
Extensible Effects
An Alternative to Monad Transformers

Oleg Kiselyov

oleg@okmij.org

Amr Sabry
Indiana University, USA

sabry@indiana.edu

Cameron Swords
Indiana University, USA

cswords@indiana.edu

Abstract
We design and implement a library that solves the long-standing
problem of combining effects without imposing restrictions on their
interactions (such as static ordering). Effects arise from interactions
between a client and an effect handler (interpreter); interactions
may vary throughout the program and dynamically adapt to exe-
cution conditions. Existing code that relies on monad transform-
ers may be used with our library with minor changes, gaining effi-
ciency over long monad stacks. In addition, our library has greater
expressiveness, allowing for practical idioms that are inefficient,
cumbersome, or outright impossible with monad transformers.

Our alternative to a monad transformer stack is a single monad,
for the coroutine-like communication of a client with its handler.
Its type reflects possible requests, i.e., possible effects of a com-
putation. To support arbitrary effects and their combinations, re-
quests are values of an extensible union type, which allows adding
and, notably, subtracting summands. Extending and, upon han-
dling, shrinking of the union of possible requests is reflected in its
type, yielding a type-and-effect system for Haskell. The library is
lightweight, generalizing the extensible exception handling to other
effects and accurately tracking them in types.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Control primitives; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure

Keywords monad, monad transformer, effect handler, open union,
type and effect system, effect interaction, coroutine

1. Introduction
From the early days of the introduction of monads to the world of
functional programming [22], it was understood that monads, gen-
erally, do not compose [14, 29, 34]. A variety of ‘monad compo-
sitions’ were investigated based on Moggi’s idea of “monad mor-
phisms” [23]. Several initial designs [4–6, 29, 30] were extended by
Liang’s et al. [18] in what has become the current state of the art for
Haskell: the “monad transformers library” (MTL) (mtl-2.1.2).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Haskell ’13, September 23–24, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2383-3/13/09. . . $15.00.
http://dx.doi.org/10.1145/2503778.2503791

Monad transformers is a framework to let the programmer as-
semble monads through a number of transformers, producing a
combined effect consisting of “layers” of elementary monadic ef-
fects. As effectful operations may combine in different ways, at
each layering the programmer manually expresses how the oper-
ations of the underlying, or base, monad ‘lift’ through the current
transformer. (This idea is also investigated from a different perspec-
tive and in more depth by Filinski [7, 8].) In the standard implemen-
tation of monad transformers, each layer has overhead that adds up
over long stacks (see §4 for discussion). In addition, the layering
is determined statically and cannot easily be altered dynamically in
different parts of the program. Most importantly, some practical sit-
uations require the effects to be interleaved, wherein no complete
static layering of one effect over the other provides the desired se-
mantics.

Thus, despite its popularity, the framework of monad transform-
ers is fundamentally limited. (We review, with examples, these lim-
itations in §5.) Alternative approaches to monad transformers ex-
ist [12, 19]; the most relevant to our work is the “extensible deno-
tational language specifications” (EDLS) approach of Cartwright
and Felleisen [3] that was developed at around the same time as
the original paper on monad transformers [18]. The basic idea is to
model an effect as an interaction: a program fragment that wishes
to update a mutable variable, throw an exception, or write to a file
sends a ‘request’ to an ‘authority.’ The request describes the action
to perform and contains the ‘return address,’ a continuation, to re-
sume the requester. In the original EDLS framework, this authority,
i.e., the interpreter of requests as transformations on resources, is
not part of the user program (just as the the operating system kernel
is not part of the user’s process, and the interpreter of IO actions
in Haskell is not part of the user program). This global external
authority is in charge of all the resources (files, memory, etc.): it
interprets a request, and may either execute it on the requester’s
behalf and then continue the requester, passing to it the result –
or decline to answer, thus aborting the requester. The fundamen-
tal benefit of this approach is that the order of composing effects,
when it is irrelevant, does not need to be specified at all, and there is
no need to commit to a single, statically determined order of effect
composition. The limitations are: (i) the global external authority is
difficult to extend, (ii) effects are not encapsulated, and (iii) effects
of a computation are not reflected in its type.

Partially inspired by free monads [32] and the term algebra ap-
proach of Hughes and Hinze [9, 10], we address the three problems
above:

• We replace the central, inflexible authority by a distributed,
automatically extensible, “bureaucracy” that is part of the user
program. Following the work on algebraic handlers [1, 25], we
call each partial authority (that controls some resources and
interprets some requests) a handler. Each such handler is both
the authority for its client part of the program and a client itself:

if a handler receives a request it does not understand, it relays
the request to an “upstream” handler.
• Second, and more importantly, we develop an expressive type-

and-effect system that keeps track of which effects are currently
active in a computation. This system maintains an open union
(a type-indexed coproduct of functors) containing an unordered
collection of current effects. The action of each handler is
reflected in the type by removing the effects that have been
handled, and thus the type system can guarantee that a full
program does not contain “dangling effects.”

Our primary contributions are:

• a user-level effect framework modeled after the MTL syntax
that allows effects to be combined in any order and even in-
terleaved in ways that are impossible in the standard monad
transformer approach; the system is realized as a Haskell li-
brary using common extensions: developers may immediately
start using it with minimal syntactic changes to existing pro-
grams;
• a detailed analysis of the expressiveness problems of monad

transformers that cause subtle bugs in real programs;
• a novel implementation of an extensible, constant-time, open

union type facility that sits at the center of the effect handler
system;
• a system built around the new open union facility that provides

mechanisms for adding, using, and removing effects dynami-
cally across programs, yielding an effect system far more ex-
pressive than the current Haskell approach based on the MTL.

To summarize, the resulting design improves on both monads trans-
formers and EDLS, facilitating more flexible interactions of ef-
fects that are accurately tracked by the type system. The com-
plete Haskell implementation along with illustrations and warm-
up examples can be found at http://okmij.org/ftp/Haskell/
extensible/. We shall refer to this code throughout the paper,
quoting relevant excerpts.

The remainder of the paper is structured as follows. We begin
with a high-level “tour” of our extensible effects framework that
introduces its programmer-level interface with a variety of small
examples (§2). The next section (§3) provides the full semantics
and explains the key components of the implementation. Then, §4
confirms that our design can simulate the full MTL and §5 uses
several advanced examples to illustrate that our design goes beyond
the MTL in expressiveness. We conclude after a comparison with
related work.

2. A Tour of the Extensible Effects Framework
We start with a few examples to give a feel for our library of
extensible effects and demonstrate its use. (The complete code
Eff.hs accompanies the paper.) The library is implemented on top
of a tiny core described in §3.4 and is designed to look like the
MTL [24, Chap. 18] familiar to every Haskell programmer. This
MTL-like interface is presented in Fig. 1. The two main points of
interest are that (i) all effectful computations are represented by a
monad Eff r, and that (ii) the type parameter r is an open union of
individual effects whose components must be Typeable. This r may
intuitively be thought of as the set of effects that computations may
perform. We shall see later that effects are represented by requests,
hence the name r.

There are two basic ways of indicating that an effect m is part of
this open union r.1 The first is via a type constraint (Member m r);

1 There are more advanced ways like MemberU2 t (t m) r described below
in more detail.

instance Monad (Eff r)

−− Pure computations
data Void
run :: Eff Void w → w

−− Reader (or environment) effect
type Reader e
ask :: (Typeable e, Member (Reader e) r) ⇒ Eff r e
local :: (Typeable e, Member (Reader e) r) ⇒

(e → e) → Eff r w → Eff r w
runReader :: Typeable e ⇒

Eff (Reader e B r) w → e → Eff r w

−− Exceptions
type Exc e
throwError :: (Typeable e, Member (Exc e) r) ⇒ e → Eff r a
catchError :: (Typeable e, Member (Exc e) r) ⇒

Eff r w → (e → Eff r w) → Eff r w
runError :: Typeable e ⇒

Eff (Exc e B r) w → Eff r (Either e w)

−− State
type State s
get :: (Typeable s, Member (State s) r) ⇒ Eff r s
put :: (Typeable s, Member (State s) r) ⇒ s →
Eff r ()
runState :: Typeable s ⇒

Eff (State s B r) w → s → Eff r (w,s)

−− Non−determinism
type Choose
choose :: Member Choose r ⇒ [w] → Eff r w
makeChoice :: Eff (Choose B r) w → Eff r [w]

−− Tracing
type Trace
trace :: Member Trace r ⇒ String → Eff r ()
runTrace :: Eff (Trace B Void) w → IO w

−− Built−in effects (e. g., IO)
type Lift m
lift :: (Typeable1 m, MemberU2 Lift (Lift m) r) ⇒

m w → Eff r w
runLift :: (Monad m, Typeable1 m) ⇒

Eff (Lift m B Void) w → m w

Figure 1. The interface of the library of extensible effects

this indicates that the effect m is an element of the set r. The second
is via an explicit pattern (m Br’) that decomposes the union r
into the effect m and the remaining effects r’; this is analogous
to {m} ∪ r′. We may think of Void as ∅, i.e., a computation
of type (Eff Void a) is pure. In contrast, a computation of type
(Eff (Reader Int BReader Bool BVoid) a) may access two
environments: one of type Int and one of type Bool.

