used
with zero configuration for development or simple servers, using default values for configuration. For larger
systems it should be integrated into the existing management structure. The small number of configuration
parameters needed for the cache can be added to an existing configuration file.

3.7. Usage Model
There are a wide range of potential uses for the cache. Any application that has non-static data that is
shared across threads or requests could benefit from using the cache. Listed below are a few application
that could benefit from the cache.

• Configuration management

 The cache is used to manage configuration information in each server process. The
distributed update and invalidation features are used to keep the configuration information
consistent across processes. The invalidation callback is used to notify sub systems when
configuration information has changed, allowing for dynamic updates. Customized loading is
used to load configuration information from configuration sources in different formats and
only load the information a process is interested in .

• Portal

 Version: 13

 A portal needs to manage both user profiles and the objects available at the portal. Both can
be cached. The objects can be aged out of the cache to free up space or the idle time feature
can be used to remove objects not being accessed. This will simplify the management of
objects as the application doesn’t need constant monitor which objects are in demand at any
given time. The “hot” objects will automatically be available in the cache. Objects that are
expensive to create or fetch can be written to local disk and transparently retrieved as needed.

• Server Subsystems

 Server subsystems such as the servlet engine can improve server performance by pooling
such things as request, response and buffer objects. The servlet objects themselves can be
stored in the cache. The group invalidation feature can then be used when application reload
is required. All servlets and related objects within an application can be cleaned up with a
single method call.

• Response Caching

 Part or all of a response can be cached if it is applicable to more than one response. This can
significantly improve response time.

3.8. Reliability
The cache should have no negative effect on the reliability of the server it is running in. It may, depending
on how it is used, improve reliability by offering better management of Java objects than is currently being
used.

3.9. Maintainability
The caching system will include logging facilities to help trace problems within the code. This includes the
ability to “dump” the metadata for the entire cache. This should make it easy to identify any problems that
should occur in the cache or by improper use of the cache. The logging facility will be written as an interface
with a default implementation. This will allow the cache logging to be easily integrated with any logging
service provided by the server. This logging service is intended for use within the caching service not as a
general logging service for application use.

3.10. Security
In the first release security is assumed to be handled by the user of the cache. There is no authentication or
authorization checking done before objects are returned from the cache. The information transmitted
between caches is not encrypted. If sensitive information is being stored in the cache and the environment
the cache is running in is not secure, the process hosting the cache should not be shared between
applications and the cache should not be configured for distributed use. In future releases encryption
between caches and authorization checking at the region level will be available.

3.11. Compatibility

3.11.1. Distribution/Replication
The cache will work distributed across multiple processes and nodes using its own messaging structure.
The messaging system is based on a “group” protocol build on top of TCP. Updates and invalidates of
distributed cached objects are multicast to all the caches registered in the system. Cache registration with
the system is handled through a well known configurable port. The group protocol handles the joining and
leaving of caches to the system to maintain a consistent view of cached objects across the different cache
instances. For more detail see “Functional Specification for Group Communication, Java Object Caching”.

Functional Specification

 14

3.11.2. Internationalization
All error messages will be internationalized using Java ResourceBundles. Cache object names should be
accepted in any language.

 Version: 15

4. Client Interfaces

4.1. User Interface
All access to the cache is through the class CacheAccess. This handle is associated with a region and can
be used to access any object in that region. For transparent loading of objects into the cache, the
CacheLoader class can be extended by the user. This allows the cache to load objects as necessary,
synchronizing the loading of objects without restricting the user on how and from where the object to be
cached is loaded. Cache administration methods are defined in the class Cache.

The CacheAccess class implements the following user methods:

1. static void defineRegion (String name) throws ObjectExistsException, NullObjectNameException,
CacheNotAvailableException

2. static void defineRegion (String name, Attributes attr) throws ObjectExistsException,
NullObjectNameException, CacheNotAvailableException

 defineRegion is a static method that will create a named region within the cache. This defines a name space
for storing objects. Name must be globally unique. If the cache system has not been initialized, it will be
initialized using the Cache attributes defined in the properties file OCS4J.properties. If the properties file is
not found default values will be used. Attr can be used to set default object attributes for objects in the
region. If a region of name already exists a ObjectExistsException will be thrown

3. static CacheAccess getAccess() throws CacheException

 static CacheAccess getAccess(String region) throws CacheException

 GetAccess is a static method that will return a CacheAccess object allowing access to the cache region
specified. If no region is supplied, a CacheAccess object to the default region is returned.

