
17 September 2010

OpenCOBOL 1.1
[06FEB2009 Version]

Programmer’s Guide
1st Edition, 17 September 2010

Gary Cutler

CutlerGL@gmail.com

OpenCOBOL Copyright © 2001-2010 Keisuke Nishida / Roger While
Under the terms of the GNU General Public License

Document Copyright © 2009,2010 Gary Cutler

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License [FDL], Version 1.3 or any later version published by the Free Software Foundation;

with Invariant Section “What is OpenCOBOL?”, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the FDL is included in the section entitled "GNU Free Documentation License".

mailto:CutlerGL@gmail.com

17 September 2010

OpenCOBOL is an evolving tool.

While all reasonable attempts will be made to maintain the currency of the information in this document, neither the
author of this document nor the authors of the OpenCOBOL software, extend any warranties of any kind by this
document or for the information contained therein.

Summary of Changes

Edition Date Change Description

1st

[06FEB2009]

17 September 2010 Introduced documentation for the hitherto undiscovered “COBCPY” environment variable (section
7.1.7 and 7.1.8).

Corrected “section 0” broken hyperlinks in the document.

1 April 2010 Documented a work-around for a potential 06FEB2009 compiler parsing problem with the
“expression-1 CHARACTERS” clause on the ALLOCATE verb (section 6.6). The parsing problem will be
corrected in a future OpenCOBOL 1.1 tarball, at which time the “work-around” documentation will
be removed.

Elaborated on the use of the GLOBAL clause in data item definitions (section 5.3).

24 March 2010 Corrected a problem with bogus footnote references in Figure 4-8

23 January 2010 OFFICIAL FIRST RELEASE

Corrected an error with the description of reference modifiers lacking a length specification.

Pre-publication review
July-September 2009

Initial version – documents the 06 Feb 2009 build of OpenCOBOL 1.1

OpenCOBOL 1.1 Programmers Guide Table of Contents

06FEB2009 Version 1

Table of Contents

FIGURES 6

1. INTRODUCTION 1-1

1.1. What is OpenCOBOL? 1-1
1.2. Additional References and Documents 1-1
1.3. Introducing COBOL 1-1

1.3.1. “I Heard COBOL is a Dead Language!” 1-2
1.3.2. Programmer Productivity – The “Holy Grail” 1-3
1.3.3. Notable COBOL/OpenCOBOL Features 1-4

1.3.3.1. Basic Program Readability 1-4
1.3.3.2. COBOL Program Structure 1-5
1.3.3.3. Copybooks 1-5
1.3.3.4. Structured Data 1-5
1.3.3.5. Files 1-5
1.3.3.6. Table Handling 1-8
1.3.3.7. Sorting and Merging Data 1-8
1.3.3.8. String Manipulation 1-8
1.3.3.9. Textual-User Interface (TUI) Features 1-10

1.4. Syntax Description Conventions 1-10
1.5. Source Program Format 1-11
1.6. Use of Commas and Semicolons 1-11
1.7. Using COPY 1-12
1.8. Use of Literals 1-12

1.8.1. Numeric Literals 1-12
1.8.2. Alphanumeric Literals 1-13

1.9. Use of Figurative Constants 1-13
1.10. User-Defined Names 1-14
1.11. Use of LENGTH OF 1-14

2. GENERAL OPENCOBOL PROGRAM FORMAT 2-1

2.1. General Format for Nested Source Programs 2-2
2.2. General Format for Nested Source Functions 2-2

3. IDENTIFICATION DIVISION 3-1

4. ENVIRONMENT DIVISION 4-1

4.1. CONFIGURATION SECTION 4-1
4.1.1. SOURCE-COMPUTER Paragraph 4-1
4.1.2. OBJECT-COMPUTER Paragraph 4-1
4.1.3. REPOSITORY Paragraph 4-2
4.1.4. SPECIAL-NAMES Paragraph 4-3

4.2. INPUT-OUTPUT SECTION 4-5
4.2.1. FILE-CONTROL Paragraph 4-6

4.2.1.1. ORGANIZATION SEQUENTIAL Files 4-8
4.2.1.2. ORGANIZATION RELATIVE Files 4-8
4.2.1.3. ORGANIZATION INDEXED Files 4-9

4.2.2. I-O-CONTROL Paragraph 4-10

5. DATA DIVISION 5-1

5.1. FD - File Description 5-2
5.2. SD - SORT Description 5-3
5.3. General Format for Data Descriptions 5-4
5.4. Condition Names 5-15
5.5. Constant Descriptions 5-16

OpenCOBOL 1.1 Programmers Guide Table of Contents

06FEB2009 Version 2

5.6. Screen Descriptions 5-17

6. PROCEDURE DIVISION 6-1

6.1. General PROCEDURE DIVISION Components 6-1
6.1.1. Table References 6-1
6.1.2. Qualification of Data Names 6-1
6.1.3. Reference Modifiers 6-2
6.1.4. Expressions 6-2

6.1.4.1. Arithmetic Expressions 6-3
6.1.4.2. Conditional Expressions 6-5

6.1.5. Use of Periods (.) 6-9
6.1.6. Use of “VERB” / “END-VERB” Constructs 6-10
6.1.7. Intrinsic Functions 6-11

6.1.7.1. ABS(number) 6-11
6.1.7.2. ACOS(angle) 6-12
6.1.7.3. ANNUITY(interest-rate, number-of-periods) 6-12
6.1.7.4. ASIN(number) 6-12
6.1.7.5. ATAN(number) 6-12
6.1.7.6. BYTE-LENGTH(string) 6-12
6.1.7.7. CHAR(integer) 6-12
6.1.7.8. COMBINED-DATETIME(days, seconds) 6-13
6.1.7.9. CONCATENATE(string-1 [, string-2] …) 6-13
6.1.7.10. COS(number) 6-13
6.1.7.11. CURRENT-DATE 6-13
6.1.7.12. DATE-OF-INTEGER(integer) 6-13
6.1.7.13. DATE-TO-YYYYMMDD(yymmdd [, yy-cutoff]) 6-13
6.1.7.14. DAY-OF-INTEGER(integer) 6-14
6.1.7.15. DAY-TO-YYYYDDD(yyddd [, yy-cutoff]) 6-14
6.1.7.16. E 6-14
6.1.7.17. EXCEPTION-FILE 6-14
6.1.7.18. EXCEPTION-LOCATION 6-14
6.1.7.19. EXCEPTION-STATEMENT 6-14
6.1.7.20. EXCEPTION-STATUS 6-15
6.1.7.21. EXP(number) 6-15
6.1.7.22. EXP10(number) 6-15
6.1.7.23. FRACTION-PART(number) 6-15
6.1.7.24. FACTORIAL(number) 6-15
6.1.7.25. INTEGER(number) 6-15
6.1.7.26. INTEGER-OF-DATE(date) 6-15
6.1.7.27. INTEGER-OF-DAY(date) 6-15
6.1.7.28. INTEGER-PART(number) 6-16
6.1.7.29. LENGTH(string) 6-16
6.1.7.30. LOCALE-DATE(date [, locale]) 6-16
6.1.7.31. LOCALE-TIME(time [, locale]) 6-16
6.1.7.32. LOCALE-TIME-FROM-SECS(seconds [, locale]) 6-16
6.1.7.33. LOG(number) 6-16
6.1.7.34. LOG10(number) 6-16
6.1.7.35. LOWER-CASE(string) 6-16
6.1.7.36. MAX(number-1 [, number-2] …) 6-17
6.1.7.37. MIN(number-1 [, number-2] …) 6-17
6.1.7.38. MEAN(number-1 [, number-2] …) 6-17
6.1.7.39. MEDIAN(number-1 [, number-2] …) 6-17
6.1.7.40. MIDRANGE(number-1 [, number-2] …) 6-17
6.1.7.41. MOD(value, modulus) 6-17
6.1.7.42. NUMVAL(string) 6-17
6.1.7.43. NUMVAL-C(string [, symbol]) 6-17
6.1.7.44. ORD(char) 6-18

OpenCOBOL 1.1 Programmers Guide Table of Contents

06FEB2009 Version 3

6.1.7.45. ORD-MAX(char-1 [, char-2] …) 6-18
6.1.7.46. ORD-MIN(char-1 [, char-2] …) 6-18
6.1.7.47. PI 6-18
6.1.7.48. PRESENT-VALUE(rate,value-1 [, value-2]) 6-18
6.1.7.49. RANDOM [(seed)] 6-18
6.1.7.50. RANGE(number-1 [, number-2] …) 6-19
6.1.7.51. REM(number, divisor) 6-19
6.1.7.52. REVERSE(string) 6-19
6.1.7.53. SECONDS-FROM-FORMATTED-TIME(format,time) 6-19
6.1.7.54. SECONDS-PAST-MIDNIGHT 6-19
6.1.7.55. SIGN(number) 6-19
6.1.7.56. SIN(angle) 6-19
6.1.7.57. SQRT(number) 6-19
6.1.7.58. MEAN(number-1 [, number-2] …) 6-20
6.1.7.59. STORED-CHAR-LENGTH(string) 6-20
6.1.7.60. SUBSTITUTE(string,from-1,to-1 [, from-n,to-n]) 6-20
6.1.7.61. SUBSTITUTE-CASE(string,from-1,to-1 [, from-n,to-n]) 6-20
6.1.7.62. SUM(number-1 [, number-2] …) 6-20
6.1.7.63. TAN(angle) 6-20
6.1.7.64. TEST-DATE-YYYYMMDD(date) 6-20
6.1.7.65. TEST-DAY-YYYYDDD(date) 6-20
6.1.7.66. TRIM(string[, LEADING|TRAILING]) 6-20
6.1.7.67. UPPER-CASE(string) 6-21
6.1.7.68. VARIANCE(number-1 [, number-2] …) 6-21
6.1.7.69. WHEN-COMPILED 6-21
6.1.7.70. YEAR-TO-YYYY (yy [, yy-cutoff]) 6-21

6.1.8. Special Registers 6-21
6.1.9. Controlling Concurrent Access to Files 6-22

6.1.9.1. File Sharing 6-22
6.1.9.2. Record Locking 6-23

6.2. General Format of the PROCEDURE DIVISION 6-24
6.3. General Format for DECLARATIVES Entries 6-25
6.4. ACCEPT 6-26

6.4.1. ACCEPT Format 1 – Read from Console 6-26
6.4.2. ACCEPT Format 2 – Retrieve Command-Line Arguments 6-26
6.4.3. ACCEPT Format 3 – Retrieve Environment Variable Values 6-27
6.4.4. ACCEPT Format 4 – Retrieve Screen Data 6-28
6.4.5. ACCEPT Format 5 – Retrieve Date/Time 6-29
6.4.6. ACCEPT Format 6 - Retrieve Screen Size Data 6-29
6.4.7. ACCEPT Exception Handling 6-30

6.5. ADD 6-31
6.5.1. ADD Format 1 – ADD TO 6-31
6.5.2. ADD Format 2 – ADD GIVING 6-32
6.5.3. ADD Format 3 – ADD CORRESPONDING 6-32

6.6. ALLOCATE 6-33
6.7. CALL 6-34
6.8. CANCEL 6-36
6.9. CLOSE 6-37
6.10. COMMIT 6-38
6.11. COMPUTE 6-39
6.12. CONTINUE 6-40
6.13. DELETE 6-41
6.14. DISPLAY 6-42

6.14.1. DISPLAY Format 1 – Upon Console 6-42
6.14.2. DISPLAY Format 2 – Access Command-Line Arguments 6-42
6.14.3. DISPLAY Format 3 – Access or Set Environment Variables 6-42
6.14.4. DISPLAY Format 4 – Screen Data 6-43

OpenCOBOL 1.1 Programmers Guide Table of Contents

06FEB2009 Version 4

6.14.5. DISPLAY Exception Handling 6-44
6.15. DIVIDE 6-45

6.15.1. DIVIDE Format 1 – DIVIDE INTO 6-45
6.15.2. DIVIDE Format 2 – DIVIDE INTO GIVING 6-45
6.15.3. DIVIDE Format 3 – DIVIDE BY GIVING 6-46
6.15.4. DIVIDE Format 4 – DIVIDE INTO REMAINDER 6-46
6.15.5. DIVIDE Format 5 – DIVIDE BY REMAINDER 6-47

6.16. ENTRY 6-48
6.17. EVALUATE 6-49
6.18. EXIT 6-51
6.19. FREE 6-53
6.20. GENERATE 6-54
6.21. GOBACK 6-55
6.22. GO TO 6-56

6.22.1. GO TO Format 1 – Simple GO TO 6-56
6.22.2. GO TO Format 2 – GO TO DEPENDING ON 6-56

6.23. IF 6-57
6.24. INITIALIZE 6-58
6.25. INITIATE 6-59
6.26. INSPECT 6-60
6.27. MERGE 6-63
6.28. MOVE 6-65

6.28.1. MOVE Format 1 – Simple MOVE 6-65
6.28.2. MOVE Format 2 – MOVE CORRESPONDING 6-65

6.29. MULTIPLY 6-67
6.29.1. MULTIPLY Format 1 – MULTIPLY BY 6-67
6.29.2. MULTIPLY Format 2 – MULTIPLY GIVING 6-67

6.30. NEXT SENTENCE 6-68
6.31. OPEN 6-69
6.32. PERFORM 6-70

6.32.1. PERFORM Format 1 – Procedural 6-70
6.32.2. PERFORM Format 2 – Inline 6-71

6.33. READ 6-72
6.33.1. READ Format 1 – Sequential READ 6-72
6.33.2. READ Format 2 – Random Read 6-73

6.34. RELEASE 6-75
6.35. RETURN 6-76
6.36. REWRITE 6-77
6.37. ROLLBACK 6-78
6.38. SEARCH 6-79

6.38.1. SEARCH Format 1 –Sequential Search 6-79
6.38.2. SEARCH Format 2 –Binary, or Half-interval Search (SEARCH ALL) 6-80

6.39. SET 6-82
6.39.1. SET Format 1 – SET ENVIRONMENT 6-82
6.39.2. SET Format 2 – SET Program-Pointer 6-82
6.39.3. SET Format 3 – SET ADDRESS 6-82
6.39.4. SET Format 4 – SET Index 6-83
6.39.5. SET Format 5 – SET UP/DOWN 6-83
6.39.6. SET Format 6 – SET Condition Name 6-83
6.39.7. SET Format 7 – SET Switch 6-84

6.40. SORT 6-85
6.40.1. SORT Format 1 – File-based Sort 6-85
6.40.2. SORT Format 2 – Table Sort 6-87

6.41. START 6-88
6.42. STOP 6-90
6.43. STRING 6-91
6.44. SUBTRACT 6-92

OpenCOBOL 1.1 Programmers Guide Table of Contents

06FEB2009 Version 5

6.44.1. SUBTRACT Format 1 – SUBTRACT FROM 6-92
6.44.2. SUBTRACT Format 2 – SUBTRACT GIVING 6-92
6.44.3. SUBTRACT Format 3 – SUBTRACT CORRESPONDING 6-93

6.45. SUPPRESS 6-94
6.46. TERMINATE 6-95
6.47. TRANSFORM 6-96
6.48. UNLOCK 6-97
6.49. UNSTRING 6-98
6.50. WRITE 6-100

7. THE OPENCOBOL SYSTEM INTERFACE 7-1

7.1. Using the OpenCOBOL Compiler (cobc) 7-1
7.1.1. Introduction 7-1
7.1.2. Syntax and Options 7-1
7.1.3. Compiling Executable Programs 7-2
7.1.4. Dynamically-Loadable Subprograms 7-2
7.1.5. Static Subroutines 7-3
7.1.6. Combining COBOL and C Programs 7-3

7.1.6.1. OpenCOBOL Run-Time Library Requirements 7-3
7.1.6.2. String Allocation Differences Between OpenCOBOL and C 7-4
7.1.6.3. Matching C Data Types with OpenCOBOL USAGEs 7-4
7.1.6.4. OpenCOBOL Main Programs CALLing C Subprograms 7-6
7.1.6.5. C Main Programs CALLing OpenCOBOL Subprograms 7-7

7.1.7. Important Environment Variables 7-9
7.1.8. Locating Copybooks at Compilation Time 7-10
7.1.9. Using Compiler Configuration Files 7-10

7.2. Running OpenCOBOL Programs 7-12
7.2.1. Executing Programs Directly 7-12
7.2.2. Using the “cobcrun” Utility 7-12
7.2.3. Program Arguments 7-13
7.2.4. Important Environment Variables 7-13