As a small example, consider the computation t1 below2:
t1 :: Member (Reader Int) r ⇒ Eff r Int
t1 = do v ← ask

return (v +1:: Int)

Given the type annotations on the otherwise polymorphic numeric
constant, the inferred type of t1 indicates that t1 returns an Int
after potentially manipulating an environment containing an Int.
The fact that r includes, at least, the Reader Int effect is expressed
by the constraint (Member (Reader Int) r). The operation ask

2 Recall that numeric literals are polymorphic. A type annotation indicates
that we are asking specifically the Reader Int effect layer, out of many
possible Reader layers. Instead of annotating 1 we could have annotated
the binding v. The annotations can be avoided altogether, at the expense of
flexibility, see §4.

(from the Reader monad) inquires about the current value in the
environment and t1 returns the incremented value.

We can execute the computation t1 by providing it with an ini-
tial value for the environment, e.g., runReader t1 (10 :: Int). The
inferred type for this expression is (Eff r Int) without further con-
straints: the Reader Int effect has been handled and hence ‘sub-
tracted’ from the open union. In this particular case, there are no
remaining effects, and the pure computation can be run to produce
a plain Int. In contrast, run t1 gives a type error.

t1r = run $ runReader t1 (10:: Int)
−− 11

t1rr ’ = run t1
−− No instance for (Member (Reader Int) Void)
−− arising from a use of 8 t1’

The types thus constitute an effect system that ensures that all
effects must be handled.

At the expression level, the code for the computation t1 is iden-
tical to an MTL-based implementation. At the type level, the con-
straint (Member (Reader Int) r) looks quite like the MonadReader
constraint. In fact, we may even define the MonadReader instance
for the Eff r monad. However, Eff r is more general; as described
above, r may contain an arbitrary number of Reader effects:3

t2 :: (Member (Reader Int) r, Member (Reader Float) r) ⇒
Eff r Float

t2 = do
v1 ← ask
v2 ← ask
return $ fromIntegral (v1 + (1:: Int)) + (v2 + (2:: Float))

Each occurrence of ask obtains the value from its own environment,
which it finds by type (here Int vs Float). We cannot write t2 as
it is with monad transformers: with two Reader effects, monad
transformers compel us to choose the order and then use the explicit
lift. In contrast, the inferred signature for t2 indicates no ordering
of the two Reader effects.4 The order is determined only when we
run the computation:

t2r = run $ runReader (runReader t2 (10:: Int)) (20:: Float)
−− 33.0

One may swap the two occurrences of runReader to handle the ef-
fects in the opposite order (in this particular case, without affecting
the result).

In the presence of control effects such as exceptions, the order
of effect handling does matter. The computation incr below incre-
ments the Int state using the MTL-like operators get and put and
tes1 combine this state manipulation with exceptions:

incr :: Member (State Int) r ⇒ Eff r ()
incr = get �= put ◦ (+ (1:: Int))

tes1 :: (Member (State Int) r, Member (Exc String) r) ⇒
Eff r a

tes1 = do incr; throwError ”exc”

The inferred signature for tes1 shows that the two effects ‘combine’
in no particular order: to run tes1 we must handle both the State
and Exc effects; we must choose which to handle first. Unlike our
previous example, the choice matters (as indicated by the types):

ter1 :: (Either String String , Int)
ter1 = run $ runState (runError tes1) (1:: Int)
−− (Left ”exc”,2)

ter2 :: Either String (String , Int)
ter2 = run $ runError (runState tes1 (1:: Int))
−− Left ”exc”

3 The MonadReader’s version, however, requires fewer type annotations
on polymorphic numerals, see §4 for discussion.
4 The order of type class constraints in a type signature is insignificant.

Whereas ter1 preserves the state accumulated at the point of ex-
ception, ter2 discards it; the first semantics models the conven-
tional “hard-wired” interactions of state and exceptions in many
languages (e.g., Scheme, ML, Java, etc.) while the second seman-
tics models a situation in which exceptions indicate failed “trans-
actions” and hence requiring the state to snap back to its original
value.

Here is another example of multiple effects: a higher-order
function that applies an effectful function f to each element of a
list, printing the debugging trace:

mapMdebug:: (Show a, Member Trace r) ⇒
(a → Eff r b) → [a] → Eff r [b]

mapMdebug f [] = return []
mapMdebug f (h:t) = do
trace $ ”mapMdebug: ” ++ show h
h’ ← f h
t’ ← mapMdebug f t
return (h’: t’)

add :: Monad m ⇒ m Int → m Int → m Int
add = liftM2 (+)

tMd = runTrace $ runReader (mapMdebug f [1..5]) (10:: Int)
where f x = ask 8add8 return x

The inferred type shows that the Trace effect is added to whatever
effects f may produce; the example tMd uses f with an environment
effect. We see the composability of effects: two independently
developed pieces of code and their effect types are seamlessly used
in a context that tracks both effects.

Our framework can be used with an existing monadic library
(either user-developed or built-in, such as IO). For example,

tl1 :: (MemberU2 Lift (Lift IO) r , Member (Reader Int) r) ⇒
Eff r ()
tl1 = ask �= \x → lift ◦ print $ (x+1:: Int)

combines Reader and IO effects in some order, as clearly seen from
the inferred type of tl1. Thus an effect of some monad m is notated
as (Lift m) in our framework. Since arbitrary monads do not gen-
erally compose, there may be at most one Lift effect in a given com-
putation, which is what the constraint MemberU2 Lift (Lift m) r
on lift indicates, see Fig. 1. Therefore, we could have imple-
mented the debugging mapMdebug in the previous example with
the (Lift IO) effect instead of Trace, replacing the trace line in
mapMdebug with lift (print h). The new mapMdebug can be
used as before, combining the effects of the mapping function f
with IO.

This briefly-described framework is also fully extensible: the
interface of Fig. 1 is implemented as a user library that the pro-
grammer may extend at will. We will examine more advanced ex-
amples after we explain our approach in detail and contrast it with
the limitations of monad transformers.

3. The Extensible Effects Framework
We now present an implementation of the the interface in Fig. 1
and explain the key design decisions. It is organized as follows:
§3.1 introduces the basic concepts underpinning our approach by
demonstrating a single effect, Reader Int. Then, §3.2 generalizes
this approach to handle a fixed but arbitrary effect and §3.4 takes
this one step further, generalizing the approach to handle many, ar-
bitrary effects (accomplished via open unions, described in §3.3).
The following sections demonstrate our framework with more ex-
amples and contrast it with monad transformers in expressiveness
and efficiency.

3.1 Reader Effect as an Interaction with a Coroutine
As a soft introduction to our approach, we implement the single,
simplest effect: obtaining a (dynamically-bound) Int value from

the environment. We view effects as arising from communication
between a client and an effect handler, or authority. This client-
handler communication adheres to a generic client-server commu-
nication model, and thus may be easily modeled as a coroutine: a
computation sends a request and suspends, waiting for a reply; a
handler waits for a request, handles what it can, and resumes the
client. We use the continuation monad to implement such corou-
tines:

newtype Eff a = Eff{runEff :: ∀ w. (a → VE w) → VE w}
instance Monad Eff where

return x = Eff $ \k → k x
m �= f = Eff $ \k → runEff m (\v → runEff (f v) k)

data VE w = Val w | E (Int → VE w)

ask :: Eff Int
ask = Eff (\k → E k)

admin :: Eff w → VE w
admin (Eff m) = m Val

runReader :: Eff w → Int → w
runReader m e = loop (admin m) where
loop :: VE w → w
loop (Val x) = x
loop (E k) = loop (k e)

The type Eff a is the type of computations that perform control ef-
fects instantiated to answer types (VE w) for polymorphic w (short
for Value-Effect, indicating the two types that make up the signa-
ture). The answer type shows that a computation may produce a
value (alternative (Val w)) or send a request to read the Int envi-
ronment. This request, when resumed, continues the computation,
which then recursively produces another answer of type (VE w)
(or diverges). The function admin launches a coroutine with an ini-
tial continuation expecting a value, which, unless the computation
diverges, must be the ultimate result.

The handler runReader launches the coroutine and checks its
status. If the coroutine sends an answer, the result is returned. If
the coroutine sends a request asking for the current value of the
environment, that value e is given in reply. The operation ask sends
a request that retrieves the current value from the environment as
follows: it obtains the current continuation (the ‘return address’)
and incorporates it into the request, constructing the Int → VE w
function that will be invoked by runReader to produce the final
answer.