4. Object get(Object name) throws ObjectNotFoundException, NotARetrievableObjectException,
InvalidHandleException

 Object get(Object name, Object args) throws ObjectNotFoundException, NotARetrievableObjectException,
InvalidHandleException

 Object get(Object name, String group, Object args) throws ObjectNotFoundException,
InvalidGroupException, NotARetrievableObjectException, InvalidHandleException

 Get returns a reference to the object associated with name. If the object is a streamAccess object, an
InputStream is returned, if the object is a disk object a String containing the full path to the object is
returned. The name object must override the Object.equals and Object.hashCode methods. If the object is
not currently in the cache and a loader object has been registered, the object will be loaded into the cache
passing the args parameter to the load method of the loader object. If a loader object has not been
registered for the object the default load method will do a netSearch for the object. If a group is specified
and the object is loaded, it will be associated with the group. The object returned by get is always a
reference to a shared object. Get will always return the latest version of the object. A CacheAccess object
will only maintain a reference to one cached object at any given time. If get is called multiple times, the
object accessed previously, will be released. If the object is not found in the cache, an
ObjectNotFoundException is thrown. If the group is specified but doesn’t exist an InvalidGroupException
will be thrown. If name refers to a group a NotARetrievableObjectException is thrown.

Functional Specification

 16

5. void put(Object name, Object obj) throws CacheException

 void put(Object name, String group, Object obj) throws CacheException

 void put(Object name, Attributes attr, Object obj) throws CacheException

 void put(Object name, String group, Attributes attr, Object obj) throws CacheException

 Put allows a new object to be placed into the cache identified by name. If there is currently an object
associated with name in the region, an ObjectExistException is thrown. Names are scoped to a region so
they must be unique within the region they are placed. Put is intended for very simple caching situations. In
general it is better to create a CacheLoader object and allow the cache to manage the creation and loading of
objects. Attributes to associate with the object may be specified with attr. If attr is not supplied, default
attributes are assumed. The name object must override the Object.equals and Object.hashCode methods.

6. object replace(Object name, Object obj) throws CacheException

 object replace(Object name, String group, Object obj) throws CacheException

 Replace will create a new version of the object identified by name, replacing the current version with the
object obj. If the object doesn’t exist in the cache replace is equivalent to a put. The attributes will be
inherited from the existing object or if no object exists, from the group or region the object is associated
with. Names are in the scope of a region so they must be unique within the region they are placed. Replace
is not valid on a disk, streamAccess or group object. Replace returns a reference to the newly cached object.
The name object must override the Object.equals and Object.hashCode methods.

7. void invalidate() throws CacheException

 void invalidate(Object name) throws CacheException

 Invalidate will mark all objects within the scope of name as invalid. If name refers to a group object the
invalidate will cascade to all objects associated with the group or any subgroups. The group objects
themselves are not invalidated. Destroy must be called to remove groups. If no name is specified, all objects
in the region will be invalidated. Invalidate doesn’t “unregister” an object. The loader object will remain
associated with the object name. To completely remove any knowledge of an object from the cache, destroy
must be called. The name object must override the Object.equals and Object.hashCode methods.

8. void close()

 Close will return the CacheAccess object to the cache. Any attempts to use a CacheAccess object after
close has been called will result in an InvalidHandleException.

9. void defineGroup(String name) throws CacheException

 void defineGroup(String name, String group) throws CacheException

 void defineGroup(String name, Attributes attr) throws CacheException

 void defineGroup(String name, String group, Attributes attr) throws CacheException

 DefineGroup is used to create a new group object. Attributes may be set on the group. If no attributes are
specified, the attributes of the region or group the new group is associated with are used. If group is
specified the new group will be associated with the group specified.

10. void defineObject(Object name, Attributes attr) throws CacheException

 void defineObject(Object name, String group, Attributes attr) throws CacheException

 DefineObject is used to specify the attributes to associate with an object when it is loaded. This can include
the loader object, cache event handlers and specific attributes for the object, such as distribute, spool, etc.
Attributes (with the exception of the CacheLoader object itself) can also be specified within the load method
of the CacheLoader object using the setAttributes method, If the attributes for an object are not defined, the
attributes of the region will be used.