7.3. Built-In Subroutines 7-14
7.3.1. “Call by Name” Routines 7-15

7.3.1.1. CALL “C$CHDIR” USING directory-path, result 7-15
7.3.1.2. CALL “C$COPY” USING src-file-path, dest-file-path, 0 7-15
7.3.1.3. CALL “C$DELETE” USING file-path, 0 7-16
7.3.1.4. CALL “C$FILEINFO” USING file-path, file-info 7-16
7.3.1.5. CALL “C$JUSTIFY” USING data-item, “justification-type” 7-16
7.3.1.6. CALL “C$MAKEDIR” USING dir-path 7-16
7.3.1.7. CALL “C$NARG” USING arg-count-result 7-17
7.3.1.8. CALL “C$PARAMSIZE” USING argument-number 7-17
7.3.1.9. CALL “C$SLEEP” USING seconds-to-sleep 7-17
7.3.1.10. CALL “C$TOLOWER” USING data-item, BY VALUE convert-length 7-17
7.3.1.11. CALL “C$TOUPPER” USING data-item, BY VALUE convert-length 7-17
7.3.1.12. CALL “CBL_AND” USING item-1, item-2, BY VALUE byte-length 7-17
7.3.1.13. CALL “CBL_CHANGE_DIR” USING directory-path 7-18
7.3.1.14. CALL “CBL_CHECK_FILE_EXIST” USING file-path, file-info 7-18
7.3.1.15. CALL “CBL_CLOSE_FILE” USING file-handle 7-18
7.3.1.16. CALL “CBL_COPY_FILE” USING src-file-path, dest-file-path 7-19
7.3.1.17. CALL “CBL_CREATE_DIR” USING dir-path 7-19
7.3.1.18. CALL “CBL_CREATE_FILE” USING file-path, 2, 0, 0, file-handle 7-19
7.3.1.19. CALL “CBL_DELETE_DIR” USING dir-path 7-19
7.3.1.20. CALL “CBL_DELETE_FILE” USING file-path 7-19
7.3.1.21. CALL “CBL_ERROR_PROC” USING function, program-pointer 7-20
7.3.1.22. CALL “CBL_EXIT_PROC” USING function, program-pointer 7-21
7.3.1.23. CALL “CBL_EQ” USING item-1, item-2, BY VALUE byte-length 7-22
7.3.1.24. CALL “CBL_FLUSH_FILE” USING file-handle 7-22

OpenCOBOL 1.1 Programmers Guide Table of Contents

06FEB2009 Version 6

7.3.1.25. CALL “CBL_GET_CURRENT_DIR” USING BY VALUE 0, BY VALUE length, BY REFERENCE buffer 7-22
7.3.1.26. CALL “CBL_IMP” USING item-1, item-2, BY VALUE byte-length 7-23
7.3.1.27. CALL “CBL_NIMP” USING item-1, item-2, BY VALUE byte-length 7-23
7.3.1.28. CALL “CBL_NOR” USING item-1, item-2, BY VALUE byte-length 7-23
7.3.1.29. CALL “CBL_NOT” USING item-1, BY VALUE byte-length 7-24
7.3.1.30. CALL “CBL_OC_NANOSLEEP” USING nanoseconds-to-sleep 7-24
7.3.1.31. CALL “CBL_OPEN_FILE” file-path, access-mode, 0, 0, handle 7-24
7.3.1.32. CALL “CBL_OR” USING item-1, item-2, BY VALUE byte-length 7-24
7.3.1.33. CALL “CBL_READ_FILE” USING handle, offset, nbytes, flag, buffer 7-25
7.3.1.34. CALL “CBL_RENAME_FILE” USING old-file-path, new-file-path 7-25
7.3.1.35. CALL “CBL_TOLOWER” USING data-item, BY VALUE convert-length 7-25
7.3.1.36. CALL “CBL_TOUPPER” USING data-item, BY VALUE convert-length 7-26
7.3.1.37. CALL “CBL_WRITE_FILE” USING handle, offset, nbytes, 0, buffer 7-26
7.3.1.38. CALL “CBL_XOR” USING item-1, item-2, BY VALUE byte-length 7-26
7.3.1.39. CALL “SYSTEM” USING command 7-26

7.3.2. “Call by Number” Subroutines 7-27
7.3.2.1. CALL X”91” USING return-code, function-code, binary-variable-arg 7-27
7.3.2.2. CALL X”F4” USING byte, table 7-28
7.3.2.3. CALL X”F5” USING byte, table 7-28
7.3.2.4. Binary Truncation 7-29

8. SAMPLE PROGRAMS 8-1

8.1. FileStat-Msgs.cpy – File Status Values 8-1
8.2. COBDUMP – A Hex/Char Data Dump Subroutine 8-1
8.3. OCic – an OpenCOBOL Full-Screen Compiler Front-End 8-4
8.4. WINSYSTEM – Execute Windows Shell Commands (For Cygwin) 8-46

9. GLOSSARY OF TERMS 9-1

INDEX I

GNU FREE DOCUMENTATION LICENSE IX

Figures

Figure 1-1 - A Sample TUI Screen .. 1-10
Figure 1-2 - COPY Syntax ... 1-12
Figure 1-3 - Figurative Constants ... 1-14
Figure 2-1 - General OpenCOBOL Program Format ... 2-1
Figure 2-2 - General Format for Nested Source Programs .. 2-2
Figure 2-3 - General Format for Nested Source Functions .. 2-2
Figure 3-1 - IDENTIFICATION DIVISION Syntax .. 3-1
Figure 4-1 - ENVIRONMENT DIVISION Syntax .. 4-1
Figure 4-2 - CONFIGURATION SECTION Syntax ... 4-1
Figure 4-3 - SOURCE-COMPUTER Paragraph Syntax ... 4-1
Figure 4-4 - OBJECT-COMPUTER Paragraph Syntax ... 4-1
Figure 4-5 - REPOSITORY Paragraph Syntax .. 4-2
Figure 4-6 - SPECIAL-NAMES Paragraph Syntax... 4-3
Figure 4-7 - Locale Codes ... 4-4
Figure 4-8 - Screen ACCEPT Key Codes .. 4-5
Figure 4-9 - INPUT-OUTPUT SECTION Syntax .. 4-5
Figure 4-10 - FILE-CONTROL Paragraph Syntax ... 4-6
Figure 4-11 - FILE-STATUS Values .. 4-7
Figure 4-12 - Additional FILE-CONTROL Syntax for SEQUENTIAL Files .. 4-8
Figure 4-13 - Additional FILE-CONTROL Syntax for RELATIVE Files ... 4-8
Figure 4-14 - Additional FILE-CONTROL Syntax for INDEXED Files .. 4-9
Figure 4-15 - I-O-CONTROL Paragraph Syntax ... 4-10

OpenCOBOL 1.1 Programmers Guide Table of Contents

06FEB2009 Version 7

Figure 5-1 - General DATA DIVISION Format ... 5-1
Figure 5-2 - FD Syntax .. 5-2
Figure 5-3- LINAGE-specified Page Structure .. 5-3
Figure 5-4 - SD Syntax .. 5-3
Figure 5-5 - General Data Description Format .. 5-4
Figure 5-6 - Data Class-Specification PICTURE Symbols (A/X/9) .. 5-5
Figure 5-7 - Numeric Option PICTURE Symbols (P/S/V) .. 5-6
Figure 5-8 - Sign-Encoding Characters ... 5-6
Figure 5-9 - Numeric Editing PICTURE Symbols ... 5-7
Figure 5-10 - Summary of USAGE Specifications ... 5-12
Figure 5-11 - Effect of the SYNCHRONIZED Clause .. 5-14
Figure 5-12 - Level-88 Condition Name Description Syntax .. 5-15
Figure 5-13 - Level-78 Constant Description Syntax .. 5-16
Figure 5-14 - SCREEN SECTION Data Item Description Syntax .. 5-17
Figure 5-15 - Screen Color Numbers.. 5-19
Figure 5-16 - LOWLIGHT / HIGHLIGHT Effect on Screen Colors ... 5-19
Figure 6-1 - Reference Modifier Syntax ... 6-2
Figure 6-2 – Unary - Operator Syntax .. 6-3
Figure 6-3 – Unary + Operator Syntax ... 6-3
Figure 6-4 - Exponentiation Operator Syntax .. 6-3
Figure 6-5 - Exponentiation Operator Syntax .. 6-3
Figure 6-6 - Division Operator Syntax .. 6-3
Figure 6-7 - Addition Operator Syntax ... 6-4
Figure 6-8 - Subtraction Operator Syntax .. 6-4
Figure 6-9 - Class Condition Syntax ... 6-6
Figure 6-10 - Sign Condition Syntax ... 6-6
Figure 6-11 - Using Switch Conditions ... 6-7
Figure 6-12 - Relation Condition Syntax .. 6-8
Figure 6-13 - Combined Condition Syntax ... 6-8
Figure 6-14 - Negated Condition Syntax .. 6-9
Figure 6-15 - Special Registers ... 6-21
Figure 6-16 - General PROCEDURE DIVISION Syntax ... 6-24
Figure 6-17 - General DECLARATIVES Syntax ... 6-25
Figure 6-18 - ACCEPT (Read from Console) Syntax .. 6-26
Figure 6-19 - ACCEPT (Command Line Arguments) Syntax.. 6-26
Figure 6-20 - ACCEPT (Environment Variable Values) Syntax ... 6-27
Figure 6-21 - ACCEPT (Retrieve Screen Data) Syntax... 6-28
Figure 6-22 - ACCEPT (Retrieve Date/Time) Syntax ... 6-29
Figure 6-23 - ACCEPT Options for DATE/TIME Retrieval ... 6-29
Figure 6-24 - ACCEPT (Retrieve Screen Size Data) Syntax ... 6-29
Figure 6-25 - ACCEPT Exception Handling ... 6-30
Figure 6-26 - ADD (TO) Syntax ... 6-31
Figure 6-27 - A Sample Program Using ON SIZE ERROR .. 6-31
Figure 6-28 - ADD (GIVING) Syntax .. 6-32
Figure 6-29 - ADD (CORRESPONDING) Syntax ... 6-32
Figure 6-30 - ALLOCATE Syntax.. 6-33
Figure 6-31 - CALL Syntax .. 6-34
Figure 6-32 - CALL BY REFERENCE Can Sometimes have Unwanted Effects! .. 6-35
Figure 6-33 - CALL BY VALUE ... 6-35
Figure 6-34 - CANCEL Syntax ... 6-36
Figure 6-35 - CLOSE Syntax .. 6-37
Figure 6-36 - COMMIT Syntax .. 6-38
Figure 6-37 - COMPUTE Syntax ... 6-39
Figure 6-38 - CONTINUE Syntax ... 6-40
Figure 6-39 - DELETE Syntax .. 6-41
Figure 6-40 - DISPLAY (Upon Console) Syntax ... 6-42
Figure 6-41 - DISPLAY (Access Command-line Arguments) Syntax.. 6-42

OpenCOBOL 1.1 Programmers Guide Table of Contents

06FEB2009 Version 8

Figure 6-42 - DISPLAY (Access / Set Environment Variables) Syntax ... 6-42
Figure 6-43 - DISPLAY (Screen Data) Syntax .. 6-43
Figure 6-44 - Exception Handling (DISPLAY) Syntax... 6-44
Figure 6-45 - DIVIDE INTO Syntax .. 6-45
Figure 6-46 - DIVIDE INTO GIVING Syntax ... 6-45
Figure 6-47 - DIVIDE BY GIVING Syntax ... 6-46
Figure 6-48 - DIVIDE INTO REMAINDER Syntax ... 6-46
Figure 6-49 - DIVIDE BY REMAINDER Syntax ... 6-47
Figure 6-50 - ENTRY Syntax.. 6-48
Figure 6-51 - EVALUATE Syntax ... 6-49
Figure 6-52 - An EVALUATE Demo Program .. 6-50
Figure 6-53 - EXIT Syntax ... 6-51
Figure 6-54 - Using the EXIT Statement ... 6-51
Figure 6-55 - Using EXIT PARAGRAPH .. 6-51
Figure 6-56 - Using the EXIT PERFORM Statement .. 6-51
Figure 6-57 - FREE Syntax .. 6-53
Figure 6-58 - GENERATE Syntax ... 6-54
Figure 6-59 - GOBACK Syntax .. 6-55
Figure 6-60 - Simple GOTO Syntax ... 6-56
Figure 6-61 - GOTO DEPENDING ON Syntax .. 6-56
Figure 6-62 - GOTO DEPENDING ON vs IF vs EVALUATE.. 6-56
Figure 6-63 - IF Syntax ... 6-57
Figure 6-64 - INITIALIZE Syntax .. 6-58
Figure 6-65 - INITIATE Syntax .. 6-59
Figure 6-66 - INSPECT Syntax ... 6-60
Figure 6-67 - An INSPECT TALLYING Example .. 6-61
Figure 6-68 - MERGE Syntax .. 6-63
Figure 6-69 - Simple MOVE Syntax .. 6-65
Figure 6-70 - MOVE CORRESPONDING Syntax .. 6-65
Figure 6-71 - MULTIPLY BY Syntax ... 6-67
Figure 6-72 - MULTIPLY GIVING Syntax ... 6-67
Figure 6-73 - NEXT SENTENCE Syntax .. 6-68
Figure 6-74 - OPEN Syntax ... 6-69
Figure 6-75 - Procedural PERFORM Syntax ... 6-70
Figure 6-76 - Inline PERFORM Syntax .. 6-71
Figure 6-77 – READ (Sequential) Syntax .. 6-72
Figure 6-78 - READ (Random) Syntax .. 6-73
Figure 6-79 - RELEASE Syntax .. 6-75
Figure 6-80 - RETURN Syntax ... 6-76
Figure 6-81 - REWRITE Syntax ... 6-77
Figure 6-82 - ROLLBACK Syntax ... 6-78
Figure 6-83 - Sequential SEARCH Syntax ... 6-79
Figure 6-84 - Binary SEARCH (ALL) Syntax ... 6-80
Figure 6-85 - SET ENVIRONMENT Syntax... 6-82
Figure 6-86 - SET Program Pointer Syntax ... 6-82
Figure 6-87 - SET ADDRESS Syntax... 6-82
Figure 6-88 - SET Index Syntax ... 6-83
Figure 6-89 - SET UP/DOWN Syntax .. 6-83
Figure 6-90 - SET Condition Name Syntax ... 6-83
Figure 6-91 - SET Switch Syntax ... 6-84
Figure 6-92 - File-Based SORT Syntax .. 6-85
Figure 6-93 - Table SORT Syntax .. 6-87
Figure 6-94 - START Syntax .. 6-88
Figure 6-95 - STOP Syntax .. 6-90
Figure 6-96 - STRING Syntax .. 6-91
Figure 6-97 - SUBTRACT FROM Syntax .. 6-92
Figure 6-98 - SUBTRACT GIVING Syntax .. 6-92

OpenCOBOL 1.1 Programmers Guide Table of Contents

06FEB2009 Version 9

Figure 6-99 - SUBTRACT CORRESPONDING Syntax .. 6-93
Figure 6-100 - SUPPRESS Syntax .. 6-94
Figure 6-101 - TERMINATE Syntax ... 6-95
Figure 6-102 - TRANSFORM Syntax ... 6-96
Figure 6-103 - The TRANSFORM Statement at Work .. 6-96
Figure 6-104 - UNLOCK Syntax .. 6-97
Figure 6-105 - UNSTRING Syntax ... 6-98
Figure 6-106 - An UNSTRING Example ... 6-98
Figure 6-107 - WRITE Syntax ... 6-100
Figure 7-1 - C/OpenCOBOL Data Type Matches .. 7-4
Figure 7-2 - OpenCOBOL CALLing C ... 7-6
Figure 7-3 - C CALLing OpenCOBOL ... 7-7
Figure 7-4 - Compiler Environment Variables ... 7-9
Figure 7-5 - Run-Time Environment Variables ... 7-13
Figure 7-6 - A Binary Truncation Demo Program .. 7-29
Figure 7-7 - A Non-Scientific Comparison of Numeric Data Item USAGE Performance .. 7-31

OpenCOBOL 1.1 Programmers Guide Table of Contents

06FEB2009 Version 10

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-1

1. Introduction

1.1. What is OpenCOBOL?

This document describes the syntax, semantics and usage of the COBOL programming language as implemented by
the current version of OpenCOBOL.

OpenCOBOL is an open-source COBOL compiler and runtime environment. The OpenCOBOL compiler generates C
code which is automatically compiled and linked. While originally developed for UNIX operating systems, OpenCOBOL
can also be built for MacOS computers or Windows computers utilizing the UNIX-emulation features of such tools as
Cygwin and MinGW

1
. It has also been built as a truly native Windows application utilizing Microsoft’s freely-

downloadable Visual Studio Express package to provide the C compiler and linker/loader.

The principal developers of OpenCOBOL are Keisuke Nishida and Roger While. They may be contacted at the
OpenCOBOL website - www.opencobol.org.

This document was intended to serve as a full-function reference and user’s guide suitable for both those readers
learning COBOL for the first time as well as those already familiar with some dialect of the COBOL language. The
author of this document is Gary Cutler, who may be reached via postings at the www.opencobol.org forum, or by
email at CutlerGL@gmail.com.

1.2. Additional References and Documents

For those wishing to learn COBOL for the first time, I can strongly recommend the following resources.

If you like to hold a book in your hands, I strongly recommend “Murach’s Structured COBOL”, by Mike Murach, Anne
Prince and Raul Menendez (2000) - ISBN 9781890774059. Mike Murach and his various writing partners have been
writing outstanding COBOL textbooks for several decades, and this text is no exception. It’s an excellent book for
those familiar with the concepts of programming in other languages, but unfamiliar with COBOL.

Would you prefer a web-based tutorial? Try the University of Limerick (Ireland) COBOL web site -
http://www.csis.ul.ie/cobol/.

1.3. Introducing COBOL

If you already know a programming language, and that language isn’t COBOL, chances are that language is Java, C or
C++. You will find COBOL a much different programming language than those – sometimes those differences are a
good thing and sometimes they aren’t. The thing to remember about COBOL is this – it was designed to solve business
problems. It was designed to do that in the 1950s.

COBOL was the first programming language to become standardized such that a COBOL program written on computer
“A” made by company “X” would be able to be compiled and executed on computer “B” made by company “Y”. This
may not seem like such a big deal today, but it was a radical departure from all programming languages that came
before it and even many that came after it.