The remaining Reader operation is local, which runs a compu-
tation in a changed environment (cf. local of the Reader monad).

local :: (Int → Int) → Eff w → Eff w
local f m = do

e0 ← ask
let e = f e0
let loop (Val x) = return x

loop (E k) = loop (k e)
loop (admin m)

On one hand, local must handle Reader requests, similar to
runReader, and on the other, local must send Reader requests
to obtain the environment value to modify. As a result, the type of
local, unlike the type of runReader, does not promise to remove
the Reader effect5.

3.2 Coroutines for an Arbitrary Effect
We now extend our framework to handle other effects. For example,
we may model boolean exceptions: we send the exception value

5 Here local can easily be written in terms of runReader. In the full library,
§3.4, the two functions have to be implemented separately because run-
Reader, as a full handler, forces the Reader effect layer to be the topmost
so to remove it, whereas local does not.

as a request without specifying the return address (since no re-
sumption is expected). The status type for such exception-throwing
coroutines can be expressed as:

data VEex w = Val w | E Bool

If we instead wish to non-deterministically choose an element from
a given list, we send the request that includes the list and the return
address expecting one element in reply:

data VEch w = Val w | ∀a. E [a] (a → VEch w)

Examining the status type for coroutines servicing Reader,
choice, and Exc requests, we observe that the status always in-
cludes the Val w alternative for normal termination and some form
of E alternative carrying a request. The request typically includes
the return address of the form (t → VE effect w) where t, the
expected reply type, depends on the request and the result type,
(VE effect w), is the status type of the coroutine. Abstracting this
approach, the general type for coroutine status is revealed:

data VE w r = Val w | E (r (VE w r))

The type variable r :: ∗ → ∗ describes a particular request. For
example, the Reader requests in §3.1 instantiate r with (Reader e):

newtype Reader e v = Reader (e → v)

It may be surprising that the ‘type’ of the effect is actually a type
constructor of kind ∗ → ∗ , constructing the type of the request
from the status type of the coroutine. However, this follows directly
from the recursive nature of the request type—an open recursive
type. This type, described in the next section, will allow us to
compose arbitrary effects.

Using this rich type, we easily generalize our monad coroutine
library in §3.1 to arbitrary requests:

newtype Eff r a = Eff{runEff :: ∀ w. (a → VE w r) → VE w r}
instance Monad (Eff r)

send :: (∀ w. (a → VE w r) → r (VE w r)) → Eff r a
send f = Eff $ \k → E (f k)

admin :: Eff r w → VE w r
admin (Eff m) = m Val

The coroutine monad is indexed by the type of requests r that the
coroutine may send. The function send dispatches these requests
and waits for a reply. It obtains the suspension k of the current
computation (a return address of type a → VE w r), passes k to the
user-specified request builder f obtaining the request body (of the
type r (VE w r)), incorporates it into the request E, and delivers it
to the waiting admin. The coroutine library, along with open unions
(see §3.3), provide the entire groundwork for our effect system: the
rest of the code, implementing various effects (monads), may all be
written by the user. We demonstrate two such effects below (and
more in §5.4):

The first example monad is similar to the Identity monad: it
describes pure computations that contain no effects and send no
requests. We designate Void as the type of “no request.” This type
is not populated and thus no requests are possible:

data Void v −− no constructors

run :: Eff Void w → w
run m = case admin m of Val x → x

The function run serves as the handler for pure computations,
returning their results. The type of run indicates that no effects are
possible and no requests are expected; only pure computations can
be run.

The effect of reading an environment from §3.1 is reimple-
mented with the generalized coroutine library as follows:

newtype Reader e v = Reader (e → v)
ask :: Eff (Reader e) e
ask = send Reader

runReader :: ∀ e w. Eff (Reader e) w → e → Eff Void w
runReader m e = loop (admin m) where
loop :: VE w (Reader e) → Eff Void w
loop (Val x) = return x
loop (E (Reader k)) = loop (k e)

The signature of runReader indicates that it takes a computation
that may send (Reader e) requests and completely handles them.
The result is the pure computation with nothing left unhandled.

Thus defined, Eff Reader can be used exactly like the Reader
monad defined in MTL:

t1 :: Eff (Reader Int) Int
t1 = ask 8add8 return (1:: Int)

The inferred type of t1 betrays it as an effectful computation.
The type checker prevents running it—the computation may send
requests, which must be handled first:

t1r :: Eff Void Int
t1r = runReader t1 10

The inferred type indicates that t1r is pure, and so run t1r is well-
typed and its evaluation produces the final result, 11.

3.3 Open Unions
With our general, single-effect system, we now turn our focus
to including more effects in a single computation. Recall that, to
perform an effect r, the computation sends a request of that type to
the handler. The type of such computation, Eff r a, is indexed by
the type r of possible requests. Thus a computation that performs
requests r1 and r2 may send requests of type r1 or r2. Therefore
the request itself is a disjoint union, or sum, of r1 and r2. If a
programmer can add new request types at will, this sum must be
extensible: an open union. Our open union should be a type-indexed
co-product [15, 28]: projecting a value not reflected in the union
type is guaranteed to fail and thus should be statically rejected.

The open unions we designed are abstract: the user of the exten-
sible effects framework sees the following interface:

type Union r :: ∗ → ∗ −− abstract

infixr 1 B
data ((a :: ∗ → ∗) B b)

class Member (t :: ∗ → ∗) r

inj :: (Functor t, Member t r) ⇒ t v → Union r v
prj :: (Functor t, Member t r) ⇒ Union r v → Maybe (t v)
decomp :: Union (t B r) v → Either (Union r v) (t v)

The framework employs open unions for requests (whose types
have the kind ∗ → ∗). The open union is annotated with the set r of
request types that may be in this union. These sets are constructed
as follows: Void stands for the empty set, and t Br inserts t in
the set r. We also provide a type-level assertion (a type class with
no members) Member t r that can be used to assert that the set r
contains the request t without revealing the structure of r.

The three functions inj, prj, and decompose have the follow-
ing explanation. The injection, inj, takes a request of type t and
adds it to the union r. The constraint Member t r ensures that t
participates in the union. (The Functor constraint is explained in
§3.4.) The projection prj does the opposite. Given a value of type
Union (tBr) that may have a summand of the type t, the orthogo-
nal decomposition decomp determines if the value has that request
type t. If it does, it is returned. Otherwise, the union value is cast to
a more restrictive Union r type without t—we have just determined
the value is not of type t. Thus decomp projects Union r into two
orthogonal “spaces:” one for the particular type t and the other for r
without t. This operation sets our open unions apart from previous
designs [18, 32]: we can, not only extend unions, but also shrink
them. The decomposition also distinguishes our open unions from
the extensible polymorphic variants of OCaml. The operation inj is

used when sending a request, and prj and decomp when handling a
request (as demonstrated in §3.4).

The internals of the implementation are not visible to users.
There are several possible implementation approaches that would
be indistinguishable by the user: we provide an implementation
similar to the one for HList [15]. Here is a brief summary6:

data Union r v where
Union :: (Functor t, Typeable1 t) ⇒ Id (t v) → Union r v

newtype Id x = Id x −− for the sake of gcast1
instance Functor (Union r) where ...

inj :: (Functor t, Typeable1 t, Member t r) ⇒
t v → Union r v

inj x = Union (Id x)

prj :: (Functor t, Typeable1 t, Member t r) ⇒
Union r v → Maybe (t v)

prj (Union v) | Just (Id x) ← gcast1 v = Just x
prj = Nothing

decomp :: Typeable1 t ⇒
Union (t B r) v → Either (Union r v) (t v)

decomp (Union v) | Just (Id x) ← gcast1 v = Right x
decomp (Union v) = Left (Union v)

class Member (t :: ∗ → ∗) r
instance Member t (t B r)
instance Member t r ⇒ Member t (t’ B r)

The implementation of the type Union r v is essentially Dynamic,
and thus the constraint Typeable1 t is added to inj and prj signa-
tures. The type parameter r, the set of requests participating in the
union, is a phantom parameter. This union implementation is not
directly accessible to the users: data constructor Union is not ex-
ported. The operations inj, prj and decomp are the only way for
the users to deal with the open unions. Since r is phantom, the
type class (Member t r) indeed does not need any members; it is
a compile-time constraint with no run-time footprint. Member is
also a closed class – the two instances shown here are the entirety –
and the users of open unions never make instances of the class.
The class Member here permits duplicates, which are harmless, al-
lowing nesting of handlers for the same request. A request will be
handled by the dynamically closest handler. With three more lines
of code, see [15], duplicates can be disallowed.