11. void destroy () throws CacheException

 Version: 17

 void destroy (Object name) throws CacheException

 Destroy will invalidate all objects associated with name removing all references to the objects from the
cache including any loader registered for the object. If name is not specified, the region and all objects
within the region will be destroyed. If destroy is called without a name attribute, the CacheAccess object
can no longer be used as it will be closed and returned to the cache pool. The name object must override
the Object.equals and Object.hashCode methods.

12. void waitForResponse(int timeout) throws CacheException

 WaitForResponse may be used to wait for replies returned from invalidates or updates when a reply is
requested. This method will block the calling thread until all the responses associated with the
CacheAccess object have been received or the time indicated by timeout has expired. Timeout is the
maximum number of milliseconds to wait for all remote caches to reply. If the time out is reached before all
responses are received a TimeoutException is thrown. If this method times out and the caller does not
intend to call WaitForResponse again on this event cancelResponse should be called. If the object is local
or a reply has not been requested, this call returns immediately.

13. void cancelResponse() throws CacheException

 CancelResponse terminates the request for a reply from the previous invalidate or update. If a response was
requested then either cancelResponse or waitForResponse should be called to terminate the request and
free up related structures. If the waitForResponse method times out, cancelResponse should be called. All
response associated with the CacheAccess object are canceled. If the object is local or a reply has not been
requested, the call returns immediately.

14. boolean getOwnership(Object name, int timeout) throws CacheException

 GetOwnership will claim the ownership of the object, name, for this instance of CacheAccess. If ownership
is not available it will block for the specified time out period, timeout. The local cache is checked first, if the
local cache doesn't hold ownership of the object, a message is sent to all other caches in the system.
Ownership is only relevant for synchronized objects. Ownership is maintained until an update or
invalidation completes (this includes the receipt of replies when applicable) or until ownership is explicitly
released with a call to the releaseOwnership method. An instance of CacheAccess can only hold ownership
of one object at a time. Ownership only applies to individual objects it is not available on groups. If
ownership was obtained the boolean value of true is returned, otherwise false is returned. The name object
must override the Object.equals and Object.hashCode methods.

15. void releaseOwnership() throws CacheException

 ReleaseOwnership is called to explicitly give up ownership of an object. Ownership is only relevant for
synchronized objects. If ownership is not held releaseOwnership is ignored. If the object is not
synchronized however, a CacheException is thrown.

16. void resetAttributes(Attributes attr) throws CacheException, InvalidHandleException

 void resetAttributes(Object name, Attributes attr) throws CacheException, InvalidHandleException

 ResetAttributes allows for some of the attributes of a region to be reset in particular expiration time
attriubtes, time to live, default time to live and idle time, and event handlers. The cacheloader object and
attributes set as flags can’t be reset with resetAttributes, the object must be destroyed and redefined to
cahcne those parameters. Changing default settings on groups and regions will not affect existing objects.
Only object loaded after the reset will use the new defaults. If no name argument is provided, the reset is
applied to the region.

17. Attributes getAttributes() throws CacheException

 Attributes getAttributes(Object name) throws CacheException

 GetAttributes will return an attribute object describing the current attributes associated with the object
name. If no name parameter is available, the attributes for the region will be returned. The name object must
override the Object.equals and Object.hashCode methods.

Functional Specification

 18

18. void save()

 void save(Object name) throws CacheException

 The save method will cause all the objects within the scope of name (the region if no name is provided) to be
saved to the disk cache. If name refers to a specific object and the object is not serializable a
CacheException will be logged. If the save references a group or region, objects that can’t be serialized will
be ignored. All exceptions encountered will be logged (assuming logging is on) Local objects will be saved
in the process specific cache, distributed objects will be saved in the machine global disk cache.