The name “COBOL” actually says it all – COBOL is an acronym that stands for “COmmon Business Oriented Language”.
Note the fact that the word “common” comes before all others. The word “business” is a close second. Therein lies
the key to COBOL’s success.

1
 The MinGW approach is a personal favorite with the author of this manual because it creates an OpenCOBOL

compiler and runtime that require only a single MinGW DLL to be available to OpenCOBOL tools and user
programs. That DLL is freely distributable under the terms of the GNU General Public License. A MinGW build of
OpenCOBOL fits easily on and runs from a 128MB flash drive with no need to install any software onto the
Windows computer that will be using it. Some functionality of the language, dealing with the sharing of files
between concurrently executing OpenCOBOL programs and record locking on certain types of files, is sacrificed
however.

file:///C:/Documents%20and%20Settings/tda010/Application%20Data/Microsoft/Word/www.opencobol.org
http://www.opencobol.org/
mailto:CutlerGL@gmail.com
http://www.csis.ul.ie/cobol/

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-2

1.3.1. “I Heard COBOL is a Dead Language!”

Phoenician is a dead language. Mayan is a dead language. Latin is a dead language. What makes these languages
dead is the fact that no one speaks them anymore. COBOL is NOT a dead language, and despite pontifications that
come down to us from the ivory towers of academia, it isn’t even on life support.

What made those other languages die is the fact that they became obsolete. As the peoples that spoke them were
overrun or superseded by other populations that eventually replaced them, no one saw any need to speak their
languages. There was no good reason to keep on speaking a language whose creators had become irrelevant to
history.

 COBOL is different. Certainly, there were more people that “spoke” COBOL back in the 1980s than there are now.
Remember, however, the second word in COBOL’s acronym – business. Businesses are complex social and economic
organisms that exist for but a single purpose – to make money. One of the approaches businesses take to satisfy that
all-important survival trait is that they want to avoid expenses.

This avoidance of expense turns out to have been key to the survival of COBOL because those programmers of the
1980s (give or take a decade) were very busy programmers. Estimates are that as many as a several hundred billion
lines of COBOL code were written for businesses world-wide. Because of the first word in COBOL’s name (“Common”),
as businesses replaced their older, slower and less-reliable computer systems with newer, faster and more-reliable
ones, they found that the massive investment they had in their COBOL software inventory paid dividends by remaining
functional on those new systems - many times with no changes needed whatsoever!

Unwilling to endorse change merely for the sake of change, businesses replaced these billions and billions of lines of
COBOL code only when absolutely necessary and only when financially justifiable. That justification appeared to have
come as the 20

th
 century was nearing the end.

Written long before the end of the century was near, many of those COBOL applications used 2-digit years instead of
four digit years because, when the programs were written, computer storage of any kind was expensive. Why should
millions and millions of bytes of storage be wasted by all those “19” sequences when the software can simply assume
them? Since their software would suddenly think the current year was “1900” after the stroke of midnight, December
31

st
 1999, businesses knew they were going to have to do something about the “Y2K” (programmer “geek speak” for

“Year 2000”) problem.

At last! Y2K was going to be the massive asteroid strike that finally killed off the COBOL dinosaur.

Unfortunately for those seeking the extinction of COBOL, that proved to be wishful thinking.

Always concerned with the bottom line, businesses actually analyzed the problems with their programs. Many
applications were replaced with newer and “better” versions that used more appropriate (translation: more politically
correct) languages and computer systems. BUT … many applications were not replaced. These were the absolutely
essential applications whose replacement would cripple the business if everything didn’t go absolutely perfectly.
These COBOL applications were modified to use 4-digit years instead of 2-digit ones. At the same time, many of them
received cosmetic “face lifts” to make their computer/human interfaces more acceptable, frequently with the help of
modules developed in the newer languages.

The result is that even today, after the Y2K “extinction event”, there are, by industry estimates, over 40 billion lines of
COBOL code still running the businesses of the 21

st
 century. A fact that is disturbing to some is that – just as tiny little

furry mammals evolved to cope with the original “extinction event” holocaust – COBOL has also evolved into a leaner
and meaner “animal” capable of competing in niches and providing services unthought-of back in 1968. That fact is
confirmed by the fact that those lines of COBOL code being tracked by industry analysts are actually growing at the
rate of about 4 billion a year.

Evolution, you see, is in COBOLs DNA. Over time, COBOL evolved in form and function, first via work done by the
American National Standards Institute (ANSI) and eventually through the efforts of the International Standards
Organization (ISO).

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-3

The first widely-adopted standard for COBOL was published by ANSI in 1968
2
. Named the ANS68 standard, this

version of COBOL was originally standardized for use primarily as the business programming tool of the US Defense
Department; it quickly was adopted by other Government agencies and private businesses alike.

Subsequent standards published in 1974 and 1985 (ANS74 and ANS85, respectively) added new features and evolved
the language toward adoption of the programmer-productivity tool of the time – “Structured Programming”.

As the 21
st

 century dawned, programming had moved out of the board room and into the Game Room, the Living
Room and even the Kitchen; as computers became more and more inexpensive they appeared in games,
entertainment devices and appliances. Even the automobile became home to computers galore. These computers
need software, and that software is written in the so-called “modern” languages.

Combined with Y2K, these trends became the impetus for COBOL to evolve even newer features and capabilities. The
COBOL2002 standard

3
 introduced object-oriented features and syntax that make the language more programmer-

friendly to those trained by today’s programming curricula. The COBOL20xx standard, currently under development,
carries the evolution forward to the point where a COBOL20xx implementation will be fully as “modern” as any other
programming language.

Through all this evolution, however, care was taken with each new standard to protect the investment businesses (or
anyone, for that matter) had in COBOL software. Generally, a new COBOL standard – once implemented and adopted
by a business - required minimal, if any, changes to upgrade existing applications. When changes were necessary,
those changes could frequently be made using tools that mechanically upgraded entire libraries of source code with
little or no need for human intervention.

The OpenCOBOL implementation of the COBOL language supports virtually the entire ANS85 standard as well as some
significant features of the COBOL2002 standard, although the truly object-oriented features are not there (yet).

1.3.2. Programmer Productivity – The “Holy Grail”

Throughout the history of computer programming, the search for new ways to improve of the productivity of
programmers has been the all-important consideration. Sometimes this search has taken the form of introducing new
features in programming languages, or even new languages altogether, and sometimes it has evolved new ways of
using the existing languages. Other than hobbyists, programming is an activity performed for money. Businesses
abhor spending anything more than is absolutely necessary. Even government agencies try to spend as little money
on projects as is absolutely necessary

4
.

The amount of programming necessary to accomplish a given task – including rework needed by any errors found
during testing (testing: “that time during which an application is actually in production use attempting to serve the
purpose for which it was designed”) is the measure of programmer productivity. Anything that reduces that effort
will therefore reduce the time spent in such activities therefore reducing the expense of same. When the expense of
programming is reduced, programmer productivity is increased.

While many technological and procedural developments have made evolutionary improvements to programmer
productivity, each of the following has been responsible for revolutionary improvements:

 The development of so-called “higher-level” programming languages that enable a programmer to specify in
a single statement of the language an action that would have required many more separate statements in a
prior programming language. The standardization of such languages, making them usable on a wide variety

2
 To that point, in 1968 the US Government made it a requirement that any computer system sold to them must run

a version of COBOL that adhered to the ANSI68 standard. The requirement that computers sold to the US
Government had to support the current COBOL standard remained for many, many years.

3
 “Popular” names for COBOL standards no longer include an organization’s name, and now use Y2K-compliant 4-

digit years.

4
 This is a religious issue because it is an assertion that – sadly – must be taken purely on faith; there is,

unfortunately, all too little real-world evidence to support it. It makes sense, so one can only hope it is true.

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-4

of computers and operating systems, is a COBOL was a pioneering development in this area, being one of the
first higher-level languages.

 The establishment of programming techniques that make programs easier to read and therefore easier to
understand. Not only do such techniques reduce the amount of rework necessary simply to make a program
work as designed, but they also reduce the amount of time a programmer needs to study an existing program
in order how to best adapt it to changing business requirements. The foremost development in this area was
structured programming. Introduced in the late 1970s, this approach to programming spawned new
programming languages (PASCAL, ALGOL, PL/1) designed around it. With the ANSI85 standard, COBOL
embraced the principles espoused by structured programming mavens as well as any of the languages
designed strictly around it.

 The establishment of programming techniques AND the introduction of programming language capabilities to
facilitate the reusability of program code. Anything that supports code reusability can have a profound
impact to the amount of time it takes to develop new applications or to make significant changes to existing
ones. In recent years, object-oriented programming has been the industry “poster child” for code reusability.
By enabling program logic and the data structures that logic manipulates encapsulated into easily stored and
retrieved (and therefore “reusable”) modules called classes, the object-oriented languages such as Java, C++
and C# have become the favorites of academia. Since students are being trained in these technologies and
only these, by and large, it’s no surprise that – today - object-oriented programming languages are the
darlings of the industry.

The reality is, however, that good programmers have been practicing code reusability for more than a half-
century. Up until recently, COBOL programmers have had some of the best code reusability tools available -
they’ve been doing it with copybooks (section 1.7) and subroutines (sections 6.7, 7.1.4 and 7.1.5) rather than
classes, methods and attributes but the net results have been similar. With the COBOL2002 standard and the
improvements made by the COBOL20xx standard, the playing field is leveled in this regard.

1.3.3. Notable COBOL/OpenCOBOL Features

1.3.3.1. Basic Program Readability

When it first was developed, COBOL’s easily-readable syntax made it profoundly different to anything that had been
seen before. For the first time, it was possible to specify logic in a manner that was – at least to some extent –
comprehensible even to non-programmers. Take for example, the following code written in FORTRAN – a language
developed only a year before COBOL:

E = P * Q
I = I + E

With its original limitation on the length of variable names (one letter or a letter followed by a number), and its use of
algebraic notation to express actions being taken, FORTRAN wasn’t a particularly readable language, even by
programmers. Compare this with the equivalent COBOL code:

MULTIPLY PRICE BY QUANTITY GIVING EXTENDED-AMOUNT
ADD EXTENDED-AMOUNT TO INVOICE-TOTAL

Clearly, even a non-programmer could at least conceptually understand what was going on! Over time, languages like
FORTRAN evolved more robust variable names, but FORTRAN was never as readable as COBOL.

The inherent readability of COBOL code was a blessing at first, but eventually it became considered as a curse. As
more and more people became at least informed about programming if not downright skilled, the syntax of COBOL
became one of the reasons the ivory-tower types wanted to see it eradicated.

I would MUCH rather be handed an assignment to make significant changes to a COBOL program about which I know
nothing than to be asked to do the same with a C, C++ or Java program.

Those that argue that it is too boring/wasteful/time-consuming/insulting (choose the word you prefer) to have to
code a COBOL program “from scratch” are clearly ignorant of the following facts:

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-5

 Many systems have program-development tools available to ease the task of coding programs; those tools
that concentrate on COBOL are capable of providing templates for much of the “overhead” verbiage of any
program

 Good programmers have – for decades – maintained their own skeleton “template” programs for a variety of
program types; simply load a template into a text edit and you’ve got a good start to the program

 Legend has it that there’s actually only ever been ONE program ever written in COBOL – all programs ever
written after that sprang from that one!

1.3.3.2. COBOL Program Structure

COBOL programs are structured into four major areas of coding, each with it’s own purpose. These four areas are
known as DIVISIONS.

Each DIVISION may consist of a variety of SECTIONs and each SECTION consists of one or more PARAGRAPHs. A
PARARAPH consists of SENTENCEs, each of which consists of one or more STATEMENTs.

This hierarchical structure of program components standardizes the composition of all COBOL programs. Much of this
manual describes the various divisions, sections, paragraphs and statements that may comprise any COBOL program.

The four divisions, and their function, are described in section 2. Each division has its own chapter (sections 3, 4, 5 and
6) and each of those chapters will describe the sections, et. al. available to programmers in each of those divisions.

1.3.3.3. Copybooks

A “copybook” is a segment of program code may be utilized by multiple programs simply by having that program use
the COPY statement (section 1.7) to import that code into the program. This code may define files, data structures or
procedural code.

Today’s current programming languages have a statement (usually, this statement is named “include” or “#include”)
that performs this same function. What makes the COBOL copybook feature different than the “include” facility in
current languages, however, is the fact that the COBOL COPY statement can edit the imported source code as it is
being copied. This capability enables copybook libraries extremely valuable to making code reusable.

1.3.3.4. Structured Data

COBOL introduced the concept of structured data back in the 1960s. Structured data is data which may be accessed
as a single item or may be broken down into sub-items based upon their character position of occurrence within the
structure. These structures called group items (page 9-2). At the bottom of any structure are data items that aren’t
broken down into sub-items. COBOL refers to these as elementary items (page 9-1).

1.3.3.5. Files

One of COBOLs main strengths is the wide variety of files it is capable of accessing. OpenCOBOL, like other COBOL
implementations, needs to have the structure of any files that it will be reading and/or writing described to it. The
highest-level characteristic of a file’s structure is defined by specifying the ORGANIZATION (section 4.2.1) of the file, as
follows:

ORGANIZATION IS
LINE SEQUENTIAL

These are files with the simplest of all internal structures. Their contents are structured simply
as a series of data records, each terminated by a special end-of-record delimiter character. An
ASCII line-feed character (hexadecimal 0A) is the end-of-record delimiter character used by any
UNIX or pseudo-UNIX (MinGW, Cygwin, MacOS) OpenCOBOL build. A truly native Windows
build would use a carriage-return, line-feed (hexadecimal 0D0A) sequence.

Records in this type of file need not be the same length.

Records must be read from or written to these files in a purely sequential manner. The only

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-6

way to read (or write) record number 100 would be to have read (or written) records number 1
thru 99 first.

When the file is written by an OpenCOBOL program, the delimiter sequence will be
automatically appended to each data record as it is written to the file.

When the file is read, the OpenCOBOL runtime system will strip the trailing delimiter sequence
from each record and pad the data (to the right) with SPACES, if necessary, if the data just read
is shorter than the area described for data records in the program. If the data is too long, it will
be truncated and the excess will be lost.

These files should not be defined to contain any exact binary data fields because the contents
of those fields could inadvertently have the end-of-record sequence as part of their values –
this would confuse the runtime system when reading the file, and it would interpret that value
as an actual end-of-record sequence.

ORGANIZATION IS
RECORD BINARY
SEQUENTIAL

These files also have a simple internal structure. Their contents are structured simply as a
series of fixed-length data records with no special end-of-record delimiter.

Records in this type of file are all the same physical length. If variable-length logical records are
defined to the program (section 5.3), the space occupied by each physical record in the file will
occupy the maximum possible space.

Records must be read from or written to these files in a purely sequential manner. The only
way to read (or write) record number 100 would be to have read (or written) records number 1
thru 99 first.

When the file is written by an OpenCOBOL program, no delimiter sequence is appended to the
data.

When the file is read, the data is transferred into the program exactly as it exists in the file. In
the event that a short record is read as the very last record, that record will be SPACE padded.

Care must be taken that programs reading such a file describe records whose length is exactly
the same as that used by the programs that created the file. For example, the following shows
the contents of a RECORD BINARY SEQUENTIAL file created by a program that wrote five 6-
character records to it. The “A”, “B”, … values and the background colors reflect the records
that were written to the file:

A A A A A A B B B B B B C C C C C C D D D D D D E E E E E E

Now, assume that another program reads this file, but described 10-character records rather
than 6. Here are the records that program will read:

A A A A A A B B B B
B B C C C C C C D D
D D D D E E E E E E

There may be times where this is exactly what you were looking for. More often than not,
however, this is not desirable behavior. Suggestion: use a copybook to describe the record
layouts of any file; this guarantees that multiple programs accessing that file will “see” the
same record sizes and layouts.

These files can contain exact binary data fields. The contents of record fields are irrelevant to
the reading process as there is no end-of-record delimiter.

ORGANIZATION IS
RELATIVE

The contents of these files consist of a series of fixed-length data records prefixed with a four-
byte USAGE COMP-5 (Figure 5-10) record header. The record header contains the length of the
data, in bytes. The byte-count does not include the four-byte record header.

Records in this type of file are all the same physical length. If variable-length logical records are
defined to the program (section 5.3), the space occupied by each physical record in the file will
occupy the maximum possible space.

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-7

This file organization was defined to accommodate either sequential or random processing.
With a RELATIVE file, it is possible to read or write record 100 directly, without having to have
first read or written records 1-99. The OpenCOBOL runtime system uses the program-defined
maximum record size to calculate a relative byte position in the file where the record header
and data begin, and then transfers the necessary data to or from the program.

When the file is written by an OpenCOBOL program, no delimiter sequence is appended to the
data, but a record-length field is added to the beginning of each physical record.

When the file is read, the data is transferred into the program exactly as it exists in the file.

Care must be taken that programs reading such a file describe records whose length is exactly
the same as that used by the programs that created the file. It won’t be a pretty site when the
OpenCOBOL runtime library ends up interpreting a four-byte ASCII character string as a record
length when it transfers data from the file into the program!

Suggestion: use a copybook to describe the record layouts of any file; this guarantees that
multiple programs accessing that file will “see” the same record sizes and layouts.

These files can contain exact binary data fields. The contents of record fields are irrelevant to
the reading process as there is no end-of-record delimiter.