Since Member is a compile-time–only constraint and gcast1
only needs to compare two Typeable.TypeRep elements, the
running-time of inj and prj is constant (with respect to the size
of the union). In contrast, the previously developed libraries of
open unions [18, 32] have linear-time projections and injections.

3.4 The Full Library of Extensible Effects
We now present a full library of extensible effects. Its core is built
upon the Eff monad and open unions; defining effects and their in-
teractions is all done by the users. Since effects such as Reader, ex-
ceptions, non-determinism, etc. are common, we implement them
ourselves by way of example (see Fig. 2) and we provide a few
helpers for convenience.

The full library is similar to the example in §3.1, extended with
open unions to support multiple effects. The open union is clearly
indicated in the data type VE w r: the type of the sent request is
Union r, describing the status of the handled computation.

We start by looking at the Reader effect. The request type
Reader is identical to that of §3.1. Its sender, the operation to ask
for the value of the current environment, now injects the request
value into the union. This is reflected in the type of ask as compared

6 See the file OpenUnion1.hs in the accompanying code for the complete
implementation.

Sending and receiving requests, running pure code
data VE w r = Val w | E (Union r (VE w r))

admin :: Eff r w → VE w r
send :: (∀ w. (a → VE w r) → Union r (VE w r)) → Eff r a

run :: Eff Void w → w
run m = case admin m of Val x → x

Helpers to relay unrecognized requests
handle relay :: Typeable1 t ⇒

Union (t B r) v → (v → Eff r a) →
(t v → Eff r a) → Eff r a

handle relay u loop h = case decomp u of
Right x → h x
Left u → send (\k → fmap k u) �= loop

interpose :: (Typeable1 t, Functor t, Member t r) ⇒
Union r v → (v → Eff r a) →
(t v → Eff r a) → Eff r a

interpose u loop h = case prj u of
Just x → h x

→ send (\k → fmap k u) �= loop

Reader effect
newtype Reader e v = Reader (e → v)

deriving (Typeable, Functor)

ask :: (Typeable e, Member (Reader e) r) ⇒ Eff r e
ask = send (inj ◦ Reader)

runReader :: Typeable e ⇒
Eff (Reader e B r) w → e → Eff r w

runReader m e = loop (admin m) where
loop (Val x) = return x
loop (E u) =
handle relay u loop (\(Reader k) → loop (k e))

local :: (Typeable e, Member (Reader e) r) ⇒
(e → e) → Eff r a → Eff r a

Exceptions
newtype Exc e v = Exc e

deriving (Functor, Typeable)

throwError :: (Typeable e, Member (Exc e) r) ⇒ e → Eff r a
throwError e = send (\ → inj $ Exc e)

runError :: Typeable e ⇒ Eff (Exc e B r) a →
Eff r (Either e a)

catchError :: (Typeable e, Member (Exc e) r) ⇒
Eff r a → (e → Eff r a) → Eff r a

Non-determinism
data Choose v = ∀a. Choose [a] (a → v)
choose :: Member Choose r ⇒ [a] → Eff r a
makeChoice :: Eff (Choose B r) a → Eff r [a]

Tracing (for debugging)
data Trace v = Trace String (() → v)
trace :: Member Trace r ⇒ String → Eff r ()
runTrace :: Eff (Trace B Void) w → IO w

Figure 2. The library of extensible effects

with the single-effect framework. The Reader handler uses the
helper handle relay to deal with arbitrary requests. In general a
request goes from one handler to the next until the appropriate
handler is found. The pattern of analyzing a request, finding if its
type is known to the handler, and re-sending unknown requests is
so common that we incorporate it into a function handle relay. This
helper function is used throughout the library. Its variant, interpose,
which does not ‘shrink’ the request type upon relay, is used in
handlers that are also senders of the same request, like local.

The desugared version of the Reader handler is as follows:
runReader :: Typeable e ⇒

Eff (Reader e B r) w → e → Eff r w
runReader m e = loop (admin m) where
loop (Val x) = return x
loop (E u) = case decomp u of

Right (Reader k) → loop (k e)
Left u → send (\k → fmap k u) �= loop

As in §3.1, the return type shows that all Reader e requests are
fully handled; the runReader computation may have other requests,
though, represented by r. The runReader handler, as before, obtains
the status of the client computation using admin and analyzes it,
handling three possible cases:

1. If the client completed, its result is returned.

2. If the client sent a request, we check if it is a Reader request. If
so, the client is resumed with the current value of the dynamic
environment. The client may then terminate or send another
request, hence we loop.

3. If the request is not a Reader request, we re-send it. That other
request, u, must have contained the return address, the suspen-
sion of the type t → VE w (Reader e Br). When re-sending
the request, runReader obtains its own suspension k, which has
the type VE w (Reader e Br) → VE w’ r. We must some-
how compose the two suspensions, to obtain t → VE w’ r.
When runReader’s handler resumes it, the runReader’s client
is resumed.

The problem is how to compose k with the suspension that must be
somewhere in the request u, given that we have no idea what u is
(not even its concrete type). Recall that all requests are described
by type constructors of kind ∗ → ∗ . The full type of the request
is obtained by applying the type constructor to the status type of
the required computation. In our case, the full type of the unknown
other request u is Union r (VE w (Reader e Br)). The composi-
tion with runReader’s own suspension should produce the request
of the type Union r (VE w r). The problem is solved if Union r
is a functor so that we can use fmap k u since k has exactly the
right type VE w (Reader e Br) → VE w r. The type construc-
tor Union r is a functor of each request type, this demonstrates the
need for the Functor t constraint on inj and prj functions in §3.3.
Since Union r is a functor, VE· r is a free monad induced by the
functor. The monad Eff r then looks like a combination of the co-
density monad and the free monad.

Other effects and their handlers follow the Reader pattern. The
exception effect Exc is simpler to handle since the sender is not ex-
pecting to be resumed. The exception recovery catchError is quite
like local; the exception handler may re-throw the exception. The
non-determinism effect Choose is also familiar. We take choose to
be a primitive operation (the sender of Choose effects), for non-
deterministically choosing a value from a given list. The familiar
mplus and mzero are trivially expressed in terms of choose. The
handler makeChoice for Choose effects produces a list, of the re-
sults of all successful choices. Presently the handler is simplistic,
using depth-first search, like that of the List monad. Programmer
may write their own handlers with more sophisticated search strate-

gies. A computation that sends Choose requests can be handled
with a variety of handlers.

4. Simulating the Full MTL
As demonstrated in §2 and the interface described in §3.4, our
framework expresses code that is commonly written with monad
transformers and the MTL. We have already provided several ex-
amples of Reader, State and exception effects. This section shows
how our framework expresses two common and advantageous uses
of MTL: adding a Reader etc. effect to an arbitrary monad (‘lift-
ing’) and ‘classes’ of MTL effects such as MonadReader. The ac-
companying code has more examples of expressing MTL idioms.
We see once again that code written with monad transformers may
be easily translated to our framework with minimal changes.

4.1 Type Classes for Monadic Effects
Liang et al [18] introduced type classes providing individually-
tailored methods as primitive operations associated with each
monadic effect. For example, (MonadReader e m) is a type class
for monads m with the Reader effect, which access an environ-
ment of type e, providing primitive Reader operations ask and
local. MTL is based on this style of effect type classes, and
with good reason: the benefit is that the code that uses ask and
local may be polymorphic over the monad m, requiring only the
(MonadReader e m) constraint. Our framework provides a similar
flexibility. Even further, classes like MonadReader may be imple-
mented as concrete, stand-alone monads by hiding the Open Union
(and thus flexibility).

The type class (MonadReader e m) has a functional depen-
dency constraining m to uniquely determine the type of the en-
vironment e. A MonadReader may have only one layer of Reader
effects. The advantage is that fewer type annotations are needed.
For example, in the expression local (+1) (liftM (+2) ask) both
ask and local refer to the same monad. In MTL, these expressions
refer to the same environment (here a numeric type).

Our interface for ask and local (see Fig. 1), however, does not
restrict the number of Reader effects. Therefore local (+1) and
ask in the above code may refer to numerals of different types (one
Int and another Float, for example). If we intend the two operations
to deal with the same environment, we must add annotations (e.g.,
annotating both 1 and 2 in the above code to be Int). In short
programs, we must generally annotate all polymorphic literals such
as numerals (long programs usually have enough context to infer
the correct type).