19. void preLoad(Object name)

 void preLoad(Object name, Object args)

20. void preLoad(Object name, String group, Object args)

 PreLoad allows for asynchronous loading of objects into the cache. This method will schedule a
background task to the registered load method then return. Any exceptions that occur during the load will
be written to the log (if one is available). The name object must override the Object.equals and
Object.hashCode methods. The object will be loaded into the cache passing the args parameter to the load
method of the loader object. If a loader object has not been registered an ObjectNotFoundException will be
thrown. If a group is specified the object will be associated with the group. The group must already exist at
the time of the load or an InvalidGroupException will be logged.

21. boolean isPresent(Object name)

IsPresent returns true if a valid copy of the named object is current in the cache. In all other cases false is
returned.

The Attributes class defines the following constants and methods:

Static Flag Values

• DISTRIBUTE: indicates the object is distributed, updates and invalidations are distributed to other
processes Default is to not distribute changes.

• NOFLUSH indicates not to flush the object from the cache if the object is distributed and the cache
is isolated from the other caches. Default is to flush the object This flag is ignored if a "time to live"
is specified or the object is local.

• REPLY indicates a reply should be sent from remote caches if this object is updated or invalidated.
The default is not to reply. This flag is ignored if the object is local.

• SYNCHRONIZE indicates that updates to this object should be synchronized. If this flag is set
only the "owner" of an object can update or invalidate the object. The default is not to synchronize
updates.

• SPOOL indicates the object should be spooled to disk when the object is being removed from the
memory cache because of space limitations. This flag is only valid for memory objects .

• GROUP_TTL_DESTROY indicates that the group object should be destroyed when the
associated time to live expires. In the default case only the child objects are invalidated the group
remains valid.

• ORIGINAL indicates the object was created in the cache and can’t be recreated if it was removed
from the cache. Original objects don’t get removed from the cache when they are not referenced
they must be invalidated before they get removed from the cache.

1. void setFlags(long flags)

 SetFlags is used to specify which of the above listed attributes should be set in the Attributes object. The
flags may be “or’ed” together, i.e., Attributes.LOCAL|Attributes.SPOOL.

 Version: 19

2. void setLoader(CacheLoader loader)

 SetLoader will associate a loader object with attribute object.

3. void setVersion(long version)

 SetVersion sets the version attribute. A version number is maintained for the users convenience. It is not
use internally by the cache.

4. void setTimeToLive (long ttl) throws InvalidArgumentException

 SetTimeToLive will set the maximum time the associated cache object will stay in the cache before it is
invalidated. The time starts when the object is loaded into the cache (by a CacheLoader object or the put or
replace method) or when the time to live attribute is set via the setAttributes method. Ttl is in seconds. The
timeToSeconds method may be used to convert days, hours, and/or minutes to seconds. If a negative value
for ttl is supplied an InvalidArgumentException will be thrown.

5. void setDefaultTimeToLive (long ttl) throws InvalidArgumentException

 SetDefaultTimeToLive will set the maximum time the associated cache object will stay in the cache before it
is invalidated. Ttl is in seconds. For regions and groups, this will establish a default time to live that is
applied individually to each member of the group or region. It will not cause the entire group or region to
“time out” as a whole. For individual objects the default time to live is equivalent to time to live. If both are
set the default time to live is ignored. The timeToSeconds method may be used to convert days, hours,
and/or minutes to seconds. If a negative value for ttl is supplied an InvalidArgumentException will be
thrown.

6. void setIdleTime(long idle) throws InvalidArgumentException

 SetIdleTime will set the maximum time the associated cache object will remain in the cache without being
referenced before it is invalidated. idle is in seconds. The timeToSeconds method may be used to convert
days, hours, and/or minutes to seconds. If a negative value for idle is supplied an
InvalidArgumentException will be thrown.

7. void setListener(int event, CacheEventListener listener)

 SetListener registers an event listener object to be executed when the specified event occurs with
relationship to the associated object. Currently the only the invalidate event being monitored is
(Attributes.INVALIDATE_EVENT).

8. void setSize(int size)

 The setSize method is used to specify the size in bytes of the object being cached. This is used to
determine when the cache capacity is reached. If the cache is not using object size to determine the capacity
(it can also use an object count) this value is ignored.

9. int getSize()

 The getSize method returns the specified size of the object. This size is set by the setSize method or,in the
cache of StreamAccess objects, the size is calculated by the cache. If the size has not been set a 0 is
returned.