ORGANIZATION IS
INDEXED

This is the most advanced file structure available to OpenCOBOL programs. It’s not possible to
describe the physical structure of such files because that structure will vary depending upon
which advanced file-management facility was included into the OpenCOBOL build you will be
using (Berkeley Database [BDB], VBISAM, etc.). We will – instead – discuss the logical structure
of the file.

There will be multiple structures stored for an INDEXED file. The first will be a data component,
which may be thought of as being similar to the internal structure of a RELATIVE file. Data
records may not, however, be directly accessed by their record number as would be the case
with a RELATIVE file, nor may they be processed sequentially by their physical sequence in the
file.

The remaining structures will be one or more index components. An index component is a data
structure that (somehow) enables the contents of a field, called a primary key, within each data
record (a customer number, an employee number, a product code, a name, etc.) to be
converted to a record number so that the data record for any given primary key value can be
directly read, written and/or deleted. Additionally, the index data structure is defined in such a
manner as to allow the file to be processed sequentially, record-by-record, in ascending
sequence of the primary key field values. Whether this index structure exists as a binary-
searchable tree structure (btree), an elaborate hash structure or something else is pretty much
irrelevant to the programmer – the behavior of the structure will be as it was just described.
The runtime system will not allow two records to be written to an indexed file with the same
primary key value.

The capability exists for an additional field to be defined as what is known as an alternate key.
Alternate key fields behave just like primary keys, allowing both direct and sequential access to
record data based upon the alternate key field values, with one exception. That exception is
the fact that alternate keys may be allowed to have duplicate values, depending upon how the
alternate key field is described to the OpenCOBOL compiler (section 4.2.1.3).

There may be any number of alternate keys, but each key field comes with a disk space penalty
as well as an execution time penalty. As the number of alternate key fields increases, it will
take longer and longer to write and/or modify records in the file.

These files can contain exact binary data fields. The contents of record fields are irrelevant to
the reading process as there is no end-of-record delimiter.

All files are initially described to an OpenCOBOL program using a SELECT statement (section 4.2.1) coded in the FILE-
CONTROL paragraph of the INPUT-OUTPUT SECTION of the ENVIRONMENT DIVISION. In addition to defining a name

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-8

by which the file will be referenced within the program, the SELECT statement will specify the name and path by which
the file will be known to the operating system along with its ORGANIZATION, locking (section 6.1.9.2) and sharing
(section 6.1.9.1) attributes.

A file description (section 5.1) in the FILE SECTION of the WORKING-STORAGE SECTION of the DATA DIVISION will
define the structure of records within the file, including whether or not variable-length records are possible and – if so
– what the minimum and maximum length might be. In addition, the file description entry can specify file I/O block
sizes.

1.3.3.6. Table Handling

Other programming languages have arrays, COBOL has tables. They’re basically the same thing. What makes COBOL
tables special are two special statements that exist in the COBOL language – SEARCH (section 6.38.1) and SEARCH ALL
(section 6.38.2).

The first can search a table sequentially, stopping only when either a table entry matching one of any number of
search conditions is found, or when all table entries have been checked against the search criteria and none matched
any of those criteria.

The second can perform an extremely fast search against a table sorted by and searched against a “key” field
contained in each table entry. The algorithm used for such a search is a binary search (also known as a half-interval
search). This algorithm ensures that only a small number of entries in the table need to be checked in order to find a
desired entry or to determine that the desired entry doesn’t exist in the table. The larger the table, the more effective
this search becomes. For example, a table containing 32,768 entries will be able to locate a particular entry or will
determine the entry doesn’t exist by looking at no more than fifteen (15) entries! The algorithm is explained in detail
in the SEARCH ALL documentation (section 6.38.2).

1.3.3.7. Sorting and Merging Data

The COBOL language includes a powerful SORT statement (section 6.40.1) that can sort large amounts of data
according to arbitrarily complex key structures. This data may originate from within the program or may be contained
in one or more external files. The sorted data may be written automatically to one or more output files or may be
processed, record-by-record in the sorted sequence.

A special form of the SORT statement (section 6.40.2) also exists just to sort the data that resides in a table. This is
particularly useful if you wish to use SEARCH ALL against the table.

A companion statement – MERGE (section 6.27) – can combine the contents of multiple files together, provided those
files are all sorted in a similar manner according to the same key structure(s). The resulting output will consist of the
contents of all of the input files, merged together and sequenced according to the common key structure(s). The
output of a MERGE may be written automatically to one or more output files or may be processed internally by the
program.

1.3.3.8. String Manipulation

There have been programming languages designed specifically for the processing of text strings, and there have been
programming languages designed for the sole purpose of performing high-powered numerical computations. Most
programming languages fall somewhere in the middle, between these two extremes. COBOL is no exception,
although it does include some very powerful string manipulation capabilities; OpenCOBOL actually has even more
string-manipulation capabilities than many other COBOL implementations. The following chart illustrates the
capabilities of OpenCOBOL with regard to strings:

Capability OpenCOBOL Feature Supporting that Capability

Concatenate two or more strings CONCATENATE Intrinsic Function (section 6.1.7.9)
STRING Statement (section 6.43)

Conversion of a numeric time or date to a
formatted character string

LOCALE-TIME or LOCALE-DATE Intrinsic Functions (sections 6.1.7.31 and
6.1.7.30), respectively

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-9

Capability OpenCOBOL Feature Supporting that Capability

Convert a binary value to its corresponding
character in the program’s characterset

CHAR Intrinsic Function (section 6.1.7.7); add 1 to argument before
invoking the function; The description of the CHAR function shows a
technique that utilizes the MOVE statement that will accomplish the
same thing without the need of adding 1 to the numeric argument
value first

Convert a character string to lower-case LOWER-CASE Intrinsic Function (section 6.1.7.35)
C$TOLOWER Built-in Subroutine (section 7.3.1.10)
CBL_TOLOWER Built-in Subroutine (section 7.3.1.35)

Convert a character string to upper-case UPPER-CASE Intrinsic Function (section 6.1.7.67)
C$TOUPPER Built-in Subroutine (section 7.3.1.11)
CBL_TOUPPER Built-in Subroutine (section 7.3.1.36)

Convert a character to its numeric value in
the program’s characterset

ORD Intrinsic Function (section 6.1.7); subtract 1 from the result; The
description of the ORD function shows a technique that utilizes the
MOVE statement that will accomplish the same thing without the need
of adding 1 to the numeric argument value first

Count occurrences of substrings in a larger
string

INSPECT Statement with TALLYING Option (section 6.26)

Decode a formatted numeric string back to
a numeric value (for example, decode
“$12,342.19-“ to a -12342.19 value)

NUMVAL and NUMVAL-C Intrinsic Functions (sections 6.1.7.42 and
6.1.7.43)

Determine the length of a string or data-
item capable of storing strings

LENGTH or BYTE-LENGTH Intrinsic Functions (sections 6.1.7.29 and
6.1.7.6)

Extract a substring of a string based on its
starting character position and length

MOVE Statement (section 6.28.1) with a reference modifier on the
“sending” field

Format a numeric item for output, including
thousands-separators (“,” in the USA),
currency symbols (“$” in the USA), decimal
points, credit/debit symbols, leading or
trailing sign characters

MOVE Statement (section 6.28) with picture-symbol editing applied to
the receiving field (section 5.3)

Justification (Left, Right or Centered) of a
string field

C$JUSTIFY built-in subroutine (section 7.3.1.5)

Monoalphabetic substitution of one or
more characters in a string with different
characters

INSPECT Statement with CONVERTING Option (section 6.26)
TRANSFORM Statement (section 6.47)
SUBSTITUTE and SUBSTITUTE-CASE Intrinsic Functions (sections
6.1.7.60 and 6.1.7.61)

Parse a string, breaking it up into substrings
based upon one or more delimiting
character sequences; these delimiters may
be single characters, multiple-character
strings or multiple consecutive occurrences
of either

UNSTRING Statement (section 6.49)

Removal of leading or trailing spaces from a
string

TRIM Intrinsic Function (section 6.1.7.66)

Substitution of a single substring with
another of the same length, based upon the
substrings starting character position and
length

MOVE Statement (section 6.28.1) with a reference modifier on the
“receiving” field

Substitution of one or more substrings in a
string with replacement substrings of the
same length, regardless of where they
occur

INSPECT Statement with REPLACING Option (section 6.26)
SUBSTITUTE and SUBSTITUTE-CASE Intrinsic Functions (sections
6.1.7.60 and 6.1.7.61)

Substitution of one or more substrings in a
string with replacement substrings of a

SUBSTITUTE and SUBSTITUTE-CASE Intrinsic Functions (sections
6.1.7.60 and 6.1.7.61)

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-10

Capability OpenCOBOL Feature Supporting that Capability

different length, regardless of where they
occur

1.3.3.9. Textual-User Interface (TUI) Features

The COBOL2002 standard formalizes extensions to the COBOL language that allow for the definition and processing of
text-based screens. OpenCOBOL implements virtually all the screen-handling features described by COBOL2002.

Here is an example of such a screen as it might appear in the console window of a Windows computer:
Figure 1-1 - A Sample TUI Screen

Screens such as this
5
 are defined in the SCREEN SECTION of the DATA DIVISION (section 5.6). Once defined, screens re

used at run-time via the ACCEPT (section 6.4.4) and DISPLAY (section 6.14.4) statements.

The COBOL2002 standard only covers textual-user interface (TUI) screens and not the more-advanced graphical-user
interface (GUI) screen design and processing capabilities built into most modern operating systems. There are
subroutine-based packages available that can do full GUI development, but none are open-source.

1.4. Syntax Description Conventions

Syntax of the OpenCOBOL language will be described in this manual with conventions familiar to COBOL programmers.
The following is a description of those syntactical-description techniques:

UPPERCASE COBOL language keywords and implementation-dependent names (the so-called “reserved
words” of the COBOL language) will appear in uppercase.

UNDERLINING reserved words that are underlined are required in whatever syntactical context they are
shown. If a reserved word is NOT underlined, it is optional and it’s presence or absence has
no effect on the program.

lowercase Generic terms representing substitutable arguments will be shown in lowercase.

5
 This screen comes from the program named OCic – a full-screen front-end to the OpenCOBOL compiler – the

sourcs code of which is included as a sample in this manual. See section 8.3 for the listing of the program.

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-11

[brackets] Square brackets are used to enclose optional clauses. Any clauses not enclosed in square
brackets are mandatory.

choice-1 | choice-2 Simple choices may be indicated with a vertical bar separating them. Although not typically
used in COBOL syntactical diagrams, this convention is an effective alternative that may be
used when square brackets would make a syntax diagram too complicated.

{ braces } Braces are used to enclose alternatives. Exactly one of the alternatives contained within
the braces must be selected.

{| selector |} Choice indicators are used to enclose alternatives where one or more of the enclosed
selections may be selected.

… A three-dot sequence (called an “ellipsis”) may appear following brackets, braces, selectors
or lowercase entries to indicate that the syntax element preceding the ellipsis may occur
multiple times.

Shaded Areas Shaded areas are used to highlight syntax elements that are recognized by the OpenCOBOL
compiler but will either have no effect on the generated code or will be rejected as being
unsupported. Such elements are either present in the OpenCOBOL language to facilitate
the porting of programs from other COBOL environments, reflect syntax elements that are
not yet fully implemented or syntax elements that have become obsolete.

1.5. Source Program Format

Traditional COBOL program source format allows programs to be coded using 80-character (maximum) lines with a
fixed format. As of the ANSI 2002 standard, a free-format source code format is defined where source code lines can
be up to 256 characters long with no fixed meanings assigned to specific column ranges.

OpenCOBOL provides the following four methods for specifying the format of source code input files:

-fixed This OpenCOBOL compiler switch specifies that all source input will be in
traditional (80-column) fixed format. THIS IS THE DEFAULT MODE.

-free This OpenCOBOL compiler switch specifies that all source input will be in ANSI2002
free (256 column) format.

>>SOURCE FORMAT IS FREE This source line, when encountered by the OpenCOBOL compiler, will switch the
compiler’s expectations into free format mode. The “>>” characters MUST begin in
column 8 or beyond. Directives such as this and the next one may be used to
switch the compiler back and forth between free and fixed mode at will.

>>SOURCE FORMAT IS FIXED This source line, when encountered by the OpenCOBOL compiler, will switch the
compiler’s expectations into fixed format mode. Directives such as this and the
prior one may be used to switch the compiler back and forth between free and
fixed mode at will.

The following are special directives or characters that may be used in OpenCOBOL programs to signify various things.

“*” in column 7 Signifies the source line is a comment. This is valid only when in FIXED mode.

“D” in column 7 Signifies the source line is a valid OpenCOBOL statement that will be treated as a comment
unless the “–fdebugging-line” switch is specified to the OpenCOBOL compiler (in that
instance, the lines will be compiled). This is valid only when in FIXED mode.

“*>” in any column Denotes the remainder of the source line is a comment. This may be used in either FREE or
FIXED mode, but if it is used in FIXED mode, the “*” should be in column 7 or beyond.

“>>D” in any column Signifies the source line is a valid OpenCOBOL statement that will be treated as a comment
unless the “-fdebugging-line” switch is specified to the OpenCOBOL compiler (in that
instance, the lines will be compiled). This is valid when in FIXED or FREE mode, and must be
the first non-blank sequence on the source line. In FREE mode, this sequence may begin in
any column. In FIXED mode, this sequence must begin in column 8 or beyond.

1.6. Use of Commas and Semicolons

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-12

A comma character (“,”) or a semicolon (“;”) may be inserted into an OpenCOBOL program to improve readability at
any spot where white space would be legal (except, of course, within alphanumeric literals). These characters are
always optional. COBOL standards require that commas be followed by at least one space, when they’re used. Many
modern COBOL compilers (OpenCOBOL included) relax this rule, allowing the space to be omitted in most instances.
This can cause “confusion” to the compiler if the DECIMAL POINT IS COMMA clause is used (see section 4.1.4).

The following statement, which calls a subroutine passing it two arguments (the numeric constants 1 and 2):

CALL “SUBROUTINE” USING 1,2

would – with DECIMAL POINT IS COMMA – actually be interpreted as a subroutine call with ONE arguments (the data
non-integer numeric constant 1.2).

If you don’t already have it – develop the habit of coding a space after a comma used as punctuation! As an
alternative, consider using a semicolon as there is no possibility for “confusion”.

1.7. Using COPY

Figure 1-2 - COPY Syntax

COPY statements are used to
import copybooks (section
1.3.3.3) into a program.

OpenCOBOL completely supports the use of copybooks. These are separate source files containing ANY COBOL
SYNTAX WHATSOEVER, including other COPY statements.

COPY statements may be used anywhere within a COBOL program where the code contained within the copybook
would be syntactically valid.

The syntax diagram above places great emphasis on a period at the end of the COPY statement and any REPLACING
clauses it may have. A period is absolutely mandatory at the end of every COPY statement, even if – to the eye of an
experienced COBOL programmer – it doesn’t seem like there should be a period.

All COPY statements are resolved and the contents of the corresponding copybooks inserted into the program source
code before the actual compilation process begins.

The optional “REPLACING” clause allows any reserved words (word-1, word-2), data items (identifier-1, identifier-2),
literals (literal-1, literal-2) or whitespace-delimited phrases to be replaced. Any number of such substitutions may be
made as a copybook is included into a program.

See section 7.1.8 - Locating Copybooks at Compilation Time – for the details as to exactly how the OpenCOBOL
compiler locates copybooks when programs are being compiled.

1.8. Use of Literals

Literals are constant values that will not change during the execution of a program. There are two fundamental types
of literals – numeric and alphanumeric.

1.8.1. Numeric Literals

Numeric literals are numeric constants which may be used as array subscripts, as values in arithmetic expressions, or
in any procedural statement where a numeric value may be used. Numeric literals may take any of the following
forms:

 Integers such as 1, 56, 2192 or -54.

 Non-integer fixed point values such as 1.12 or -2.95.

 Hexadecimal numeric literals such as H”1F” (1F16 = 3110), h’22’ (2216 = 3410) or H’DEAD’ (DEAD16 = 5700510).
The “H” character may either be upper- or lower-case and either single quote (‘) or double-quote (“)

COPY copybook-name

REPLACING

== pseudo-text-1 ==
identifier-1
literal-1
word-1

...

== pseudo-text-2 ==
identifier-2
literal-2
word-2

.BY

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-13

characters may be used. Hexadecimal numeric literals are limited to a maximum value of
H’FFFFFFFFFFFFFFF’ (a 64-bit value).

1.8.2. Alphanumeric Literals

Alphanumeric literals are character strings suitable for display on a computer screen, printing on a report,
transmission through a communications connection or storage in PIC X or PIC A data items (section 5.3). These are
NOT valid for use in arithmetic expressions unless they can first be converted to their numeric computational
equivalent (see the NUMVAL and NUMVAL-C intrinsic functions in section 6.1.7).

Alphanumeric literals may take any of the following forms:

 Any sequence of characters enclosed by a pair of single-quote (‘) characters or a pair of double-quote (“)
characters constitutes a string literal. The double-quote character (“) may be used as a data character within
such a literal. If a single-quote character must be included as a data character, express that character as two
consecutive single-quotes (‘’). The single-quote character (‘) may be used as a data character within such a
literal. If a double-quote character must be included as a data character, express that character as two
consecutive double-quotes (“”).