Thus MonadReader in MTL is less expressive (insisting on
a single Reader effect for a given monad) but more convenient
(requiring few annotations). The interface in Fig. 1 makes the
opposite trade-off. Still, extensible effects can implement the less
general but more convenient MonadReader interface (and similar
MonadState and MonadError): simply import our Eff library and
define the Eff r monad as an instance of MonadReader.

import qualified Eff as E
instance (MemberU Reader (Reader e) r, Typeable e) ⇒

MonadReader e (Eff r) where
ask = E.ask
local = E.local

The constraint MemberU Reader (Reader e) r requires that the
open union of effects r must have the unique Reader effect with
environment type e. The user of our framework thus has the choice
of which of the two Reader interfaces to use. The file ExtMTL.hs
in the accompanying code demonstrates many examples of this
approach to MTL monad classes in our framework. They have
exactly the same look and feel as their MTL counterparts, and
fewer annotations are required than our examples in Eff.hs.

4.2 Lifting from Arbitrary Monads
A valuable and prevalent feature of monad transformers is adding
effects to arbitrary monads, either developed by the user or built-in
(such as IO, ST, STM). For example, with MTL, ReaderT Int IO
is a monad that combines IO operations with accessing an Int en-
vironment. IO actions in such a transformed monad have to be
‘lifted’ (prefixed with lift or liftIO), rendering such a transforma-
tion less than transparent and requiring systematic changes across
entire programs. (Furthermore, IO operations like catch for catch-
ing exceptions may be impossible to use in the transformed monad,
in general.)

Extensible effects have exactly the same feature with the same
limitations. We may add Reader, State, generator, and other effects
to an arbitrary monad m. As with MTL, actions m a will have to
be lifted (and operations that take m a actions as arguments will
require ad hoc work-arounds or may be impossible to use—as was
the case with monad transformers in the Lüth et al [19] approach.)

Although lifting looks identical to MTL, it means a different
thing. The operation lift m sends the action m for execution to
the Lift handler:

data Lift m v = ∀a. Lift (m a) (a → v)

lift :: (Typeable1 m, MemberU2 Lift (Lift m) r) ⇒
m a → Eff r a

lift m = send (inj ◦ Lift m)

The handler receives the request, extracts and executes the action
and sends its result back:

runLift :: (Monad m, Typeable1 m) ⇒
Eff (Lift m B Void) w → m w

runLift m = loop (admin m) where
loop (Val x) = return x
loop (E u) = case prj u of

Just (Lift m k) → m �= loop ◦ k
−− Nothing cannot occur

Thus in our approach, the effects of a monad m are treated just as
any other effects in our framework. There is an important difference
though: since arbitrary monads generally do not compose there
may be at most one Lift layer. The type of runLift makes it a
“terminal handler” for computations that have Lift m and no other
effects. The constraint MemberU2 Lift (Lift m) r on lift ensures
the uniqueness of the Lift layer. We saw the examples of lifting
from the IO monad in §2.

4.3 Efficiency
Each layer of monad transformers adds overhead. For example,
a built-with-MTL monad ReaderT Int (StateT Float) Identity
that combines Int environment and Float state has the type, after
desugaring, Int → (Float → (Identity a, Float)). Therefore
each return must build two closures and each bind has to apply
them. Exchanging the order of the two layers changes the type, yet
the overhead of two closures remains. Chances are, however, that
only a small part of the overall computation accesses the environ-
ment or the state. Nevertheless, the entire computation has to pay
the overhead of building and applying closures. Everyone pays for
the needs of the few. More transform layers further increase this
overhead. Our framework of extensible effects propagates requests
for effects through a chain of handlers. The overhead depends on
the number of other handlers between the requester and its han-
dler, but not on the total number of handlers. The benchmarks
Benchmarks.hs confirm that adding more handlers increases the
overhead in the worst case, or does not affect the performance in
the best case. With MTL, adding more layers always increases
overhead (and the increase is larger than that in our framework).

5. Beyond the MTL
So far it may appear that our framework is just a version of MTL
with more convenient lifting. Our framework goes beyond MTL,
as we shall see in this section. It begins by showing where MTL
falls short. Although these limitations are rarely talked about, they
are very real: common programming patterns exhibiting interleav-
ing of effects are sometimes complex and inefficient (§5.1), or
even impossible to express (§5.2) when using monad transformers.
Our framework deals with these situations in an efficient, straight-
forward way.

5.1 Inflexible Semantics of Monad Transformers
This section demonstrates a simple example of raising and handling
a single exception that, surprisingly, can only be implemented with
two ErrorT monad transformer layers, imposing extra run-time
overhead on the entire computation.

In the absence of other effects, an exception aborts all interme-
diate computations up to the dynamically closest handler. The situ-
ation is however more subtle when exceptions are used in the pres-
ence of other effects. As illustrated in §2, there are two reasonable
semantics for the combination of exceptions and state: either the as-
signments are maintained during the error handling or not. An even
more subtle situation occurs in the presence of non-deterministic
computations: should the exceptions be confined to each branch
of the non-deterministic computation or can an exception be used
to abort an entire collection of non-deterministic choices? We will
study this latter situation in detail.

Concretely, we consider a computation of type m Int for some
arbitrary monad m and add an exception effect as follows: if the
underlying computation returns a value greater than 5, an exception
is thrown. The intended semantics is that the exception aborts the
rest of the m-computation. This will already prove non-trivial but
possible. The next step will then be to add a handler that catches
the exception, analyzes it, and either recovers by resuming the
normal control flow or re-throwing the exception. Hopefully we can
implement both the exception throwing and handling generically,
assuming as little as possible about the monad m.

The first part of the example is implemented in MTL in the
straightforward way

newtype TooBig = TooBig Int deriving (Show)

ex2 :: MonadError TooBig m ⇒ m Int → m Int
ex2 m = do

v ← m
if v >5 then throwError (TooBig v)

else return v

imposing no structure on the monad m other than it must support
throwing TooBig exceptions. We test the guard ex2 by applying it
to a non-deterministic computation of choosing an integer from the
list, where:

choose :: MonadPlus m ⇒ [a] → m a
choose = msum ◦ map return

To run the test ex2 (choose [5,7,1]) we have to pick the monad m
that satisfies the MonadError and MonadPlus constraints. MTL
lets us build such a monad by composing monad transformers each
responsible for an individual effect. In our case, by applying layers
ErrorT TooBig and ListT to a base monad, Identity 7.

The layers ErrorT and ListT can be composed in two dif-
ferent orders, with different behaviors. One composition order
gives the computation type (ErrorT TooBig (ListT Identity)) a.

7 We will be using ListT for non-determinism even though it is not strictly
speaking a monad transformer since ListT m is a monad only when m is
a commutative monad. However, ListT is simple and is part of the MTL
canon, and for the purposes of our examples, ListT is a good enough
approximation of a monad transformer.

If we expand the type abbreviations and elide Identity, we obtain
[Either TooBig a] – the type of non-deterministic computations
in which each choice can either produce a value or the TooBig
exception. The exception is hence confined to a non-deterministic
choice. Our example calls for the exception to abandon the com-
putation completely. We should use then the opposite order of
monad layers, ListT (ErrorT TooBig Identity) a, which desug-
ars to Either TooBig [a] – the type of computations that either
produce the TooBig exceptions or the list of non-deterministic
choices. This order of monad transformers arises from the com-
position of the run functions of Identity, ErrorT and ListT in that
order:

ex2 1 = runIdentity ◦ runErrorT ◦ runListT $ ex2 (choose [5,7,1])
−− Left (TooBig 7)

The result, shown in the comments, is as desired.
The second part of our example calls for catching the exception

and recovering from it in some cases:
exRec :: MonadError TooBig m ⇒ m Int → m Int
exRec m = catchError m handler
where handler (TooBig n) | n ≤ 7 = return n

handler e = throwError e

This wrapper checks if the argument computation ends in a TooBig
exception, but the value was not really too large. If so, we recover;
otherwise, the exception is re-thrown. Adding this wrapper to the
previous example ex2 1

ex2r 1 = runIdentity ◦ runErrorT ◦ runListT $

exRec (ex2 (choose [5,7,1]))
−− Right [7]

gives a surprising and undesirable result. Our intention was to re-
cover from the exception! The computation choose [5,7,1] makes
three non-deterministic choices: the first ex2 (return 5) throws
no exceptions, and so the overall result is Right [5]; in the sec-
ond choice, exRec (ex2 (return 7)), an exception is thrown but it
is caught, so we expect Right [7]; the last choice gives Right [1].
Collecting the choices, we expected the result to be Right [5,7,1].
That is, we expected the choice operator to be lifted ‘up’. Obvi-
ously, that is not what happened: the exception is recovered from,
but all other choices got lost.

The reason for our failure is that part 1 of the example needs
such order of ErrorT and ListT layers so that the exception aban-
dons non-deterministic choices. When we recover from the excep-
tion, the choices have already been irrecoverably lost. For the re-
covery to act as if the exception never happened, preserving the
choices, the opposite order of ErrorT and ListT layers is needed.
A single program needs two different orders of monad transform
layers.