10. boolean isSet(long flags)

 The isSet method returns true if the specified attribute is set, false otherwise. Flags may be “or’ed” together
in which case isSet will return true only if all of the attributes are set.

11. long getCreateTime()

 GetCreateTime returns the time the object was loaded into the cache. The time is the number of
milliseconds from midnight, January 1, 1970 (UTC).

12. CacheLoader getLoader()

 GetLoader returns the cacheLoader object attribute.

Functional Specification

 20

13. long getVersion()

 GetVersion returns the current value of version.

14. long getIdleTime()

 GetIdleTime returns the current value for the idle time interval.

15. long getTimeToLive ()

 GetTimeToLive returns the current value for the time to live interval.

16. long timeToSeconds (int days, int hours, int minutes, int seconds) throws InvalidArgumentException

 TimeToSeconds will convert the time specified in days, hours, minutes and seconds to seconds. If a
negative value is supplied for any of the arguments, an InvalidArgumentException will be thrown.

The CacheLoader class defines the following methods. This class should be extended by the user to
implement custom loaders.

1. abstract Object load(Object handle, Object args) throws CacheException

 Load is a user written method to load the object into the cache. This will typically be a call to the database
or directory, or extracting information from a file. This method should return a reference to the newly loaded
object. If the object being loaded is a StreamAccess object or a disk object, the OutputStream object created
by the createStream method or the File object created by the createDiskObject method should be returned.
Handle is supplied by the cache and is used by the netSearch and setAttributes method to access
information about the object being searched for. Args is the object pass to the cache in the get method.

2. void setAttributes(Object handle, Attributes attr) throws CacheException

 SetAttributes will cause the attributes associated with the object being loaded to be set to the values
provided in attr. Handle is the object passed into the load method. If the object being loaded is a
StreamAccess or Disk object, the attributes should be set with the create call rather than with setAttributes.

3. Object getName (Object handle)

 GetName returns the name Object associated with the object being loaded. This method is available to be
called by application overrides of the load method. This is a protected method so it is available only from the
load method.

4. String getRegion(Object handle)

 GetRegion returns the name of the region for the object being loaded. This method is available to be called
application overrides of the load method. This is a protected method so it is available only from the load
method.

5. Object netSearch(Object handle, int timeout) throws CacheException

 NetSearch will search other caches for the object to be loaded. This method is called from the default load
method and is available to be called by application overrides of the load method. This is a protected method
so it is available only from the load method. If the search is successful a reference to a local copy of the
object is returned. If the object is not found an ObjectNotFoundException is thrown.

6. OutputStream createStream(Object handle) throws ObjectExistsException

 OutputStream createStream(Object handle, Attributes attr) throws ObjectExistsException

 The createStream method is called from the load method to create a streamAccessed object. The
OutputStream object returned is used to load the object into the cache. Handle is the object passed into the
load method. The attributes for the object should be set on the createStream call. If attr is null, default
attributes are assumed . If the object is declared as distributed, it is possible another cache has already

 Version: 21

loaded the object or is in the process of loading it. In this case an ObjectExistsException is thrown. The
applications can either allow the exception to propagate back to the caller of the load or catch the exception
and return null to the caller. In both cased the cache will recognize that the object has been loaded by
another cache and return the object to the user.

7. File createDiskObject(Object handle, String extension) throws ObjectExistsException

 File createDiskObject(Object handle, Attributes attr, String extension) throws ObjectExistsException

 The createDiskObject method is called from the load method to create a disk object. The File returned can
then be used to load the object into the disk cache. The extension parameter is used as the extension to the
file name (java, class, exe, etc.). If the parameter is null, no extension is added to the file name. Handle is the
object passed into the load method. The attributes for the object should be set on the createStream call. If
attr is null, default attributes are assumed . If the object is declared as distributed, it is possible another
cache has already loaded the object or is in the process of loading it. In this case an ObjectExistsException
is thrown. The applications can either allow the exception to propagate back to the caller of the load or
catch the exception and return null to the caller. In both cased the cache will recognize that the object has
been loaded by another cache and return the object to the user.

8. void log(String msg)

 The log method is called from the load method to record a message in the cache’s log. How and where the
logging occurs is dependent of the configuration of the logger in the cache.