 A hexadecimal literal such as X”4A4B4C” (4A4B4C16 = the ASCII string ‘JKL’), x’20’ (2016 = a space) or
X’30313233’ (3031323316 = the ASCII string ‘0123’). The “X” character may either be upper- or lower-case
and either single quote (‘) or double-quote (“) characters may be used. These hexadecimal alphanumeric
literals should always consist of an even number of hexadecimal digits, because each character is
represented by eight bits worth of data (2 hex digits). Hexadecimal alphanumeric literals may be of almost
unlimited length.

Alphanumeric literals too long to fit on a single line may be continued to the next line in one of two ways:

 If you are using SOURCE FORMAT FIXED mode (section 1.5), the alphanumeric literal can be run right up to
and including column 72. The literal may then be continued on the next line anywhere after column 11 by
coding another quote or apostrophe (whichever was used to begin the literal originally). The continuation
line must also have a hyphen (-) coded in column 7. Here is an example:

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
 01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE “This is a long l
 - “iteral that must
 - “ be continued.”

 Regardless of the current SOURCE FORMAT, OpenCOBOL allows alphanumeric literals to be broken up into
separate fragments. These fragments have their own beginning and ending quote/apostrophe characters
and are “glued together” using “&” characters. No continuation indicator is needed. Here’s an example:

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
 01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE “This is a” &
 “ long literal that must “ &
 “be continued.”.

If your program is using free-form format, there’s less need to continue long alphanumeric literals because statements
may be as long as 255 characters.

Numeric literals may be split across lines just as alphanumeric literals are, using either of the above techniques and
reserved words can be split across lines too (using the first technique). Numeric literals and reserved words don’t get
split very often though – it just makes for ugly-looking programs.

1.9. Use of Figurative Constants

Figurative constants are reserved words that may be used in lieu of certain literals. In general, a figurative constant
may be freely used anywhere its corresponding value could have been used; when used, their value is interpreted as if
it were prefixed with “ALL” (see section 5.3 for a discussion of “ALL”).

The following chart lists the OpenCOBOL figurative constants and their respective equivalent values.

OpenCOBOL 1.1 Programmers Guide Introduction

06FEB2009 Version Page 1-14

Figure 1-3 - Figurative Constants

Figurative
Constant

Type of
Literal

Equivalent Value

ZERO, ZEROS,
ZEROES

Numeric 0

SPACE, SPACES Alphanumeric Blank
QUOTE,
QUOTES

Alphanumeric Double-quote character(s)

LOW-VALUE,
LOW-VALUES

Alphanumeric The character whose value in the programs collating sequence is lowest. If a
program is using the ASCII collating sequence, this will represent a sequence of
characters comprised entirely of 0-bits.

HIGH-VALUE,
HIGH-VALUES

Alphanumeric The character whose value in the programs collating sequence is highest. If a
program is using the ASCII collating sequence, this will represent a sequence of
characters comprised entirely of 1-bits.

NULL Alphanumeric A character comprised entirely of zero-bits (regardless of the programs collating
sequence).

1.10. User-Defined Names

When you write OpenCOBOL programs, you’ll need to create a variety of names to represent various aspects of the
program, the programs data and the external environment in which the program is running.

User-defined names may be composed from the characters “A” through “Z” (upper- and/or lower-case), “0” through
“9”, dash (“-“) and underscore (“_”). User-defined names may neither start nor end with hyphen or underscore
characters.

With the exception of procedure names, user-defined names must contain at least one letter.

When user-defined names are created as names for data, they will be referenced in this document under the term
identifier.

1.11. Use of LENGTH OF

Alphanumeric literals and identifiers may optionally be prefixed with the clause “LENGTH OF”. In such cases, the
literal actually is a numeric literal with a value equal to the number of bytes in the alphanumeric literal. For example,
the following two OpenCOBOL statements both display the same result (27):

01 Demo-Identifier PIC X(27). *> This is a 27-character data-item

.

.

.

DISPLAY LENGTH OF “This is a LENGTH OF Example”

DISPLAY LENGTH OF Demo-Identifier

DISPLAY 27

The LENGTH OF clause on a literal or identifier reference may generally be used anywhere a numeric literal might be
specified, with the following exceptions:

1. In place of a literal on a DISPLAY statement.

2. As part of a WRITE or RELEASE statement’s FROM clause.

3. As part of the TIMES clause of a PERFORM.

OpenCOBOL 1.1 Programmers Guide General OpenCOBOL Program Format

06FEB2009 Version Page 2-1

2. General OpenCOBOL Program Format

Figure 2-1 - General OpenCOBOL Program Format

COBOL programs are organized into
DIVISIONS – major groupings of language
statements that all relate to a common
purpose.

Not all divisions are needed in every
program, but they must be specified in
the order shown when they are used.

1. The OpenCOBOL compiler will compile the source code provided to it (a compilation unit) into a single executable
program. This source code can provided as a single program unit (a source code sequence defined by those
DIVISIONs required by the program unit, followed by an optional END PROGRAM clause) or as multiple program
units EACH consisting of the necessary DIVISIONs and a mandatory END PROGRAM clause. When multiple
program units are being compiled in a single compilation unit, the last program unit need not contain an END
PROGRAM clause – all others, however, must have one.

2. Specifying multiple input files to the OpenCOBOL compiler defines a compilation unit that consists of the
contents of the specified files, compiled in the sequence in which the files are specified. The effect is the same as
if a single source file containing multiple program units were compiled, except that the individual source files
need not contain END PROGRAM clauses unless they contain multiple program units.

3. Regardless of how many programs units comprise a single compilation unit, only a single output executable
program will be generated. The first program unit encountered in the compilation unit will serve as the main
program – all others must serve as subprograms, called by the main program or by one of the other program units
in the sequence.

4. Here is a brief summary of the purpose of each DIVISION:

DIVISION Purpose

IDENTIFICATION The IDENTIFICATION DIVISION (section 3) provides basic identification of the program by giving
it a program id (a name).

ENVIRONMENT The ENVIRONMENT DIVISION (section 4) defines the external computer environment in which
the program will be operating. This includes defining any files that the program may be
accessing.

DATA The DATA DIVISION (section 5) is used to define all data that will be processed by a program.

PROCEDURE The PROCEDURE DIVISION (section 6) contains all executable program code.

{ [IDENTIFICATION DIVISION .]

PROGRAM-ID. program-name-1 [IS INITIAL PROGRAM] .

[ENVIRONMENT DIVISION . environment-division-content]

[DATA DIVISION. data-division-content]

[PROCEDURE DIVISION. procedure-division-content]

[nested-source-program | nested-source-function] ...

[END PROGRAM program-name-1 .] } ...

OpenCOBOL 1.1 Programmers Guide General OpenCOBOL Program Format

06FEB2009 Version Page 2-2

2.1. General Format for Nested Source Programs

Figure 2-2 - General Format for Nested Source Programs

Nested source programs are
program units imbedded
inside other program units
(they follow the PROCEDURE
DIVISION of their “parent”
program unit and there is no
intervening END PROGRAM
between the two). As such
they serve as subprograms
available ONLY to the parent
program unit in which they
are imbedded

6
.

1. Nested source programs may themselves contain other nested programs. Care should be taken to include END
PROGRAM clauses between nested subprograms that should be considered at “equal levels” in the nesting
structure.

2.2. General Format for Nested Source Functions

Figure 2-3 - General Format for Nested Source Functions

User-defined functions are
defined in the OpenCOBOL
syntax but are not currently
supported.

1. Attempts to compile a user-defined function will be rejected with a message such as the following:

name:line: Error: FUNCTION-ID is not yet implemented

6
 Of course, there are always exceptions to every rule. See the discussion of the COMMON clause to the

PROGRAM-ID paragraph on page 8.

[IDENTIFICATION DIVISION .]

PROGRAM-ID. program-name-1 [IS PROGRAM] .

[ENVIRONMENT DIVISION . environment-division-content]

[DATA DIVISION. data-division-content]

[PROCEDURE DIVISION. procedure-division-content]

[nested-source-program | nested-source-function] ...

[END PROGRAM program-name-1 .]

INITIAL
COMMON

FUNCTION-ID. function-name-1 [IS PROGRAM] .

[ENVIRONMENT DIVISION . environment-division-content]

DATA DIVISION. data-division-content

PROCEDURE DIVISION

[USING data-item-1 ...]

[RETURNING data-item-n].

procedure-division-content

[nested-source-program | nested-source-function] ...

[END FUNCTION function-name-1 .]

INITIAL
COMMON

OpenCOBOL 1.1 Programmers Guide IDENTIFICATION DIVISION

06FEB2009 Version Page 3-1

3. IDENTIFICATION DIVISION

Figure 3-1 - IDENTIFICATION DIVISION Syntax

The IDENTIFICATION DIVISION
provides basic identification of
the program by giving it a
program id (a name).

1. While the actual IDENTIFICATION DIVISION header is optional, the PROGRAM-ID clause is not.

2. The PROGRAM-ID clause defines the name (program-name) by which other programs may refer to this one (i.e.
CALL “program-name”).

3. Program names ARE case-sensitive. If the compilation unit is being created as a dynamically-loadable library file
(by using the “-m” option on the OpenCOBOL compiler command), then the library filename created by the
compiler will exactly match the program-name. If the compilation unit is being created as an executable file (by
using the “-x” option on the OpenCOBOL compiler command) then the program-id may be any valid COBOL
identifier name because the executable filename will be the same as the source program filename without the
“cbl” or “cob” extension.

4. The INITIAL and COMMON clauses are used within subprograms. The COMMON clause should be used only
within subprograms that are nested source programs.

5. The INITIAL clause, if specified, guarantees the subprogram will be in its initial (i.e. compiled) state each and every
time it is executed, not just the first time.

6. The COMMON clause, if any, makes a nested source program (subprogram) unit available to the parent program
unit as well as to other nested source program units of that parent.

7. Obsolete IDENTIFICATION DIVISION entries such as DATE-WRITTEN, DATE-COMPILED, AUTHOR, INSTALLATION,
SECURITY and REMARKS are normally ignored unless the “–Wobsolete” compilation switch is used; in such a case,
warning messages will be generated but compilation will continue.

[IDENTIFICATION DIVISION .]

PROGRAM-ID. program-name-1 [IS PROGRAM] .
INITIAL
COMMON

OpenCOBOL 1.1 Programmers Guide IDENTIFICATION DIVISION

06FEB2009 Version Page 3-2

OpenCOBOL 1.1 Programmers Guide ENVIRONMENT DIVISION

06FEB2009 Version Page 4-1

4. ENVIRONMENT DIVISION

Figure 4-1 - ENVIRONMENT DIVISION Syntax

The ENVIRONMENT DIVISION defines the external computer environment
in which the program will be operating. This includes defining any files
that the program may be accessing.

1. If none of the features provided by the ENVIRONMENT DIVISION are required by a program, the ENVIRONMENT
DIVISION need not be specified.

4.1. CONFIGURATION SECTION

Figure 4-2 - CONFIGURATION SECTION Syntax

The CONFIGURATION DIVISION defines the computer
system upon which the program is being compiled and
executed and also specifies any special environmental
configuration or compatibility characteristics.

1. The sequence in which the CONFIGURATION SECTION paragraphs are specified is irrelevant.

4.1.1. SOURCE-COMPUTER Paragraph

Figure 4-3 - SOURCE-COMPUTER Paragraph Syntax

The SOURCE-COMPUTER paragraph defines the computer upon
which the program is being compiled.

1. The value specified for computer-name-1 is irrelevant, provided it is a valid COBOL word that does not match any
OpenCOBOL reserved word.

2. The optional WITH DEBUGGING MODE clause, if present, will be flagged as obsolete syntax (if using the “-W”, “-
Wobsolete” or “-Wall” compiler switches) and will have no effect on the program compilation.

3. Debugging lines in your programs may be compiled, however, by specifying the “-fdebugging-line” switch to
the OpenCOBOL compiler. Section 1.5 discusses how debugging lines are specified in an OpenCOBOL program.

4.1.2. OBJECT-COMPUTER Paragraph

Figure 4-4 - OBJECT-COMPUTER Paragraph Syntax

The OBJECT-COMPUTER paragraph describes the
computer upon which the program will execute. This
paragraph is not merely documentation.

1. The value specified for computer-name-2 is irrelevant, provided it is a valid COBOL word that does not match any
OpenCOBOL reserved word.

2. The MEMORY SIZE and SEGMENT-LIMIT clauses are supported for compatibility purposes, but are non-functional
in OpenCOBOL.

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.]

[INPUT-OUTPUT SECTION.]

CONFIGURATION SECTION.

[SOURCE-COMPUTER. source-computer-contents]

[OBJECT-COMPUTER. object-computer-contents]

[REPOSITORY. repository-contents]

[SPECIAL-NAMES. special-names-contents]

SOURCE-COMPUTER. computer-name-1

[WITH DEBUGGING MODE] .

OBJECT-COMPUTER. computer-name-2

MEMORY SIZE IS integer-1

[PROGRAM COLLATING SEQUENCE IS alphabet-name-1]

[SEGMENT-LIMIT IS integer-2] .

WORDS
CHARACTERS

OpenCOBOL 1.1 Programmers Guide ENVIRONMENT DIVISION

06FEB2009 Version Page 4-2

3. The PROGRAM COLLATING SEQUENCE clause allows you to specify a customized character collating sequence to
be used when alphanumeric values are compared to one another. Data will still be stored in the characterset
native to the computer, but the logical sequence in which characters are ordered for comparison purposes can be
altered from that inherent to the computer’s native characterset. The alphabet-name-1 you specify needs to be
defined in the SPECIAL-NAMES section (4.1.4).

4. If no PROGRAM COLLATING SEQUENCE clause is specified, the collating sequence implied by the characterset
native to the computer (usually ASCII) will be used.

4.1.3. REPOSITORY Paragraph

Figure 4-5 - REPOSITORY Paragraph Syntax

The REPOSITORY paragraph provides a mechanism for
controlling access to the various built-in intrinsic
functions.

1. You may flag one or more (or ALL) intrinsic functions as being usable without the need to code the keyword
“FUNCTION” in front of the function names. See section 6.1.7 for more information about intrinsic functions.

2. As an alternative to using the REPOSITORY paragraph, you may instead compile your OpenCOBOL programs using
the “-ffunctions-all” switch.

REPOSITORY.
FUNCTION INTRINSIC .

function-name-1 …
ALL

OpenCOBOL 1.1 Programmers Guide ENVIRONMENT DIVISION

06FEB2009 Version Page 4-3

4.1.4. SPECIAL-NAMES Paragraph

Figure 4-6 - SPECIAL-NAMES Paragraph Syntax

The SPECIAL-NAMES paragraph
provides a means for specifying the
currency sign, choosing the decimal
point, [specifying symbolic-
characters,] relating implementer-
names to user-specified mnemonic
names, relating alphabet names to
character sets or collating
sequences, and relating class names
to sets of characters.

In short, this paragraph provides a
means of easily “configuring” a
COBOL program created in another
computing environment so that it
will compile with minimal changes
in an OpenCOBOL environment.

1. The CONSOLE IS CRT clause exists to provide source code compatibility with other versions of OpenCOBOL. It
allows the devices “CRT” and “CONSOLE” to be used interchangeably on DISPLAY (section 6.14.1) and ACCEPT
(section 6.4.1) statements. This isn’t needed when coding OpenCOBOL programs “from scratch” because
OpenCOBOL already considers those two devices to be synonymous.

2. The IS mnemonic-name-1 clause allows you to specify an alternate name for one of the built-in OpenCOBOL
device names specified before the “IS”.

3. The external values of SWITCH-1 through SWITCH-8 are specified to a program using the environment variables
COB_SWITCH_1 through COB_SWITCH_8, respectively. A value of “ON” turns the switch on. Any other value
(including the environment variable being undefined) turns the switch off. The ON STATUS and/or OFF STATUS
clauses define condition names that may be used to test whether a switch is set or not at run-time. See sections
6.1.4.2.1 and 6.1.4.2.4 for more information.

SWITCH-1
.
.

SWITCH-8
IS mnemonic-name-2

ON STATUS IS condition-name-1
OFF STATUS IS condition-name-2

...

SPECIAL-NAMES.
[CONSOLE IS CRT]

IS mnemonic-name-3

C01
.
.

C12

...

...IS mnemonic-name-1

SYSIN
SYSIPT
SYSOUT
SYSLIST
SYSLST
PRINTER
SYSERR
CONSOLE

ALPHABET alphabet-name IS

NATIVE
STANDARD-1
STANDARD-2
EBCDIC ...

literal-1 ...

THRU
THROUGH

{ ALSO literal-3 } ...

literal-2

[LOCALE locale-name-1 IS identifier-1] ...

[CURRENCY SIGN IS literal-6]

[DECIMAL-POINT IS COMMA]

[CURSOR IS identifier-2]

[CRT STATUS IS identifier-3]

[SCREEN CONTROL IS identifier-4]

[EVENT STATUS IS identifier-5] .

SYMBOLIC CHARACTERS{ { symbolic-character-1 } ... { integer-1 } ... } …

[IN alphabet-name-2]

IS
ARE

CLASS class-name-1 IS literal-4 literal-5
THRU
THROUGH

... ...

OpenCOBOL 1.1 Programmers Guide ENVIRONMENT DIVISION

06FEB2009 Version Page 4-4

4. The ALPHABET clause provides a means for relating a name to a specified character code set or collating
sequence, including those you define yourself using the “literal-1” option. You may specify an alphanumeric
literal for any of the literal-1, literal-2 or literal-3 specifications. You may also specify any of the figurative
constants SPACE[S], ZERO[[E]S], QUOTE[S], HIGH-VALUE[S} or LOW-VALUE[S].