The example can be implemented with MTL, rather counter-
intuitively, using the type:

ErrorT TooBig (ListT (ErrorT TooBig Identity))

with two ErrorT layers. (See transf.hs in the accompanying
code for details). The outer ErrorT TooBig corresponds to an ex-
ception confined within a non-deterministic choice, where it does
not affect other choices and can be recovered from. If the exception
is not recovered at the end, it is re-thrown to the inner ErrorT layer,
which abandons all the choices. The following function does the
re-throwing:

runErrorRelay :: MonadError e m ⇒ ErrorT e m a → m a
runErrorRelay m = runErrorT m �= check
where check (Right x) = return x

check (Left e) = throwError e

That is not the end of our trouble: the following code
ex22 1 = runIdentity ◦ runErrorT ◦ runListT ◦ runErrorRelay $

ex2 (choose [5,7,1])
−− Right [5]

produces the answer that is very hard to account for. The surprising
behavior is a consequence of the interaction of transformer layers
in MTL (ErrorT is also declared to be MonadPlus), which is hard-
wired into MTL and cannot be changed. To prevent the unwanted
interaction of exceptions and non-determinism that is built into
MTL, we have to re-write ex2 to use explicit lifting

ex1 :: Monad m ⇒ m Int → ErrorT TooBig m Int
ex1 m = do

v ← lift m
if v >5 then throwError (TooBig v)

else return v

and arrange to bypass the inner ErrorT TooBig layer. Finally we
achieve our goal: throwing an exception that terminates the (non-
deterministic) computation, and fully recovering from it.

ex4 1 = runIdentity ◦ runErrorT ◦ runListT ◦ runErrorRelay $

ex1 (choose [5,7,1])
−− Left (TooBig 7)

ex4 21 = runIdentity ◦ runErrorT ◦ runListT ◦ runErrorRelay $

exRec (ex1 (choose [5,7,1]))
−− Right [5,7,1]

The inevitable duplication of the ErrorT layers is not only inele-
gant but also inefficient. The computation to guard, choose [5,7,1],
has the type ListT (ErrorT TooBig) Int or Either TooBig [Int].
It uses no exceptions yet each use of return x, which is Right [x],
has to tack on the Right constructor and each bind has to pattern-
match on it. The entire computation pays for something used only
at the very end.

We have seen that the simple example of exception raising and
recovery has a surprisingly complex and inefficient implementa-
tion because the order of monad transformer layers matters, and
different parts of the same computation may require a different or-
der of the layers. Luckily, we solved the conundrum by duplicating
layers in this example, paying for that in efficiency. The next exam-
ple shows that the desired effectful computation cannot be imple-
mented at all with monad transformers.

5.2 Interleaving Effects
The next example illustrates the limitation of monad transformers
forcefully: the example cannot be expressed at all using them. Two
effects, dynamic bindings and coroutines, interleave and no stati-
cally fixed layering suffices. The example abstracts practical cases8

as explored in a previous paper by a subset of the authors [16].
The gist of the example is the dynamic environment that starts off
shared between the coroutine and its parent; when the coroutine
changes it, the dynamic environment becomes thread-local.

Dynamic binding is a different name for the environment
monad, or the Reader effect, for which MTL provides the monad
transformer ReaderT. MTL does not provide the transformer for
coroutines, but it is trivial to implement in terms of the continuation
monad transformer ContT:

type CoT a m = ContT (Y m a) m
data Y m a = Done | Y a (() → m (Y m a))

yield :: Monad m ⇒ a → CoT a m ()
runC :: Monad m ⇒ CoT a m b → m (Y m a)

CoT a is the monad transformer for coroutines yield-ing the values
of type a:9 The operation runC executes a coroutine that either fin-

8 http://lambda-the-ultimate.org/node/1396#comment-16128
http://keepworkingworkerbee.blogspot.com/2005/08/
i-learned-today-that-plt-scheme.html
9 For simplicity, the resumption from yield, and hence yield’s result type is
(). It is easy to generalize to full coroutines that not only yield values but
also accept values on resumption.

ishes (returns Done) or suspends on yield (returning a continuation
that can be used to resume it).

Consider a scenario of a coroutine that does pretty-printing and
may inquire the dynamic environment for the current paper width.
The query should give the latest value set by the coroutine, or
the latest value set by the parent if the coroutine has not bound
that parameter. The dynamic environment therefore is only partly
shared between the coroutine and its parent: it starts off shared
but becomes coroutine-private when the coroutine alters it. The
following characteristic example illustrates such an inherited and
private access to the dynamic environment:

th3 :: MonadReader Int m ⇒ CoT Int m ()
th3 = ay � ay � local (+10) (ay � ay)
where ay = ask �= yield

The computation ay queries the dynamic environment and yields
the result; th3 does this operation twice using the current dynamic
environment that is inherited from the parent. It then changes envi-
ronment, and queries and yields it twice more. As the type of th3
indicates, CoT layer is over the MonadReader layer.

The parent thread:
c31 = runReaderT (loop =� runC th3) 10 where
loop (Y x k) = liftIO (print x) � local (+1) (k ()) �= loop
loop Done = liftIO (print ”Done”)

starts the coroutine in an environment with the current value 10,
prints whatever the coroutine yields, and resumes the coroutine in
the changed environment, with the current value 11. The printed
result is disconcerting: 10 11 21 11 ”Done”. It starts well: the
coroutine reads and yields the current environment, which is ini-
tially 10. The parent changed that value to 11 during the dynamic
scope of resuming the coroutine, and the coroutine noticed that.
The coroutine changed the environment to 21, and the result shows
it. The last printed number is incorrect: the local changes have been
lost after the suspension. We failed at maintaining the coroutine-
local dynamic environment.

The failure is expected from the types: th3 executed in the
monad CoT Int (ReaderT Int IO) a. Its type expands to:

(a → (Int → IO w)) → (Int → IO w)

where w is (Y Int (ReaderT Int IO), the answer-type. The sus-
pension has the type () → (Int → IO w). Therefore, when the
parent resumes it, it has the ability to pass its own dynamic environ-
ment. The type also shows that the suspension does not close over
the dynamic environment, always accepting the dynamic environ-
ment from the suspension’s caller. A private dynamic environment
is not possible then.

With the opposite order of layers:
th4 :: Monad m ⇒ ReaderT Int (CoT Int m) ()
th4 = ay � ay � local (+10) (ay � ay)
where ay = ask �= lift ◦ yield

c4 = loop =� runC (runReaderT th4 10)
where loop (Y x k) = liftIO (print x) � (k ()) �= loop

loop Done = liftIO (print ”Done”)

the printed result 10 10 20 20 ”Done” shows that the dynamic
environment does become private upon the local rebinding to 20.
However, the parent can no longer affect the coroutine by changing
its dynamic environment: in fact, attempting to resume in a differ-
ent environment, local (+1) (k ()) does not type check. Again,
the types indicate what is going on. Now th4 has the monad type
ReaderT Int (CoT Int IO), which is Int → (a → IO w) → IO w
where w is (Y Int IO). The suspension has the type () → IO w,
closing over the dynamic environment of the coroutine. The sus-
pension no longer accepts any environment from the parent.

With monad transformers, the same effects cannot interact dif-
ferently in different parts of the same computation. The static layer-
ing of monadic effects lets us implement either the shared dynamic

environment or the private one; we cannot express (practically sig-
nificant) programs that need both types of interaction.

5.3 Overcoming Limitations of Monad Transformers
As a demonstration of extensible effects, we re-implement the
problematic examples from above, and see their behavior is ex-
pected and no longer puzzling. Re-implementation is a strong
word: switching from monad transformers to extensible effects
results in little or no changes in the code. The changes are mostly
confined to the type signatures.

Exceptions. The first problem in §5.1 was to guard a computation
m Int: check the produced value and throw throwing an exception
if the value is above some threshold. The code below is identical to
the code ex2 from §5.1.

ex2 :: Member (Exc TooBig) r ⇒ Eff r Int → Eff r Int
ex2 m = do

v ← m
if v >5 then throwError (TooBig v)

else return v

Only the signature differs, with the Member (Exc TooBig) r con-
straint instead of MonadError TooBig m. The first part of the ex-
ample, testing that ex2 (choose [5,7,1]) raises the TooBig excep-
tion discarding non-deterministic choices, behaves as in §5.1;

runErrBig :: Eff (Exc TooBig B r) a → Eff r (Either TooBig a)
runErrBig m = runError m

ex2 1 = run ◦ runErrBig ◦ makeChoice $ ex2 (choose [5,7,1])
−− Left (TooBig 7)

Unlike §5.1, the same ex2 supports the second part of the exam-
ple: recovering from the TooBig exception if the exceptional value
was not really too big. There are no longer failures or surprises.
The recovery code exRec is identical to the eponymous monad-
transformer code in §5.1; only signatures differ.

exRec :: Member (Exc TooBig) r ⇒ Eff r Int → Eff r Int
exRec m = catchError m handler
where handler (TooBig n) | n ≤ 7 = return n

handler e = throwError e

The recovery behaves exactly as it was supposed to:
ex2r 1 = run ◦ runErrBig ◦ makeChoice $

exRec (ex2 (choose [5,7,1]))
−− Right [5,7,1]
ex2r 2 = run ◦ runErrBig ◦ makeChoice $

exRec (ex2 (choose [5,7,11,1]))
−− Left (TooBig 11)

If the exception is truly recovered from, see ex2r 1, the compu-
tation proceeds as if no exception happened, with no effect on
non-deterministic choices—unlike what we have seen with monad
transformers in §5.1.

