
1 0 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 3 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

software construction

M any books and articles discuss debug-
ging techniques: how to track down
and correct the errors that, like sneaky

little bugs, crept into our programs when we
weren’t watching. Referring to errors as
“bugs” is a pleasant anthropomorphic dis-
traction that lets a programmer avoid direct
blame, but it does several disservices in the
process. The largest of these is probably the

concept that bugs somehow spontaneously
appear in source code.

They do not. We put those errors in the
code ourselves. In fact, on a bad day you
might feel that you aren’t programming at
all, but rather enbugging the code—putting
the bugs in. But it’s actually more insidious
than that. We rarely put bugs in directly; in-
stead, we might set up conditions that will
trick us into putting in bugs later. How can
we prevent this? One of the best ways to
keep future bugs out is to maintain a proper
“separation of concerns”—that is, design
the code so that classes and modules have
clear, well-defined, and isolated responsibil-
ities and well-understood semantics.

But in real life, that’s tricky. Getting it right

takes experience, which means getting it wrong
a lot of times and learning to do it better. For-
tunately, we’ve got a few handy shortcuts to
help you out. The fundamental goal (while
we’re in an anthropomorphic mood) is to write
shy code—code that doesn’t reveal too much of
itself to anyone else and doesn’t talk to others
any more than is necessary. Shy code keeps to
itself, not like that gossipy neighbor who’s in-
volved in everyone else’s comings and goings.
Shy code would never show its “privates” to
“friends,” as some more promiscuous C++
code might.

This month we’ll examine some ways to
help us create shy code. Although we are
primarily looking at object-oriented exam-
ples, the same principles apply to proce-
dural code as well.

Tell, don’t ask
A distinction of OO code (or code written

in that style in any language) is the idea of is-
suing a command to some entity to get some-
thing done. You see this explicitly in lan-
guages such as Smalltalk and Ruby, where
method invocation is viewed as messages be-
ing passed between objects, not as function
calls. In Java, C++, and similar languages, the
fact that method invocation looks an awful
lot like a function call tends to distract from
the “message-passing” metaphor. This is a
shame; there’s an important distinction to be
made between procedural and OO styles here.

Procedural code tends to get information
and then make decisions based on that infor-
mation. OO code tells objects to do things
(see Alec Sharp’s Smalltalk by Example, Mc-
Graw-Hill, 1997). That is, in the model we

The Art of Enbugging
Andy Hunt and Dave Thomas

E d i t o r s : A n d y H u n t a n d D a v e T h o m a s � T h e P r a g m a t i c P r o g r a m m e r s
a n d y @ p r a g m a t i c p r o g r a m m e r. c o m � d a v e @ p r a g m a t i c p r o g r a m m e r. c o m

J a n u a r y / F e b r u a r y 2 0 0 3 I E E E S O F T W A R E 1 1

SOFTWARE CONSTRUCTION

want to follow, you send commands
to objects telling them what you want
done. We explicitly do not want to
query an object about its state, make
a decision, and then tell the object
what to do. That starts to sound a bit
like the gossipy neighbor—and not
something that shy code should do.

As the caller, you should not make
decisions based on the called object’s
state and then change the object’s
state. The logic you are implement-
ing is probably the called-object’s re-
sponsibility, not yours. For you to
make decisions outside the object vi-
olates its encapsulation and provides
a fertile breeding ground for bugs.

Consider the story of “The Paperboy
and the Wallet,” from our friend David
Bock (www.javaguy.org/papers). Sup-
pose the paperboy comes to your door,
demanding payment for the week. You
turn around, and the paperboy pulls
your wallet out of your back pocket,
takes the two bucks, and puts the wal-
let back. As absurd as that sounds,
many programs are written in this style,
which leaves the code open to all sorts
of problems (and explains why the pa-
per boy is now driving a Lexus).

Instead of asking for the wallet,
the paperboy should instead tell the
customer to pay the $2.00. Code
should work the same way—we
want to tell objects what to do, not
ask them for their state. Adhering to
this notion of “Tell, Don’t Ask” is
easier if you mentally categorize each
of your functions and methods as ei-
ther a command or a query, and doc-
ument them as such in the source
code (it helps if all commands are
grouped together and all queries are
grouped together). A routine acting
as a command will likely change the
object’s state and might also return
some useful value as a convenience.
A query just gives you information
about the object’s state—and does
not modify the object’s externally vis-
ible state. That is, queries should be
free of side effects as seen from the
outside world. Now, we might want
to do some precalculation or caching
behind the scenes as needed, but
fetching the value of x should not
change the value of y.

Command-query separation keeps
code shy; the caller doesn’t know too
much about how its command will be
performed. That means we have re-
duced coupling by some measure,
which is a good thing. Those imple-
mentation details are free to change
with less chance of affecting the caller.
Because the query methods are known
to be side effect free, we can use them
freely in unit tests and call them from
assertions or from the debugger.

The Pretty Good Idea of Demeter
The more objects you talk to, the

greater your risk of breaking when one
of those objects changes. So not only
do you want to say as little as possible
to other objects, you also want to talk
to as few other objects as possible.

A helpful tool to apply to this
problem is called the “Law of Deme-
ter for Functions,” but that’s a pretty
dogmatic name. Like most “laws” in
software development, it’s more of a
good idea than a physical constant of
the universe. This good idea suggests
that an object should only call

• Itself
• Any parameters that were passed

in to the method
• Any objects it created
• Any directly held component

objects

Conspicuous by its absence in the list
is any method belonging to objects
that were returned from some other
call, as shown in the following Java
code:

my_television.front_panel.

switches.power.on();

Direct access of a child like this
extends coupling from the caller far-
ther than it needs to be. The caller is
depending on navigating the object
model such that

• A Television object has a front
panel.

• A Front Panel has some switches.
• One of those switches is “power.”
• Power has an “on” method, which

will turn on the television.

Instead of asking for all this informa-
tion, we just want to tell the televi-
sion what to do:

my_television.power_up();

Now the caller doesn’t need knowl-
edge of my_television’s internal ob-
ject model. This higher-level call
sounds more like a user requirement
and less like an implementation detail,
which means we are programming
closer to the problem domain as well
(for more on this, see our book The
Pragmatic Programmer, Addison-
Wesley, 2000). When we discover the
additional requirement that you can
also turn the TV on using the remote
control, we have a single, authorita-
tive method to call.

The disadvantage of this approach
is that you end up writing many small
wrapper methods that do very little
but delegate container traversal and
such. The cost trade-off is inefficiency
versus higher-class coupling. In the
long run (and even in the short run in
some cases), higher-class coupling is
simply unacceptable, as that increases
the odds that any change you make
will break something somewhere else.
It doesn’t take much high-class cou-
pling to create a lot of fragile, brittle
code. In most cases, higher coupling’s
lifetime development and maintenance
costs can easily swamp any minor run-
time inefficiencies.

But for those occasions when speed
is paramount and high coupling is ac-
ceptable, couple it to the hilt! Don’t be
shy. Make it clear in the documenta-
tion that these particular classes are in-
extricably wed to each other, and why.

W riting shy code is just a small
start at preventing the introduc-
tion of bugs, but it really helps.

Just as in the real world, good fences
make good neighbors—as long as
you don’t peek through the fence.

Andy Hunt and Dave Thomas are partners in The
Pragmatic Programmer, LLC. They feel that software consultants
who cant program shouldn’t be consulting, so they keep current
by developin g complex software systems for their clients. Con-
tact them via www.pragmaticprogrammer.com.