5. The SYMBOLIC CHARACTERS clause will be syntactically recognized but will be ignored. If you use the “-Wall” or
“-W” compiler switches you will receive a warning message stating this feature is not yet implemented.

6. User-defined classes are defined using the CLASS clause. The literal(s) specified on that clause define the possible
characters that may be found in a data item’s value in order to be considered part of the class. For example, the
following defines a class called “Hexadecimal”, the definition of which specifies the only characters that may be
present in a data item if that data item is to be part of the “Hexadecimal” class:

CLASS Hexadecimal IS „0‟ THRU „9‟, „A‟ THRU „F‟, „a‟ THRU „f‟

See section 6.1.4.2.2 for an example of how this user-defined class might be used.

The LOCALE clause may be used to associate UNIX-standard locale names with an identifier defined in the DATA
DIVISION. Locale names may be any of the following:

Figure 4-7 - Locale Codes
af_ZA dv_MV fi_FI lt_LT sma_NO
am_ET el_GR fil_PH lv_LV sma_SE
ar_AE en_029 fo_FO mi_NZ smj_NO
ar_BH en_AU fr_BE mk_MK smj_SE
ar_DZ en_BZ fr_CA ml_IN smn_FI
ar_EG en_CA fr_CH mn_Cyrl_MN sms_FI
ar_IQ en_GB fr_FR mn_Mong_CN sq_AL
ar_JO en_IE fr_LU moh_CA sr_Cyrl_BA
ar_KW en_IN fr_MC mr_IN sr_Cyrl_CS
ar_LB en_JM fy_NL ms_BN sr_Latn_BA
ar_LY en_MY ga_IE ms_MY sr_Latn_CS
ar_MA en_NZ gbz_AF mt_MT sv_FI
ar_OM en_PH gl_ES nb_NO sv_SE
ar_QA en_SG gsw_FR ne_NP sw_KE
ar_SA en_TT gu_IN nl_BE syr_SY
ar_SY en_US ha_Latn_NG nl_NL ta_IN
ar_TN en_ZA he_IL nn_NO te_IN
ar_YE en_ZW hi_IN ns_ZA tg_Cyrl_TJ
arn_CL es_AR hr_BA oc_FR th_TH
as_IN es_BO hr_HR or_IN tk_TM
az_Cyrl_AZ es_CL hu_HU pa_IN tmz_Latn_DZ
az_Latn_AZ es_CO hy_AM pl_PL tn_ZA
ba_R es_CR id_ID ps_AF tr_IN
be_BY es_DO ig_NG pt_BR tr_TR
bg_BG es_EC ii_CN pt_PT tt_RU
bn_IN es_ES is_IS qut_GT ug_CN
bo_BT es_GT it_CH quz_BO uk_UA
bo_CN es_HN it_IT quz_EC ur_PK
br_FR es_MX iu_Cans_CA quz_PE uz_Cyrl_UZ
bs_Cyrl_BA es_NI iu_Latn_CA rm_CH uz_Latn_UZ
bs_Latn_BA es_PA ja_JP ro_RO vi_VN
ca_ES es_PE ka_GE ru_RU wen_DE
cs_CZ es_PR kh_KH rw_RW wo_SN
cy_GB es_PY kk_KZ sa_IN xh_ZA
da_DK es_SV kl_GL sah_RU yo_NG
de_AT es_US kn_IN se_FI zh_CN
de_CH es_UY ko_KR se_NO zh_HK
de_DE es_VE kok_IN se_SE zh_MO
de_LI et_EE ky_KG si_LK zh_SG
de_LU eu_ES lb_LU sk_SK zh_TW
dsb_DE fa_IR lo_LA sl_SI zu_ZA

OpenCOBOL 1.1 Programmers Guide ENVIRONMENT DIVISION

06FEB2009 Version Page 4-5

7. The CURRENCY SIGN clause may be used to define any single character as the currency sign used in PICTURE
symbol editing (see Figure 5-9). The default currency sign is a dollar-sign ($).

8. The DECIMAL POINT IS COMMA clause reverses the definition of the “,” and “.” characters when they are used as
PICTURE editing symbols (see Figure 5-9) and numeric literals. This can have unwanted side-effects – see section
1.6.

9. The PICTURE of identifier-3 (CRT-STATUS) should be 9(4). This field will receive a 4-digit value indicating the
runtime status of a screen ACCEPT. These status codes are as follows:

Figure 4-8 - Screen ACCEPT Key Codes

Code Meaning

0000 ENTER key pressed

1001 - 1064 F1 – F64

2001,2002 PgUp,PgDn
7

2003,2004,2006 Up Arrow,Down Arrow,PrtSc
(Print Screen)

8

Code Meaning

2005 Esc
,9

8000 No data is available on screen ACCEPT

9000 Fatal screen I/O error

The actual key pressed to generate a function key (Fn) will depend on the type of terminal device you’re using (PC,
Macintosh, VT100, etc.) and what type of enhanced display driver was configured with the version of OpenCOBOL
you’re using. For example, on an OpenCOBOL built for a Windows PC using MinGW and PDCurses, F1-F12 are the
actual F-keys on the PC keyboard, F13-F24 are entered by shifting the F-keys, F25-F36 are entered by holding Ctrl
while pressing an F-key and F37-F48 are entered by holding Alt while pressing an F-key. On the other hand, an
OpenCOBOL implementation built for Windows using Cygwin and NCurses treats the PCs F1-F12 keys as the actual
F1-F12, while shifted F-keys will enter F11-F20. With Cygwin/NCurses, Ctrl- and Alt-modified F-keys aren’t
recognized. Neither are Shift-F11 or Shift-F12.

Note that numeric keypad keys are not recognizable on Windows MinGW/PDCurses builds of OpenCOBOL,
regardless of NumLock settings. Windows Cygwin/NCurses builds recognize numeric keypad inputs properly.
Although not tested during the preparation of this documentation, I would expect native Windows builds using
PDCurses to behave as MinGW builds do and native Unix builds using NCurses to behave as do Cygwin builds.

10. If the CRT STATUS clause is not specified, an implicit COB-CRT-STATUS identifier (with a PICTURE of 9(4)) will be
allocated for the purpose of receiving screen ACCEPT statuses.

11. While the SCREEN CONTROL and EVENT STATUS clauses are clearly noted at compilation time as being
unsupported, the CURSOR IS clause is not; currently, however, it appears to be non-functional at runtime.

4.2. INPUT-OUTPUT SECTION

Figure 4-9 - INPUT-OUTPUT SECTION Syntax

The INPUT-OUTPUT section provides for the detailed
definition of any files the program will be accessing.

1. If the compiler “config” file you are using has “relaxed-syntax-check” set to “yes”, the FILE-CONTROL and I-O-
CONTROL paragraphs may be specified without the INPUT-OUTPUT SECTION header having been specified. See
section 7.1.8 for more information on config files and their effect on programs.

7
 These keys are available ONLY if the environment variable COB_SCREEN_EXCEPTIONS is set to any non-blank value

at runtime.
8
 These keys are not detectable on Windows systems

9
 This key is available ONLY if the environment variable COB_SCREEN_ESC is set to any non-blank value at runtime

(this is in addition to setting COB_SCREEN_EXCEPTIONS)

INPUT-OUTPUT SECTION.

[FILE-CONTROL. file-control-contents]

[I-O-CONTROL. Io-control-contents]

OpenCOBOL 1.1 Programmers Guide ENVIRONMENT DIVISION

06FEB2009 Version Page 4-6

4.2.1. FILE-CONTROL Paragraph

Figure 4-10 - FILE-CONTROL Paragraph Syntax

The SELECT
statement of the
FILE-CONTROL
paragraph creates a
definition of a file
and links that
COBOL definition to
the external
operating system
environment.

What is shown here
are those clauses of
the SELECT
statement that are
common to all types
of files.

Upcoming sections
will discuss special
SELECT clauses that
only pertain to
certain types of files.

1. The COLLATING SEQUENCE, RECORD DELIMITER, RESERVE and SHARING WITH ALL OTHER clauses, as well as the
specification of a secondary FILE-STATUS field and LOCK MODE … WITH ROLLBACK, while syntactically recognized,
are not currently supported by OpenCOBOL.

2. The OPTIONAL clause, to be used only for files that will be used to provide input data to the program, indicates
the file may or may not actually be available at run-time. Attempts to OPEN (section 6.31) an OPTIONAL file when
the file does not exist will receive a special non-fatal file status value (see status 05 in #0 below) indicating the file
is not available; a subsequent attempt to READ that file (section 6.33) will return an end-of-file condition.

3. The OpenCOBOL compiler parser tables actually allow the somewhat nonsensical statement:

SELECT My-File ASSIGN TO DISK DISPLAY.

…to be coded and successfully parsed. The effect will be the same as if this were coded:

SELECT My-File ASSIGN TO DISPLAY.

…which will be to create a file assigned to the PC screen.

4. If the “literal-1” option is used on the ASSIGN clause, it defines the external link from the COBOL file to an
operating system file as follows:

 If an environment variable named “DD_literal-1” exists, its value will be treated as the full path/filename of
the file. If not, then …

FILE-CONTROL.

SELECT [OPTIONAL] file-name-1

DISPLAY
literal-1
identifier-1

FILE
SORT

STATUS IS identifier-2 [identifier-3]

ASSIGN TO

[organization-specific-clauses]

[COLLATING SEQUENCE IS alphabet-name-1]

...

LOCK MODE IS

EXCLUSIVE

MANUAL
AUTOMATIC

WITH LOCK ON MULTIPLE RECORDS
WITH LOCK ON RECORD

WITH ROLLBACK

[RECORD DELIMITER IS STANDARD-1]

[RESERVE integer-1 AREAS]

SHARING WITH

ALL OTHER

NO OTHER
READ ONLY

.

...

EXTERNAL
DYNAMIC

DISK
PRINTER

OpenCOBOL 1.1 Programmers Guide ENVIRONMENT DIVISION

06FEB2009 Version Page 4-7

 If an environment variable named “dd_literal-1” exists, its value will be treated as the full path/filename of
the file. If not, then …

 If an environment variable named “literal-1”exists, its value will be treated as the full path/filename of the
file. If not, then…

 The literal itself will be treated as the full path/filename to the file.

This behavior will be influenced by the “filename-mapping” setting in the config file you are using when
compiling your programs. The behavior stated above applies only if “filename-mapping: yes” is in-effect. If
“filename-mapping: no” is used, only the last option (treating the literal itself as the full name of the file) is
possible. See section 7.1.8 for more information on config files and their effect on programs.

The PICTURE of identifier-2 (the FILE STATUS clause) should be 9(2). An I/O status code will be saved to this
identifier after every I/O verb that is executed against the file. Possible status codes are as follows:

Figure 4-11 - FILE-STATUS Values

Status Value Meaning

00 Success

02 Success (Duplicate Record Key Written)

05 Success (Optional File Not Found)

07 Success (No Unit)

10 End of file

14 Out of key range

21 Key invalid

22 Attempt to duplicate key value

23 Key not found

30 Permanent I/O error

31 Inconsistent filename

34 Boundary violation

35 File not found

37 Permission denied

38 Closed with lock

39 Conflicting attribute

41 File already OPEN

42 File not OPEN

43 Read not done

44 Record overflow

46 READ error

47 OPEN INPUT denied

48 OPEN OUTPUT denied

49 OPEN I-O denied

51 Record locked

52 End of page

57 LINAGE specifications invalid

61 File sharing failure

91 File not available

6. The LOCK and SHARING clauses define the conditions under which this file will be usable by other programs
executing concurrently with this one. File locking and sharing is covered in section 6.1.9.

OpenCOBOL 1.1 Programmers Guide ENVIRONMENT DIVISION

06FEB2009 Version Page 4-8

4.2.1.1. ORGANIZATION SEQUENTIAL Files

Figure 4-12 - Additional FILE-CONTROL Syntax for SEQUENTIAL Files

SEQUENTIAL files are those whose internal structure
(in COBOL, this is referred to as organization) is such
that the data in those files can only be processed in a
sequential manner; in order to read the 100

th
 record

in such a file, you first must read records 1 through
99.

1. Files declared as ORGANIZATION RECORD BINARY SEQUENTIAL will consist of records with no explicit end-of-
record delimiter character sequences; records in such files are “delineated” by a calculated byte-offset (based on
record length) into the file . Such files cannot be prepared with any standard text-editing or word processing
software as all such programs will imbed delimiter characters. Such files may contain either USAGE DISPLAY or
USAGE COMPUTATIONAL (of any variety) data since no character sequence will be interpreted as an end-of-
record delimiter.

2. Specifying ORGANIZATION IS RECORD BINARY SEQUENTIAL is the same as specifying ORGANIZATION SEQUENTIAL.

3. Files declared as ORGANIZATION LINE SEQUENTIAL will consist of records terminated by an ASCII line-feed
character (X”10”). When reading a LINE SEQUENTIAL file, records in excess of the size implied by the file’s FD will
be truncated while records shorter than that size will be padded to the right with the PADDING CHARACTER value.

4. The default PADDING CHARACTER value is SPACE.

5. While the PADDING CHARACTER clause is syntactically acceptable for all file ORGANIZATIONs, it only makes sense
for LINE SEQUENTIAL files as these are the only files where incoming records can ever be padded.

6. Both fixed- and variable-length record formats are supported.

7. Files ASSIGNed to PRINTER or CONSOLE should be specified as ORGANIZATION LINE SEQUENTIAL.

8. See the discussion of the CLOSE(section 6.9), COMMIT (section 6.10), DELETE (section 6.13), MERGE (section
6.27), OPEN (section 6.31), READ(section 6.33), REWRITE(section 6.36), SORT (section 6.40.1), UNLOCK (section
6.48) and WRITE(section 6.50), verbs for information on how SEQUENTIAL files are processed.

4.2.1.2. ORGANIZATION RELATIVE Files

Figure 4-13 - Additional FILE-CONTROL Syntax for RELATIVE Files

RELATIVE files are files with an internal organization such
that records may be processed in a sequential manner or
in a random manner, where records may be read, written
and updated by specifying the relative record number in
the file.

1. ORGANIZATION RELATIVE files cannot be assigned to CONSOLE or PRINTER.

2. The RELATIVE KEY clause is optional only if ACCESS MODE SEQUENTIAL is specified.

3. While records in a ORGANIZATION RELATIVE file may be defined as having variable-length records, the file will be
structured in such a manner as to reserve the maximum possible space for each record.

4. An ACCESS MODE of SEQUENTIAL indicates that the records of the file will be processed in a sequential manner,
while an ACCESS MODE of RANDOM means that records will be processed in random sequence. The DYNAMIC
ACCESS MODE indicates the file will be processed either in RANDOM or SEQUENTIAL mode, and may switch back
and forth between the two when the program executes (see the START verb in section 6.41).

5. The default ACCESS MODE is SEQUENTIAL.

[ACCESS MODE IS SEQUENTIAL]

ORGANIZATION IS SEQUENTIAL
RECORD BINARY
LINE

PADDING CHARACTER IS
literal-1
identifier-1

ORGANIZATION IS RELATIVE

[RELATIVE KEY IS identifier-1]

ACCESS MODE IS
SEQUENTIAL
DYNAMIC
RANDOM

OpenCOBOL 1.1 Programmers Guide ENVIRONMENT DIVISION

06FEB2009 Version Page 4-9

6. The RELATIVE KEY data item is a numeric data item that cannot be a field within records of this file. Its purpose is
to return the current relative record number of a RELATIVE file that is being processed in SEQUENTIAL access
mode and to be a retrieval key that specifies the relative record number to be read or written when processing a
RELATIVE file in RANDOM access mode.

7. See the discussion of the CLOSE(section 6.9), COMMIT (section 6.10), DELETE (section 6.13), MERGE (section
6.27), OPEN (section 6.31), READ(section 6.33), REWRITE(section 6.36), SORT (section 6.40.1), START (section
6.41), UNLOCK (section 6.48) and WRITE(section 6.50), verbs for information on how RELATIVE files are processed.

4.2.1.3. ORGANIZATION INDEXED Files

Figure 4-14 - Additional FILE-CONTROL Syntax for INDEXED Files

INDEXED files, like
RELATIVE files, may have
their records processed
either sequentially or in a
random manner. Unlike
RELATIVE files, however,
the actual location of a
record in an INDEXED file is
based upon the value(s) of
one or more alphanumeric
fields within records of the
file.

For example, an INDEXED file containing product data might use the product identification code as a key. This means
you may read, write or update the “A6G4328”th record or the “Z8X7723”th record directly, based upon the product id
value of those records!

1. The specification of so-called “split keys”, while syntactically recognized, are not currently supported by
OpenCOBOL.

2. An ACCESS MODE of SEQUENTIAL indicates that the records of the file will be processed in a sequential manner
with respect to the values of the RECORD KEY or an ALTERNATE RECORD KEY, while an ACCESS MODE of RANDOM
means that records will be processed in random sequence of a key field. The DYNAMIC ACCESS MODE indicates
the file will be processed either in RANDOM or SEQUENTIAL mode, and may switch back and forth between the
two when the program executes (see the START verb in section 6.41).

3. The default ACCESS MODE is SEQUENTIAL.

4. The PRIMARY KEY clause defines the field(s) within the record used to provide the primary access to records
within the file.

5. The ALTERNATE RECORD KEY clause, if used, defines an additional field within the record that provides an
alternate means of directly accessing records or an additional field by which the file’s contents may be processed
sequentially. You have the choice of allowing records to have duplicate alternate key values, if necessary.