Delimited Dynamic Scope. The second example in §5.2 was
about dynamic binding in coroutines. First we need to define a
new extensible effect, coroutine, in our framework. This can be
done with little effort:

data Yield a v = Yield a (() → v)
deriving (Typeable, Functor)

yield :: (Typeable a, Member (Yield a) r) ⇒
a → Eff r ()

yield x = send (inj ◦ Yield x)

data Y r a = Done | Y a (() → Eff r (Y r a))

runC :: Typeable a ⇒ Eff (Yield a B r) w → Eff r (Y r a)
runC m = loop (admin m) where
loop (Val x) = return Done
loop (E u) = handle relay u loop $

\(Yield x k) → return (Y x (loop ◦ k))

The Yield effect models computations that yield values of type a
and that are resumed with the value of type (). Following the stan-
dard pattern, (of Reader requests) we define a new request Yield.
The request carries the value to yield and the ‘return address’
(which is a function with argument type () since we expect only
the () reply). The action yield sends the request. Its inferred signa-
ture tells that the monad Eff r has to include the Yield a effect. The
interpreter for Yield requests straightforwardly produces the status
of coroutine, defined to be Y r a.

It took a few lines of code to define a new effect. Since the
coroutine library is essentially the same as the one we implemented
with MTL earlier, the running example of querying the dynamic
environment and yielding the result maintains the same form:

th3 :: (Member (Yield Int) r , Member (Reader Int) r) ⇒ Eff r ()
th3 = ay � ay � local (+(10:: Int)) (ay � ay)
where ay = ask �= yield’

yield ’ x = yield (x:: Int)

The only difference from the MTL code is the type signature and a
couple of annotations that fix the value of the dynamic environment
to be Int. (These annotations can be dropped as described in §4.)
The code that runs th3 coroutine, prints the yielded value and
resumes in a modified dynamic environment is also the same as
before modulo a few annotations:

c31 = runTrace $ runReader (loop =� runC th3) (10:: Int)
where loop (Y x k) = trace (show (x:: Int)) �

local (+(1:: Int)) (k ()) �= loop
loop Done = trace ”Done”

The result is 10 11 21 21 Done—which is in stark contrast with
anything we could achieve with MTL. The result shows the corou-
tine shares the dynamic environment with its parent; however, when
the environment is locally rebound, it becomes private to the corou-
tine and therefore no longer affected by the parent (that’s why the
last two numbers in the trace are the same). The library of exten-
sible effects has managed to express the important programming
pattern—a task at which the MTL failed.

We have thus seen that our framework of extensible effects
subsumes MTL. We can express any MTL computations with our
framework (in essentially the same syntax), and we can also write
code that is unwieldy or impossible with monad transformers.

5.4 Non-Determinism with Control
We close this section with a final example that shows that it is
much more straightforward to reason about effects in our library
than the corresponding effects in the MTL. In a classic paper,
Hinze [9] shows how to use simple reasoning principles to derive
monad transformers. When Hinze considered backtracking with
the Prolog-like ‘cut’, the derivations of the two monad transformer
implementations fail to follow the suggested reasoning principles.
In particular, the term-based monad transformer is not based on
free algebra; the context-passing implementation has to pattern-
match on the context and hence cannot be in a continuation-passing
style. Mainly, the derivation is far from being simple or mechanical,
relying on “mind-boggling” types and requiring properties that
have not been proven (the paper hints on proofs by induction;
however the induction does not apply to recursive Haskell terms,
which are not well-founded). It is instructive to compare Hinze’s
derivation with the remarkably straightforward implementation of
the same example below.

The goal is to extend the monad of backtracking (with opera-
tions mzero and mplus) with ‘cut’ and ‘call’ whose specification [9,
Sec. 5] we repeat below for reference. Hinze recommends imple-
menting cut in terms of a primitive cutfalse :: m a, which is like
mzero in that it discards further choices. The primitive expresses a
common Prolog idiom and has a clearer semantics with the follow-
ing equational laws:

cutfalse �= k ≡ cutfalse
cutfalse 8 mplus8 m ≡ cutfalse

That is, cutfalse is the left zero of both (�=) and mplus. The oper-
ation call :: m a → m a delimits the effect of cutfalse: call m
executes m; if cutfalse is encountered, only choices made since the
execution of m are discarded. Hinze postulates the axioms of call:

call mzero ≡ mzero
call (return a 8 mplus8 m) ≡ return a 8 mplus8 call m
call (m 8mplus8 cutfalse) ≡ call m
call (lift m �= k) ≡ lift m �= (call ◦ k)

The fundamental problem that so complicates the derivation of
monad transformers is the absence of the axiom specifying the
interaction of call with (�=) and the way to simplify nested
invocations of call.

The framework of extensible effects does not encounter such
difficulties. First we notice that the property cutfalse being the left
zero of (�=) tells that cutfalse is an exception:

data CutFalse = CutFalse deriving Typeable
cutfalse = throwError CutFalse

Since call delimits the effect of cutfalse, it is supposed to com-
pletely handle the CutFalse exception. As for the Choose effect,
call should intercept these requests (to accumulate the choice points
it may have to discard) and re-issue them later. The signature of call
summarizes these properties. The complete code follows:

call :: Member Choose r ⇒ Eff (Exc CutFalse B r) a → Eff r a
call m = loop [] (admin m) where
loop jq (Val x) = return x 8 mplus8 next jq
loop jq (E u) = case decomp u of

Right (Exc CutFalse) → mzero
Left u → check jq u

check jq u | Just (Choose []) ← prj u = next jq
check jq u | Just (Choose [x] k) ← prj u = loop jq (k x)
check jq u | Just (Choose lst k) ← prj u =

next $ map k lst ++ jq
check jq u = send (\k → fmap k u) �= loop jq

next [] = mzero
next (h:t) = loop t h

Each clause corresponds to an axiom of call or cutfalse, cover-
ing all axioms. The code clearly expresses the intuition that call
watches the choice points of its argument computation. When it en-
counters a cutfalse request, it discards the remaining choice-points.
The accompanying Eff.hs has several examples of using cutfalse
and call, including nested occurrences of call, which present no
problems.

We have demonstrated how to define, and reason about, the
interaction of two existing effects, Choose and Exc. We simply
defined a new, joint handler, which can be used with the previously
written code with Choose effects and alongside other handlers of
Choose (e.g., makeChoice).

6. Related Work
Effect systems have become an active research area, with several
approaches being pursued concurrently and sometimes indepen-
dently. The main approaches improve monad transformers [27],
encode handlers for algebraic effects [1, 25], or start with a type-
and-effect system [8, 17, 32]. Our system, independently developed
from EDLS years ago, ended up with many similarities to the above
approaches, and also with several notable differences. First, our
framework is not a stand-alone language; rather, it is an ordinary
Haskell library. Haskell with common extensions turns out capable
of expressing the type-and-effect system similar to those mentioned
above.

Monad transformers and abstractions. One particular problem
with monads composed of many transformers is the difficulty of
accessing a particular transformer layer: implicit lifting may be
impossible (e.g., when there are several State layers) and explicit
lifting is too painful. Schrijvers and Oliveira [27] cleverly address
the lifting problem with a new, convenient layer access mechanism
while Swamy et al., [31] provide a system for ML that infers where
and how to lift operations. We sidestep the entire lifting problem
through type-indexed effects. Our approach also solves the problem
of indicating which of several State or Reader, etc., effects to
perform. Since State effects are indexed by the type of the state,
the state types naturally and automatically distinguish the effects,
without any extra mechanisms. Multiple State layers of the same
type can be handled via a standard newtype trick:

newtype SInt = D Int deriving (Typeable, Num, Eq)

incr :: (Typeable a, Num a, Member (State a) r) ⇒ Eff r a
incr = do x ← get; put (x+1); return (x+1)

doubleIncr = do x ← incr ; y ← incr ; return (x:: Int , y:: SInt)

run $ runState (runState doubleIncr (0:: Int)) (5:: SInt)
−− (((1,6),1),6)

The two explicit type annotations Int and SInt are sufficient to
distinguish the usage of incr in both calls of doubleIncr; we can use
the newtype trick to navigate our “transformer stack” implicitly.