9. CacheException exceptionHandler(String msg, Exception ex)

The exceptionHandler method is called from the load method to convert any non CacheExceptions into
CacheExceptions with the base exception set to the original exception (see CacheException for details). This
allows the load method to only throw CacheExceptions without loosing important information. The
exception will also be logged (assuming that logging is configured and the logging severity is set
sufficiently high). For all CacheExceptions, if CacheException.printStackTrace() is called and there is a base
exception, the stack for the base exception will be printed.

The CacheEventListener interface defines the following methods.

1. void handleEvent(CacheEvent event) throws CacheException

 HandleEvent is a callback method. When a registered event happens, the cache invokes this method and
passes in a CacheEvent object.

The CacheEvent class extents the java.util.EventObject class.

CacheEvent represents an internal cache event. If an event happens on a cached object, the source object in
CacheEvent is the cached object which relates to the event that just happened. If an event happens on a cache
group, the source object in CacheEvent is the group name which relates to the event that just happened. Event id is
used to identify different types of events. Applications can register a CacheEventListener to handle events.
Currently, only the OBJECT_INVALIDATED event is defined.

1. int getId()

 getId returns the event identifier associated with the event. Currently the only event supported is
CacheEvent.OBECT_INVALIDATED.

4.2. Administrative Interface
The CacheAttributes class defines the following methods:

Functional Specification

 22

1. void setLocal()

 SetLocal sets the attribute to indicate the cache is local. Invalidations and updates will not be propagated to
other caches in the system.

2. void setMaxObjects(int size)

 SetMaxObjects is used to set the attribute to determine the maximum number of objects allowed in the
memory cache. If the max number of objects or the cache size is set, the default for the one not set is
ignored. If both are set, both are used to determine the capacity of the cache, i.e., object will be removed
from the cache if either limit is reached.

3. void setMemoryCacheSize(int size)

 SetMemoryCacheSize sets the attribute to indicate the maximum size of the memory cache. Size is in
megabytes. If the max number of objects or the cache size is set, the default for the one not set is ignored. If
both are set, both are used to determine the capacity of the cache, i.e., object will be removed from the cache
if either limit is reached.

4. void setDiskCacheSize(int size)

 SetDiskCacheSize sets the attribute to indicate the maximum size of the disk cache. Size is in megabytes.

5. void setDiskPath(String path)

 SetDiskPath sets the attribute indicating the root location for the disk cache.

6. void setLogger(CacheLogger pLogger)

 SetLogger sets the logger object which will be used to log cache messages.

7. void setDefaultLogFileName(java.lang.String pDefaultLogFileName)

 SetDefaultLogFileName sets the log file name for the DefaultCacheLogger. If the default logger is being
used (a new CacheLogger has not been implemented and set), all cache log messages will be written to the
file “javacache.log” which is created in the directory the server process is started up in. This method
changes the location and name of the file to be used. PDefaultLogFileName is a full path name for the log
file.

8. void setCleanInterval(int seconds)

 SetCleanInterval sets the attribute indicating the how often the cache should be checked for objects
invalidated by “time to live” or “idle time” attributes.

9. void addCacheAddr(inetAddress ipAddr, int port)

 AddCacheAddr is used to specify the network address and port to be used by the cache messaging system.
At least one known address is required by the cache to allow discovery when a process using the cache is
first brought on line. If no address is specified, localhost with a default port is use. If the system of caches is
across multiple nodes, it is best to have an address specified for each node to protect against unavailable
nodes.

10. Enumeration getCacheAddrs()

GetCacheAddrs returns an enumeration of Strings representing the address for all the cache address
configured. If no address were configured the default value is returned. The address is in the form of
ipaddress:port (127.0.0.1:12345)

The CacheLogger class implements the following administrative methods:

CacheLogger is an abstract class. Applications can extend this class to implement a customized logging
mechanism. The caching service uses this API to log cache related messages. Users can use
Cache.setLogSeverity(int) to change the desirable cache logging severity. The severity levels are defined as:

 Version: 23

• OFF

• FATAL

• ERROR

• DEFAULT

• WARNING

• TRACE

• INFO

• DEBUG

A default cache logger is implemented. If no cache logger is provided, the default cache logger will be used. By
default, DefaultCacheLogger will log all the messages to a file called "javacache.log" in the directory where the
server process is started. Users can set a different log file name for the default logger when initializing the cache
by calling CacheAttributes.setLogFileName(String).