6. There may be multiple ALTERNATE RECORD KEY clauses, each defining an additional alternate key for the file.

7. PRIMARY KEY values must be unique for all records within the value. ALTERNATE RECORD KEY values for records
within the file may have duplicate values if and only if the WITH DUPLICATES clause is specified for the alternate
key.

8. See the discussion of the CLOSE(section 6.9), COMMIT (section 6.10), DELETE (section 6.13), MERGE (section
6.27), OPEN (section 6.31), READ(section 6.33), REWRITE(section 6.36), SORT (section 6.40.1), START (section
6.41), UNLOCK (section 6.48) and WRITE(section 6.50), verbs for information on how INDEXED files are processed.

ORGANIZATION IS INDEXED

ALTERNATE RECORD KEY IS identifier-3 identifier-4 ...
=
SOURCE IS ...

[WITH DUPLICATES]

RECORD KEY IS identifier-1 identifier-2 ...
=
SOURCE IS

ACCESS MODE IS
SEQUENTIAL
DYNAMIC
RANDOM

OpenCOBOL 1.1 Programmers Guide ENVIRONMENT DIVISION

06FEB2009 Version Page 4-10

4.2.2. I-O-CONTROL Paragraph

Figure 4-15 - I-O-CONTROL Paragraph Syntax

The I-O-CONTROL Paragraph can
be used to optimize certain
aspects of file processing.

1. The SAME SORT AREA and SAME SORT-MERGE AREA clauses are non-functional. The SAME RECORD AREA is
functional, however.

2. The SAME RECORD AREA clause allows you to specify that multiple files should share the same input and output
memory buffers. These buffers can sometimes get quite large, and by having multiple files share the same buffer
memory you get significantly cut down the amount of memory the program is using (thus making “room” for
more procedural code or data). If you do use this feature, take care to ensure that no more than one of the
specified files are ever open simultaneously.

3. The MULTIPLE FILE TAPE clause is obsolete and is therefore recognized but not otherwise supported.

I-O-CONTROL.

MULTIPLE FILE TAPE CONTAINS

file-name-1 [POSITION integer-1]

[file-name-2 [POSITION integer-2]] ...

SAME AREA FOR file-name-1 ...
RECORD
SORT
SORT-MERGE

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-1

5. DATA DIVISION

Figure 5-1 - General DATA DIVISION Format

The DATA DIVISION is used to define all data that will be processed by a
program. Depending upon the type of data and/or the manner in which
the data will be used, its definition will be specified in one of the
sections shown in the syntax skeleton to the left.

1. Any SECTIONs that are declared must be specified in the order shown. If no DATA DIVISION sections are needed,
the DATA DIVISION header itself may be omitted.

2. The REPORT SECTION is syntactically recognized but will – if used – be rejected as unsupported. OpenCOBOL does
not support the RWCS (it does support the LINAGE clause in an FD, however).

3. The LOCAL-STORAGE SECTION is used in a manner identical to the WORKING-STORAGE SECTION with one
exception: data defined in the LOCAL-STORAGE SECTION is [re]initialized to its initial state every time the program
(usually a subprogram) is executed while WORKING-STORAGE SECTION data is static—it remains in its last-used
state until the program is CANCELed or the execution of the main program is terminated.

4. LOCAL-STORAGE cannot be used in nested programs.

5. The SCREEN SECTION allows you do define text-based screen layouts using conventions and syntax similar to what
you might expect to use if you were using the REPORT SECTION to lay out the structure of a report.

6. Note that there is no COMMON-STORAGE SECTION in OpenCOBOL. This feature has actually been removed from
the COBOL standard. Its functionality, however, has been replaced by the EXTERNAL and GLOBAL data item
attributes.

...
file-description
sort-description

DATA DIVISION .

FILE SECTION .

77-level-data-description
01-level-data-description
constant-description

...

WORKING-STORAGE SECTION .

77-level-data-description
01-level-data-description
constant-description

...

LOCAL-STORAGE SECTION .

77-level-data-description
01-level-data-description
constant-description

...

LINKAGE SECTION .

REPORT SECTION .

[report-description] ...

screen-description
constant-description

...

SCREEN SECTION .

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-2

5.1. FD - File Description

Figure 5-2 - FD Syntax

There must be a detailed
description for every file
SELECTed in your
program. These detailed
descriptions will be
coded in the FILE
SECTION.

There are two types of
such descriptions – FDs
and SDs, used to describe
regular data files and sort
work files, respectively.

The FD provides a
detailed description of
the record format(s) used
with the file as well as
how those records are
“bundled” into physical
blocks for processing
efficiency.

1. The CODE-SET clause, while syntactically recognized, is not currently supported by OpenCOBOL.

2. The LABEL RECORD, DATA RECORD, RECORDING MODE and VALUE OF clauses are obsolete. If used, they will have
no impact on the generated code. The identifiers specified on the DATA RECORD clause will be verified as being
defined within the program, but the compiler won’t care whether they are actually specified as records of the file
or not.

3. The COBOL programming language allows for the “blocking” of multiple logical data records into a single physical
data record; an actual physical write to an output file being processed sequentially will occur when a memory
block is filled with new records (see the COMMIT verb in section 6.10). Similarly, when reading a file sequentially,
the first READ issued against the file will retrieve the first physical record (block), from which the first logical

FD file-name

BLOCK CONTAINS integer-1 [TO integer-2]
CHARACTERS
RECORDS

CONTAINS integer-3 [TO integer-4] CHARACTERS

IS VARYING IN SIZE
[FROM integer-5 [TO integer-6] CHARACTERS

DEPENDING ON identifier-1

RECORD

RECORD IS
RECORDS ARELABEL

OMITTED
STANDARD

literal-1
identifier-2

VALUE OF implementor-name-1 IS

RECORD IS
RECORDS AREDATA identifier-3 …

[RECORDING MODE IS recording-mode]

identifier-4 …
REPORT IS
REPORTS ARE

integer-10
Identifier-7

LINAGE IS LINES

WITH FOOTING AT

LINES AT TOP

LINES AT BOTTOM

Integer-7
Identifier-4

Integer-8
Identifier-5

Integer-9
Identifier-6

[CODE-SET IS alphabet-name] .

01-level-data-description ...

EXTERNAL
GLOBAL

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-3

record will be retrieved and delivered to the program. Subsequent READ statements will retrieve successive
logical records from the buffer until it is exhausted, in which case another physical read is performed to acquire
the next physical record. The BLOCK CONTAINS clause in the FD allows all this processing to be performed in a
manner that is completely transparent to the programmer.

4. The RECORD CONTAINS and RECORD IS VARYING clauses are ignored (with a warning message issued) when used
with LINE SEQUENTIAL files. With other file organizations these mutually-exclusive clauses define the length of
data records within the file. These sizes are used by the BLOCK CONTAINS … RECORDS clause to calculate a block
size.

5. The REPORT IS clause is syntactically recognized but will cause an error since the RWCS is not currently supported
by OpenCOBOL.

6. The LINAGE clause can only be specified for ORGANIZATION RECORD BINARY SEQUENTIAL or ORGANIZATION LINE
SEQUENTIAL files. If used on an ORGANIZATION RECORD SEQUENTIAL file, the definition of that file will be
implicitly changed to LINE SEQUENTIAL.

7. The LINAGE clause is used to specify the
logical boundaries (in terms of numbers of
lines) of various areas on a printed page, as
shown in Figure 5-3.

The manner in which this page structure will
be utilized is discussed in section 6.50 (the
WRITE statement).

Figure 5-3- LINAGE-specified Page Structure

8. By specifying the EXTERNAL clause, the FD is capable of being shared between all program units (either separately
compiled or compiled in the same compilation unit) in a given execution thread, provided the FD is described
(with an EXTERNAL clause) in each compilation unit requiring it. This sharing allows the file to be OPENed, read
and/or written and CLOSEd in different program units.

9. By specifying the GLOBAL clause, the FD is capable of being shared between all program units in the same
compilation unit in a given execution thread, provided the FD is described (with a GLOBAL clause) in each program
unit requiring it. This sharing allows the file to be OPENed, read and/or written and CLOSEd in different program
units. Separately compiled programs cannot share a GLOBAL FD (but they can share an EXTERNAL FD).

5.2. SD - SORT Description

Figure 5-4 - SD Syntax

Sort work files (see sections 6.27 and 6.40.1) are
described using an SD, not an FD.

1. The full “FD” syntax is actually available for a sort description, but only those syntax elements shown here are
meaningful.

2. Sort files should be assigned to DISK.

Top Margin (unprintable)

Bottom Margin (unprintable) -

Page Body (printable)
Size (in lines): n – t – b

Total # of lines
that exist on a
printed page

LINAGE IS n LINES

LINES AT TOP t
Default = 0

LINES AT BOTTOM b
Default = 0

Page Footing area (if any)

WITH FOOTING AT f
Default = no page footer

SD file-name

CONTAINS integer-3 [TO integer-4] CHARACTERS

IS VARYING IN SIZE
[FROM integer-5 [TO integer-6] CHARACTERS

DEPENDING ON identifier-1

RECORD

[CODE-SET IS alphabet-name]

01-level-data-description ...

.

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-4

3. Sorts will be performed in memory, if the amount of data being sorted allows.

4. Should disk work files be necessary due to the amount of data being sorted, they will be automatically allocated
to disk in a folder defined by the TMPDIR, TMP or TEMP environment variables (see section 7.2.4). These disk files
WILL NOT be automatically purged upon program execution termination (normal or otherwise). Temporary sort
work files will be named “cob*.tmp”, in case you want to delete them yourself or from within your program upon
sort termination.

5. If you specify a specific filename in the sort file’s SELECT, it will be ignored.

5.3. General Format for Data Descriptions

Figure 5-5 - General Data Description Format

The syntax
skeleton shown
here describes
the manner in
which data items
are defined in all
DATA DIVISION
sections except
the SCREEN
SECTION.

1. Not specifying an identifier name or FILLER immediately after the level number has the same effect as if FILLER
were specified.

2. As with other COBOL implementations, level numbers are restricted to the following values, with the meanings
shown:

 01 – a highest-level data item that may be complete in and of itself (also called an elementary item) or
may be broken down into sub-items (also called a group item). 01-level data items are also frequently
referred to as records or record descriptions.

 02-49 – these level numbers are used to define data items that are subcomponents of a higher-level data
item (the numerically lower the level number, the higher the data item is in the overall hierarchy of the
data structure being defined – all structured data must begin with a single 01-level item). All levels 02-49
may be elementary items. All levels 02-48 may also be group items.

[REDEFINES identifier-2]

[PICTURE IS picture-string]

[USAGE IS data-item-usage]

[JUSTIFIED RIGHT]

[BLANK WHEN ZERO]

[BASED]

[ANY LENGTH]

[RENAMES identifier-3 [THRU identifier-4]

[VALUE IS [ALL] literal-1]

SIGN IS [SEPARATE CHARACTER]
LEADING
TRAILING

SYNCHRONIZED
LEFT
RIGHT

OCCURS
integer-1 TIMES
integer-1 TO integer-2 TIMES DEPENDING ON identifier-5

KEY IS identifier-6 ...
ASCENDING
DESCENDING ...

[INDEXED BY identifier-7 ...]

.

level-number
IS EXTERNAL
IS GLOBAL

identifier-1
FILLER

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-5

 66 – a regrouping of level 02-49 data – the RENAMES clause is the only one allowed for such items.

 77 – a data item that is not broken down into sub-items and is not a sub-item of any other data (this is a
somewhat obsolete convention as the same can be accomplished using level 01)

There are two additional level numbers (78 and 88) that have very special uses. These are described separately in
sections 5.5 (78) and 5.4 (88).

3. Level-66 data items are merely re-groupings of consecutive data items in a structure that are re-grouped in such a
way as to define a group-item name (identifier-1) by which they all may be referenced.

4. The PICTURE clause defines the class (numeric, alphabetic or alphanumeric) of the data that may be contained by
the data item being defined. A PICTURE also (sometimes in conjunction with USAGE) defines the amount of
storage reserved for the data item. The three basic class-specification PICTURE symbols have the following uses:

Figure 5-6 - Data Class-Specification PICTURE Symbols (A/X/9)

Basic
Symbol

Meaning and Usage

9 Defines a spot reserved for a single decimal digit. The actual amount of storage occupied will
depend on the specified USAGE.

A Defines a place reserved for a single alphabetic character (“A”-“Z”, “a”-“z”). Each “A” represents a
single byte of storage.

X Defines a place reserved for a single character of storage. Each “X” represents a single byte of
storage.

These three symbols are used repeatedly in a PICTURE clause to define how many of each class of data may be
contained within the field. For example:

PIC 9999 Allocates a data item that can store four-digit positive numbers (we’ll see shortly how negative
values can be accounted for). If the USAGE of the field is DISPLAY (the default), four bytes of
storage will be allocated and each byte may contain the character “0”, “1”, “2”, … , “8” or “9”.
There is no run-time enforcement of the fact that only digits are allowed. A compilation-time
WARNING will be issued if literal value that violates the digits-only rule is MOVEd to the field. A
run-time violation is detectable using a class condition test (see section 6.1.4.2.2).

PIC 9(4) Identical to the above – a repeat count enclosed within parenthesis can be used with any PICTURE
symbols that allows repetition.

PIC X(10) This data item can hold a string of any ten characters.

PIC A(10) This data item can hold a string of any ten letters. There is no enforcement of the fact that only
letters are allowed, but a violation is detectable via a class condition test (see section 6.1.4.2.2).

PIC AA9(3)A This is exactly the same as specifying X(6), but it documents the fact that values should be two
letters followed by 3 digits followed by a single letter. There is no enforcement and no capability
of detecting violations other than a “brute force” check by character position.

Data items containing “A” or “X” PICTURE symbols cannot be used in arithmetic calculations.

In addition to the above Figure 5-7 shows the numeric option PICTURE symbols that may be used with “PIC 9”
data items:

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-6

Figure 5-7 - Numeric Option PICTURE Symbols (P/S/V)

Numeric
Option
Symbol

Meaning and Usage

P Defines an implied digit position that will be considered to be a 0 when the data item is referenced
at run-time. This symbol is used to allow data items that will contain very large values to be
allocated using less storage by assuming a certain number of trailing zeros (one per “P”) to exist at
the end of values.

All computations and other operations performed against such a data item will behave as if the
zeros were actually there.

When values are stored into such a field they will have the digit positions defined by the “P”
symbols stripped from the values as they are stored.

For example, let’s say you need to allocate a data item that contains however many millions of
dollars of revenue your company has in gross revenues this year:

01 Gross-Revenue PIC 9(9).

In which case 9 bytes of storage will be reserved. The values 000000000 thru 999999999 will
represent the gross-revenues. But, if only the millions are tracked (meaning the last six digits are
always going to be 0), you could define the field as:

01 Gross-revenue PIC 9(3)P(6).

Whenever Gross-Revenue is referenced in the program, the actual value in storage will be treated
as if each P symbol (6 of them, in this case) were a zero.

If you wanted to store the value 128 million into that field, you would do so as if the “P”s were
“9”s:

MOVE 128000000 TO Gross-Revenue.

S This symbol, which if used must be the very first symbol in the PICTURE value, indicates that
negative values are possible for this data item. Without an “S”, any negative values stored into this
data item via a MOVE or arithmetic statement will have the negative sign stripped from it (in effect
becoming the absolute value).

V This symbol is used to define where an implied decimal-point (if any) is located in a numeric item.
Just as there may only be a single decimal point in a number so may there be no more than one
“V” in a PICTURE. Implied decimal points occupy no space in storage – they just specify how values
are used. For example, if the value “1234” is in storage in a field defined as PIC 999V9, that value
would be treated as 123.4 in any statements that referenced it.

5. The SIGN clause, allowable only for USAGE DISPLAY numeric data items, specifies how an “S” symbol will be
interpreted. Without the SEPARATE CHARACTER option, the sign of the data item’s value will be encoded by
transforming the last (TRAILING) or first (LEADING) digit as follows:

Figure 5-8 - Sign-Encoding Characters

First/Last
Digit

Encoded Value
For POSITIVE

Encoded Value
For NEGATIVE

0 0 p

1 1 q

2 2 r

3 3 s

4 4 t

5 5 u

6 6 v

7 7 w

8 8 x

9 9 y

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-7

If the SEPARATE CHARACTER clause is used, then an actual “+” or “-“ sign will be inserted into the field’s value as
the first (LEADING) or last (TRAILING) character.

6. OpenCOBOL supports all standard COBOL PICTURE editing symbols, namely “$”, comma, asterisk (*), decimal-
point, CR, DB, + (plus), - (minus), “B”, “0” (zero) and “/”, as follows:

Figure 5-9 - Numeric Editing PICTURE Symbols

Editing
Symbol

Meaning and Usage

- (minus) This symbol must be used either at the very beginning of a PICTURE or at the very end. If “-“ is used, none
of “+”, “CR” or “DB” may be used. It is used to edit numeric values.

Multiple consecutive “-“ symbols are allowed only at the very beginning of the field. This is called a
floating minus sign.

Each “-“ symbol will count as one character position in the size of the data item.

If only a single “-“ symbol is specified, that symbol will be “replaced” by a “-“ if the value moved to the
field is negative, or a SPACE otherwise.