Handlers for algebraic effects. Our approach is closely related to
the recent congruence of ideas about effect handlers [1, 2, 13, 21,
25, 33]. Each of these effect handler implementations incorporates
an effect typing mechanism and decides on the subtle trade-offs of
effect processing.

Effect handlers are the generalization of exception handlers
to other effects – the insight first realized by Plotkin and Pret-
nar [25]. Our handle relay in Figure 2 is indeed quite like catch
from the current Control.Exception library [20]: handle relay only
deals with requests/exceptions of a certain type, automatically
re-throwing all other requests for an ‘upstream’ handler to pro-
cess. Using existentials and Typeable to implement open union is
also the same. However, our requests (‘exceptions’) are resumable
rather than abortive and our open unions are typed.

Like Frank [21], our library implements shallow handlers: each
runM selects by case analysis only those effects it wishes to handle.
Much other work [1, 2, 13, 33] focuses on deep handlers, in which
all effects of a particular kind are handled uniformly. Compared
to shallow ones, deep handlers are often more efficient but less
flexible.

Our library manages sets of effects using both type-level con-
straints and type-level lists; Kammar et al. [13] rely only on type-
class constraints. Constraints truly represent an unordered set. Us-
ing constraints exclusively however requires all effect handler def-
initions be top-level since Haskell does not support local type class
instances. Kammar et al. rely on Template Haskell to avoid much of
the inconvenience of type-class encoding and provide a pliable user
interface. Our library is syntactically lighter-weight and requires no
special syntax.

Another trade-off is allowing multiple instances of the same
effect. We permit not only both State Int and State Float in the
same computation but also several instances of State Int (although
the latter can be easily disabled). A request for state value or change
will be handled by the closest handler of the appropriate state type.
Eff [1] uses a region-based approach where effect instances are tied
to region indices while Brady’s library for Idris [2] allows users to
name and nominally refer to individual instances.

Type-level denotation of effects. Swierstra, Filinski, and others
(e.g. [8]) provide type-level systems for layering effects. However,

such systems lack the ability to subtract effects (which occurs when
these effects have been handled in our system). Our continuation
encoding and union type are similar to Filinski’s, but our union
type is shrunk as effects are removed.

7. Conclusions
We have presented a new framework for extensible effects that
subsumes previous Haskell approaches in expressiveness. The main
highlights of our system are:

• easy combination of computations performing arbitrary effects;
the type system collects the effects from each computation into
a larger union.
• effects arise from an interaction between a client and a handler;

a handler can choose to service one effect or several possibly
interleaving effects;
• the effects that have been completely handled are subtracted

from the type leaving a computation with fewer effects that can
be further composed with other effects or handled.

We have demonstrated that our framework of extensible effects
subsumes the MTL: any effectful MTL computation can be re-
written in our framework, in essentially the same syntax; we can
also write code that is unwieldy or impossible using monad trans-
formers. Furthermore, we have gained flexible efficiency: our dy-
namic order of layers is contained in one monad, parts of the com-
putation that don’t use a particular effect don’t pay for it (meaning
each effect is “pay-per-use”).

There are several natural avenues for future work:

• Partitioning “large” monads like the IO monad into compart-
mentalized sections that may each be added and removed from
computations. These partitions include IORefs, IO exceptions,
time functions, pure reading, and reading and writing.
• Implementing ST-like effects, explicitly marking state, and pro-

viding an allocation system using monadic regions to the user.
• Providing a delimited control interface with shift, prompt and

control, or a similar collection of operators.
• Cleaning up the implementation by including the Eff (continu-

ation) monad natively in Haskell (like IO and ST). We would
then come full-circle to the Scheme and ML families of lan-
guages, providing efficient native state, IO, and continuations
and mechanisms for users derive other effects from them. The
advantage here is that we have a type system to track these user-
defined effects.

Acknowledgments
We are very grateful to Simon Peyton-Jones for many helpful
comments and discussions. Insightful comments and suggestions
by Sam Lindley and anonymous reviewers are greatly appreciated.
This material is based upon work supported by the National Science
Foundation under Grant No. 1117635.

References
[1] A. Bauer and M. Pretnar. Programming with algebraic effects and

handlers. arXiv:1203.1539 [cs.PL], 2012.
[2] E. C. Brady. Programming and reasoning with algebraic effects and

dependent types. In ICFP [11], page To Appear.
[3] R. Cartwright and M. Felleisen. Extensible denotational language

specifications. In M. Hagiya and J. C. Mitchell, editors, Theor. Aspects
of Comp. Soft., number 789 in LNCS, pages 244–272. Springer, 1994.

[4] D. Espinosa. Modular denotational semantics. Unpublished
manuscript, 1993.

[5] D. Espinosa. Building interpreters by transforming stratified monads.
Unpublished manuscript, 1994.

[6] D. A. Espinosa. Semantic Lego. PhD thesis, Columbia University,
New York, NY, USA, 1995. UMI Order No. GAX95-33546.

[7] A. Filinski. Representing monads. In POPL [26], pages 446–457.
[8] A. Filinski. Representing layered monads. In POPL ’99, pages 175–

188, New York, NY, USA, 1999. ACM.
[9] R. Hinze. Deriving backtracking monad transformers. In ICFP ’00,

pages 186–197. ACM Press, 2000.
[10] J. Hughes. The design of a pretty-printing library. In First Intl. Spring

School on Adv. Functional Programming Techniques, pages 53–96,
London, UK, UK, 1995. Springer-Verlag.

[11] ICFP. ICFP ’13, 2013. ACM Press.
[12] M. Jaskelioff and E. Moggi. Monad transformers as monoid trans-

formers. Theor. Comp. Science, 411(51/52):4441 – 4466, 2010.
[13] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In ICFP

[11], page To Appear.
[14] D. King and P. Wadler. Combining monads. In J. Launchbury

and P. Sansom, editors, Functional Programming, Glasgow 1992,
Workshops in Computing, pages 134–143. Springer London, 1993.

[15] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heteroge-
neous collections. In Proc. 2004 workshop on Haskell, pages 96–107,
New York, NY, USA, 2004. ACM.

[16] O. Kiselyov, C.-c. Shan, and A. Sabry. Delimited dynamic binding. In
ICFP ’06, pages 26–37. ACM Press, 2006.

[17] D. Leijen. Koka: A language with row-polymorphic effect inference.
In 1st Workshop on Higher-Order Programming with Effects (HOPE
2012). ACM, September 2012.

[18] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In POPL ’95, pages 333–343. ACM Press, 1995.

[19] C. Lüth and N. Ghani. Composing monads using coproducts. In ICFP
’02, pages 133–144. ACM Press, 2002.

[20] S. Marlow. An extensible dynamically-typed hierarchy of exceptions.
In Proc. 2006 Haskell Workshop, pages 96–106. ACM Press, 2006.

[21] C. McBride. The Frank manual. https://personal.cis.strath.
ac.uk/conor.mcbride/pub/Frank/, 2012.

[22] E. Moggi. Computational lambda-calculus and monads. In LICS,
pages 14–23, Piscataway, NJ, USA, 1989. IEEE Press.

[23] E. Moggi. An abstract view of programming languages. Technical
Report ECS-LFCS-90-113, Edinburgh Univ., 1989.

[24] B. O’Sullivan, J. Goerzen, and D. Stewart. Real world Haskell – code
you can believe in. O’Reilly, 2008.

[25] G. Plotkin and M. Pretnar. Handlers of algebraic effects. In ESOP ’09,
pages 80–94, Berlin, Heidelberg, 2009. Springer-Verlag.

[26] POPL. POPL ’94, 1994. ACM Press.
[27] T. Schrijvers and B. C. Oliveira. Monads, zippers and views: virtualiz-

ing the monad stack. In ICFP ’11, pages 32–44, New York, NY, USA,
2011. ACM.

[28] M. Shields and E. Meijer. Type-indexed rows. In POPL ’01, pages
261–275, London, United Kingdom, Jan. 17–19, 2001. ACM Press.

[29] G. L. Steele, Jr. How to compose monads. Technical report, Thinking
Machines Corporation, Cambridge, Massachusetts, July 1993.

[30] G. L. Steele, Jr. Building interpreters by composing monads. In POPL
[26], pages 472–492.

[31] N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic
programming in ML. In ICFP’11, pages 15–27, Sept. 2011.

[32] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–
436, July 2008.

[33] S. Visscher. Control.effects, 2012. URL http://github.com/
sjoerdvisscher/effects.

[34] P. Wadler. The essence of functional programming. In POPL ’92,
pages 1–14, New York, NY, USA, 1992. ACM.