1. abstract void log(String message)

 abstract void log(String message, Throwable cause)

 This method is an abstract method. Application writers can implement this method and provide their own
mechanism to log a message. The first version of log, logs a string, the second is intended for logging
exceptions.

2. abstract void init(String fileName, int severity)

 Init is called by the caching system when the CacheLogger object is instanciated to complete any
initialization requires. The fileName and severity parameters passed in are the values set in the
CacheAttributes object passed into the Cache.init method.

3. abstract void flush()

 Log messages are buffered by the cache. Flush will force the messages to be written out to the file and the
buffer is reset.

4. int getSeverity()

 GetSeverity returns the current severity level defined in this class. The severity level determines the amount
of information that will be logged. The default setting is DEFAULT.

5. int setSeverity(int severity)

SetSeverity sets the severity level to severity. The severity level determines the amount of information that
will be logged. The default setting is DEFAULT.

The Cache class implements the following administrative methods:

1. void init (CacheAttribute attributes) throws CacheException

Init initializes the cache, allocating space for metadata and starting service threads. The cache is a process
wide service so it can only be initialized onces per process. Subsequent init calls are ignored. The attributes
parameter contains configuration information to initialize the cache system.

2. void open()

 void open(String configFile)

 Open will create a CacheAttributes object based on the values in a Java properties then call init. ConfigFile
is the name of the properties file to be used. If the parameter is not supplied the properties file
“OracleJavaCacheConfig” will be used. If the open method is used init doesn’t need to be called. Init should
only be called directly if the configuration information originates from some source other than a Java
properties file.

Functional Specification

 24

3. void close()

 Close will mark the cache as “ not ready” and shutdown the cache. Marking the cache as “not ready” will
prevent any threads from accessing the cache during shutdown. If the cache is distributed, close will
unregister with the distributed caching system. Close should be called as part of process termination.

4. void flush () throws CacheException

 The flush method will mark all objects in the cache, both on disk and in memory as invalid, forcing objects
to be reloaded. All processes sharing the disk cache are notified when the cache is flushed.

5. void flushMemory() throws CacheException

 The flushMemory method will mark all objects in the cache as invalid, forcing objects to be reloaded.
Flushing the memory cache will also invalidate memory objects spooled to disk. Objects that are only
cached on disk will not be affected.

6. void flushDisk() throws CacheException

 The flushDisk method will mark all objects in the disk cache as invalid, forcing objects to be reloaded.
Flushing the disk cache will also invalidate memory objects that have been spooled to disk. All processes
sharing the disk cache are notified when the cache is flushed.

7. float getVersion()

 GetVersion returns the current version of the cache.

8. boolean isReady()

 IsReady returns true if the cache has been initialized and not closed, false otherwise.

9. boolean isDistributed()

 IsDistributed returns true if the cache is currently in distributed mode, that is it is distributing updates and
invalidates within the site, false if all cache actions are local only.

10. Enumeration listCacheObjects()

 Enumeration listCacheObjects(String region)

 ListCacheObjects will return an Enumeration of CacheObjectInfo objects describing the objects in the
specified region or in all regions in the cache. CacheObjectInfo will include information such as the object
name, the type, what group it is associated with the, reference count, expiration time if any and object
attributes.

11. CacheAttributes getAttributes() throws CacheNotAvailableException

 GetAttributes returns the current attributes of the cache including the cache version number, whether the
cache is local or distributed maximum number of objects in the cache, the disk cache location and the disk
cache size.

12. void setLogSeverity(int severity)

 setLogSeverity sets the log severity of the cache system. This determines which messages the cache
formats and logs into the log file. Severity’s are defined in the CacheLogger class.

The CacheObjectInfo class encapsulates the following object information:

String region The region the object resides in .

String name The object name

String type The object type (Memory Object , Disk Object, Group, Region)

 Version: 25

String group The group the object is associated with

int refcount The current reference count to the object.

int accesses The total number of accesses to this object

String expire The time the object will expire, if any.

Exceptions

The following exceptions may be generated by the cache:

CacheException An exception was caught or generated within the cache.

DiskCacheException An exception was caught or generated within the disk cache management code.

CallbackException An exception was generated by a user supplied callback method.

InvalidHandleException The handle used to reference the object is not valid (CacheAccess.close was
probably called). Call CacheAccess.getAccess to reset the handle.

InvalidObjectException An invalid object was unexpectedly encountered.

ObjectNotFoundException The object requested could not be found in the cache and there was insufficient
information available to create or load the object.

ObjectExistsException An ObjectExistsException exception is thrown if put is called with the name of an
existing cache object.

CacheNotAvailableException The caching system has not been initialized or is temporarily unavailable

InvalidArgumentException One of the arguments to the method is not valid

InvalidGroupException The group object accessed is no longer valid.

NotImplementedException A request for functionality that is not yet available has been made

ResponseFailedException A request from a remote cache has failed.

TimeoutException A blocking call has timed out before the requested task has completed.

CacheFullException The maximum number of objects in the cache has been reached.

CachePermissionsException This object is synchronized and this handle is not the current owner.

CantSynchronizeGroupException Group objects can’t be synchronized.

GroupNameException An attempt was made to add a group to itself.

GroupUseException The requested functionality is not supported on a group.

LoadConflictException An update was requested on an object that is currently being updated or loaded.

NetworkException A problem in the message layer of the cache has occurred

NetOfflineException This cache was unable to connect to the message layer

NullObjectException A null cache object was detected.

NullObjectNameException A null object name was supplied by the application

ObjectNotSynchronizedException A method applicable only to synchronized cache objects was attempted
on an object that is not marked as synchronized.

NotARetrievableObjectException An attempt was made to retrieve a group as if it were an instance of a
cached object.

RegionNotFoundException A request was made to access a region that does not exist in the cache.

Functional Specification

 26

CacheException extend Exception by adding a class variable base. Base is of type Exception and will
reference the original exception (if any) caught by the caching system. All other exceptions listed extend
CacheException.

public Exception base; // This is the original exception caught by the system

4.3. Configuration Files
The following configuration values are available for the system administrator. The cache doesn’t maintain
any configuration files. It is expected the hosting server will integrate these parameters into the existing
configuration files.

1. Distribute

 Distribute is a boolean. If it is set, updates and invalidations for objects that have the distribute attriube
set are propagated to other processes and objects written to disk are shared between processes on a
node. If this flag is false all objects are treated as local regardless of the attribute set on the object. The
default value is false.

2. MaxObjects

 MaxObjects determines the maximum number of valid objects allowed in the cache. This count does not
include group objects or objects that have been spooled to disk and are not currently in memory. The
default value is 5000 objects.

3. MaxSize

 MaxSize is the maximum amount of memory in megabytes that is available to the cache. The cache can
be sized by the number of objects, the size, or both. The default is to use only the number of objects.

4. DiskCacheSize

 DiskCacheSize is the maximum amount of disk space, in megabytes, that is available to the disk cache.
The default value is 10megabytes

5. DiskPath

 DiskPath is the location on disk for the root of the disk cache. There is no default for this parameter. If
diskPath is not set the disk cache is not available.

6. LogFileName

 LogFileName is the full path to the log file that is passed to the logger object when it is initialized. The
default is to write log messages to the file “javacache.log” which is created in the directory the server
process is started up in.

7. LogSeverity

 LogSeverity is the logging severity the logger will be initialized to. The default is
CacheLogger.DEFAULT.

8. Logger

 The logger parameter is the class name of the object that implements the CacheLogger interface. This
object will be instantiate when the cache is initialized. The default value is
oracle.ias.cache.DefaultLogger.

9. CleanInterval

 CleanInterval determines how often the cache is checked for objects whose time to live or idle time has

 Version: 27

expired. This will affect how quickly event handlers are called after the expiration. The time is expressed
in seconds. The default value is 30 seconds

10. DiscoveryAddress

The discoveryAddress is used by the distributed cache’s messaging system. This is the address initial
contacted by a cache to join the caching system. The value is in the form hostname:port number. If the
hostname is omitted (:port number) the local hostname is used. If the caching system spans machines a
comma separated list of hosts and ports can be provided, 1 per machine. At any given time only 1
address is being used but this will avoid a dependency on any specific machine needing to be started
first. The default is :12345 (localhost:12345).