If a floating minus sign is used, think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “-“ were actually a “9”.
2. Locate the digit in the edited result that corresponds to the right-most “-“ and scan the edited value back to the left

from that point until you come to a “0” that has nothing but “0” characters to the left of it.
3. Replace that “0” with a “-“ if the value moved to the field is negative or a SPACE otherwise.
4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

If this value… …is moved to a field with
this PICTURE…

… this value in storage will
result:

17 -999 b017

-17 -999 -017

265 -----99 bbbb265

-265 -----99 bbb-265

51 999- 051b

-51 999- 051-

$
10

 This symbol must be only be used at the very beginning of a PICTURE except that a “+” or “-“ may appear
to the left of it. It is used to edit numeric values.

Multiple consecutive “$“ symbols are allowed. This is called a floating currency symbol.

Each “$“ symbol will count as one character position in the size of the data item.

If only a single “$“ symbol is specified, that symbol will be inserted into the edited value at that position
unless there are so many significant digits to the field value that the position occupied by the “$” is needed
to represent a leading non-zero digit. In such cases, the “$” will be treated as a “9”.

If a floating currency sign is used, think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “$“ were actually a “9”.
2. Locate the digit in the edited result that corresponds to the right-most “$“ and scan the edited value back to the left

from that point until you come to a “0” that has nothing but “0” characters to the left of it.
3. Replace that “0” with a “$“.
4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

If this value… …is moved to a field with
this PICTURE…

… this value in storage will
result:

17 $999 $017

265 $$$$$99 bbb$265

10
 The default currency sign used is “$”. Other countries use different currency signs. The SPECIAL-NAMES paragraph

(see section 4.1.4) allows any symbol to be defined as a currency symbol. If the currency sign is defined to the
character ‘#’, for example, then you would use the ‘#’ character as a PICTURE editing symbol.

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-8

Editing
Symbol

Meaning and Usage

* (asterisk) This symbol must be only be used at the very beginning of a PICTURE except that a “+” or “-“ may appear
to the left of it. It is used to edit numeric values.

Multiple consecutive “*“ symbols are not only allowed, but are the typical usage. This is called a floating
check protection symbol.

Each “*“ symbol will count as one character position in the size of the data item.

Think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “*“ were actually a “9”.
2. Locate the digit in the edited result that corresponds to the right-most “*“ and scan the edited value back to the left

from that point until you come to a “0” that has nothing but “0” characters to the left of it.
3. Replace that “0” with a “*“.
4. Replace all remaining “0” characters to the left of that position by “*” also.

An example:

If this value… …is moved to a field with
this PICTURE…

… this value in storage will
result:

265 *****99 ****265

,
(comma)

11

Each comma (,) in the PICTURE string represents a character position into which the character “,” will be
inserted. This character position is counted in the size of the item. The “,” symbol is a “smart symbol”
capable of masquerading as the floating symbol to its left and right should there be insufficient digits of
precision to the numeric value being edited to require the insertion of a “,” character.

For example (the symbol b denotes a space):

If this value… …is moved to a field with
this PICTURE…

… this value in storage will
result:

17 $$,$$$,$99 bbbbbbb$17

265 $$,$$$,$99 bbbbbb$265

1456 $$,$$$,$99 bbbb$1,456

. (period)
11

 This symbol inserts a decimal point into the edited value at the point where an implied decimal point exists
in the value. It is used to edit numeric values. Note that the period specified at the end of every data
item definition IS NOT treated as an editing symbol!

An example:

01 Edited-Value PIC 9(3).99.
01 Payment PIC 9(3)V99 VALUE 152.19.
...
 MOVE Payment TO Edited-Value.
 DISPLAY Edited-Value.

Will display 152.19

/ (slash) This symbol – usually used when editing dates for printing – inserts a “/” character into the edited value.
The inserted “/” character will occupy a byte of storage in the edited result.

An example:

01 Edited-Date PIC 99/99/9999.
…
 MOVE 08182009 TO Edited-Date.
 DISPLAY Edited-Date.

The displayed value will be 08/18/2009.

+ (plus) This symbol must be used either at the very beginning of a PICTURE or at the very end. If “+“ is used, none
of “-”, “CR” or “DB” may be used. It is used to edit numeric values.

Multiple consecutive “+“ symbols are allowed only at the very beginning of the field. This is called a
floating plus sign.

Each “+“ symbol will count as one character position in the size of the data item. If only a single “+“
symbol is specified, that symbol will be replaced by a “-“ if the value moved to the field is negative, or a “+”

11
 If DECIMAL-POINT IS COMMA is specified in the SPECIAL-NAMES paragraph, the meanings and usages of the “.”

and “,” characters will be reversed

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-9

Editing
Symbol

Meaning and Usage

otherwise.

If a floating plus sign is used, think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “+“ were actually a “9”.
2. Locate the digit in the edited result that corresponds to the right-most “+“ and scan the edited value back to the left

from that point until you come to a “0” that has nothing but “0” characters to the left of it.
3. Replace that “0” with a “-“ if the value moved to the field is negative or a “+” otherwise.
4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

If this value… …is moved to a field with
this PICTURE…

… this value in storage will
result:

17 +999 +017

-17 +999 -017

265 +++++99 bbb+265

-265 +++++99 bbb-265

51 999+ 051+

-51 999- 051-

0 (zero) This symbol inserts a “0” character into the edited value. The inserted “0” character will occupy a byte of
storage in the edited result.
An example:
01 Edited-Phone-Number PIC 9(3)B9(3)B9(4).
…
 MOVE 5185551212 TO Edited-Phone-Number.
 DISPLAY Edited-Phone-Number.
The displayed value will be 518 555 1212.

B This symbol inserts a SPACE character into the edited value. The inserted SPACE character will occupy a
byte of storage in the edited result.

An example:

01 Edited-Phone-Number PIC 9(3)B9(3)B9(4).
…
 MOVE 5185551212 TO Edited-Phone-Number.
 DISPLAY Edited-Phone-Number.

The displayed value will be 518 555 1212.

CR This symbol must be used only at the very end of a PICTURE. If “CR“ is used, none of “-”, “+” or “DB” may
be used. It is used to edit numeric values.

Multiple “CR“ symbols are not allowed in one PICTURE clause.

A “CR“ symbol will count as two character positions in the size of the data item.

If the value moved into the field is negative, the characters “CR” will be inserted into the edited value,
otherwise two SPACES will be inserted.

Some examples (the symbol b denotes a space):

This value… …is moved to a field with
this PICTURE…

…resulting in this value in
storage:

17 99CR 17bb

-17 99CR 17CR

DB This symbol must be used only at the very end of a PICTURE. If “DB“ is used, none of “-”, “+” or “CR” may
be used. It is used to edit numeric values.

Multiple “DB“ symbols are not allowed in one PICTURE clause.

A “DB“ symbol will count as two character positions in the size of the data item.

If the value moved into the field is negative, the characters “DB” will be inserted into the edited value,
otherwise two SPACES will be inserted.

Some examples (the symbol b denotes a space):

This value… …is moved to a field with …resulting in this value in

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-10

Editing
Symbol

Meaning and Usage

this PICTURE… storage:

17 99DB 17bb

-17 99DB 17DB

Z This symbol must be only be used at the very beginning of a PICTURE except that a “+” or “-“ may appear
to the left of it. It is used to edit numeric values.

Multiple consecutive “Z“ symbols are not only allowed, but are the typical manner in which this editing
symbol is used. This is called a floating zero suppression.

Each “Z“ symbol will count as one character position in the size of the data item.

Think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “Z“ were actually a “9”.
2. Locate the digit in the edited result that corresponds to the right-most “Z“ and scan the edited value back to the left

from that point until you come to a “0” that has nothing but “0” characters to the left of it.
3. Replace that “0” with a SPACE.
4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

This value… …is moved to a field with
this PICTURE…

…resulting in this value in
storage:

17 Z999 b017

265 ZZZZZ99 bbbb265

No more than one editing symbol may be used in a floating manner in the same PICTURE clause.

5. Numeric data items containing editing symbols are referred to as numeric edited fields. Such data items may
receive values in the various arithmetic statements but may not be used as sources of data in those same
statements. The statements in question are ADD (section 6.5), COMPUTE(section 6.11), DIVIDE(section 6.15),
MULTIPLY (section 6.29) and SUBTRACT (section 6.44).

6. By specifying the EXTERNAL clause, the data item being defined is capable of being shared between all program
units (either separately compiled or compiled in the same compilation unit) in a given execution thread, provided
the data item is described (with an EXTERNAL clause) in each compilation unit requiring it.

7. By specifying the GLOBAL clause, the data item is capable of being shared between all program units in the same
compilation unit in a given execution thread, provided the data item is described with an GLOBAL clause in each
program unit requiring it and provided all program-units using GLOBAL are nested within the first program-unit
defining the data item with GLOBAL– see section 2.1 for a discussion of program unit nesting.

8. The EXTERNAL clause may only be specified at the 77 or 01 level.

9. An EXTERNAL item must have a data name (i.e. identifier-1) and that name cannot be FILLER.

10. EXTERNAL cannot be combined with GLOBAL, REDEFINES or BASED.

11. The VALUE clause is ignored on EXTERNAL data items or on any data items defines as subordinate to an EXTERNAL
data item.

12. The OCCURS clause is used to create a data structure called a table
12

 that repeats multiple times. For example:

05 QUARTLY-REVENUE OCCURS 4 TIMES PIC 9(7)V99.

Will allocate the following:

 QUARTLY-REVENUE (1) QUARTLY-REVENUE (2) QUARTLY-REVENUE (3) QUARTLY-REVENUE (4)

Each occurrence is referenced using the subscript syntax (a numeric literal, arithmetic expression or numeric
identifier enclosed within parenthesis) shown in the diagram. The OCCURS clause may be used at the group level
too, in which case the entire group structure repeats, as follows:

12
 Other programming languages with which you might be familiar refer to this sort of structure as an array.

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-11

05 X OCCURS 3 TIMES.
 10 A PIC X(1).
 10 B PIC X(1).
 10 C PIC X(1).

 X (1) X (2) X (3)

A (1) B (1) C (1) A (2) B (2) C (2) A (3) B (3) C (3)

See sections 6.1.1 (Table References), 6.38 (SEARCH), 6.40 (SORT) as well as item #28 below for more information
about tables.

13. The optional DEPENDING ON clause can be added to an OCCURS to create a variable-length table. Such tables will
be allocated out to the maximum size specified as integer-2. At execution time the value of identifier-5 will
determine how many of the table elements are accessible.

14. The OCCURS clause cannot be specified in a data description entry that has a level number of 01, 66, 77, or 88.

15. VALUE specifies an initial compilation-time value that will be assigned to the storage occupied by the data item in
the program object code generated by the compiler. If the optional “ALL” clause is used, it may only be used with
an alphanumeric literal value; the value will be repeated as needed to completely fill the data item. Here are
some examples with and without ALL:

PIC X(5) VALUE “A” – will have the value “A”,SPACE,SPACE,SPACE,SPACE

PIC X(5) VALUE ALL “A” – will have the value “A”,”A”,”A”,”A”,”A”

PIC 9(3) VALUE 1 – will have the value 001

PIC 9(3) VALUE ALL “1” – will have the value 111

16. The ASCENDING KEY, DESCENDING KEY and INDEXED BY clauses will be discussed in section 6.39 (SEARCH).

17. The BASED and ANY LENGTH clauses cannot be used together.

18. The JUSTIFIED RIGHT clause, valid only on an alphabetic (PIC A) or alphanumeric (PIC X) item, will cause values
shorter than the length of the data item to be right-justified and space-filled when they are MOVEd into the data
item.

19. Data items declared with BASED are allocated no storage at compilation time. At run-time, the ALLOCATE verb is
used to allocate space for and (optionally) initialize such items.

20. Data items declared with the ANY LENGTH attribute have no fixed compile-time length. Such items may only be
defined in the LINKAGE SECTION as they may only serve as subroutine argument descriptions. ANY LENGTH items
must have a PICTURE clause that specifies exactly one A, X or 9 symbol.

21. The BLANK WHEN ZERO clause, when used on a numeric item, will cause that item’s value to be automatically
transformed into SPACES if a value of 0 is ever MOVEd to the item.

22. The REDEFINES clause causes identifier-1 to occupy the same physical storage space as identifier-2, so that storage
may be defined in a different manner with a (probably) different structure. The following must all be true in order
to use REDEFINES:

a. The level number of identifier-2 must be the same as that of identifier-1.

b. The level number of identifier-2 (and identifier-1) cannot be 66, 77, 78 or 88.

c. If “n” represents the level number of identifier-2 (and identifier-1), then no other data items with level
number “n” may be defined between identifier-1 and identifier-2.

d. The total allocated size of identifier-1 must be the same as the total allocated size of identifier-2.

e. No OCCURS clause may be defined on identifier-2. There may – however – be items defined with OCCURS
clauses subordinate to identifier-2.

f. No VALUE clause may be defined on identifier-2. No data items subordinate to identifier-2 may have VALUE
clauses, with the exception of level-88 condition names.

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-12

23. The following table summarizes the various possible USAGE specifications:

Figure 5-10 - Summary of USAGE Specifications

USAGE Allocated Space (Bytes)
Storage
Format

Allows
negative
Values?

Used
w/

PIC?
Identical To

BINARY Depends on number of “9”s in PICTURE
and the ”binary-size” setting of the
configuration file (section 7.1.8) used to
compile the program

Most-compatible
– see #24

If PICTURE
contains
“S”

Yes COMPUTATIONAL,
COMPUTATIONAL-4

BINARY-CHAR or
BINARY-CHAR SIGNED

One byte Native – see #24 Yes No

BINARY-CHAR UNSIGNED One byte Native – see #24 No – see
#25

No

BINARY-C-LONG or
BINARY-C-LONG SIGNED

Allocates the same amount of storage as
does the C language “long” data type on
that computer; typically this is 32 bits but
it could be 64 bits

Native – see #24 Yes No

BINARY-C-LONG UNSIGNED Allocates the same amount of storage as
does the C language “long” data type on
that computer; typically this is 32 bits but
it could be 64 bits

Native – see #24 No – see
#25

No

BINARY-DOUBLE or
BINARY-DOUBLE SIGNED

Allocates a “traditional” double-word of
storage (64 bits)

Native – see #24 Yes No

BINARY-DOUBLE UNSIGNED Allocates a “traditional” double-word of
storage (64 bits)

Native – see #24 No – see
#25

No

BINARY-LONG or
BINARY-LONG SIGNED

Allocates a word of storage (32 bits) Native – see #24 Yes No SIGNED-LONG,
SIGNED-INT

BINARY-LONG UNSIGNED Allocates a word of storage (32 bits) Native – see #24 No – see
#25

No UNSIGNED-LONG,
UNSIGNED-INT

BINARY-SHORT or
BINARY-SHORT SIGNED

Allocates a half-word of storage (16 bits) Native – see #24 Yes No SIGNED-SHORT

BINARY-SHORT UNSIGNED Allocates a half-word of storage (16 bits) Native – see #24 No – see
#25

No UNSIGNED-SHORT

COMPUTATIONAL Depends on number of “9”s in PICTURE
and the ”binary-size” setting of the
configuration file (section 7.1.8) used to
compile the program

Most-compatible
– see #24

If PICTURE
contains
“S”

Yes BINARY, COMPUTATIONAL-4

COMPUTATIONAL-1 Allocates a word of storage (32 bits) Single-precision
floating-point

Yes No

COMPUTATIONAL-2 Allocates a double-word of storage (64
bits)

Double-precision
floating-point

Yes No

COMPUTATIONAL-3 Allocates 4 bits per “9” in the PICTURE
plus a (trailing) 4-byte field for the sign,
rounded up to the nearest byte,
SYNCHRONIZED RIGHT (see #27)

Packed decimal –
see #26

If PICTURE
contains
“S”

No PACKED-DECIMAL

COMPUTATIONAL-4 Depends on number of “9”s in PICTURE
and the ”binary-size” setting of the
configuration file (section 7.1.8) used to
compile the program

Most-compatible
– see #24

If PICTURE
contains
“S”

Yes BINARY, COMPUTATIONAL

COMPUTATIONAL-5 Depends on number of “9”s in PICTURE
and the ”binary-size” setting of the
configuration file (section 7.1.8) used to
compile the program

 If PICTURE
contains
“S”

Yes

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-13

USAGE Allocated Space (Bytes)
Storage
Format

Allows
negative
Values?

Used
w/

PIC?
Identical To

COMPUTATIONAL-X Allocates bytes based upon the number
of “9”s in the PICTURE according to the
”binary-size” setting of “1—8” in the
configuration file used to compile the
program. See section 7.1.8 for an
illustration of how a value of “1—8” for
“binary-size” would work.

Most-compatible
– see #24

If PICTURE
contains
“S”

Yes

DISPLAY Depends on PICTURE – One character13
per X, A, 9, period, $, Z, 0, *, S (if
SEPARATE CHARACTER specified), +, - or
B symbol in PICTURE; Add 2 more bytes if
DB or CR symbol used

Characters If PICTURE
contains
“S”

Yes

INDEX Allocates a word of storage (32 bits) Native – see #24 No No

NATIONAL USAGE NATIONAL, while syntactically recognized, is not supported by OpenCOBOL

PACKED-DECIMAL Allocates 4 bits per “9” in the PICTURE
plus a (trailing) 4-byte field for the sign,
rounded up to the nearest byte,
SYNCHRONIZED RIGHT (see #27)

Packed decimal –
see #26

If PICTURE
contains
“S”

No COMPUTATIONAL-3

POINTER Allocates a word of storage (32 bits) Native – see #24 No No

PROGRAM-POINTER Allocates a word of storage (32 bits) Native – see #24 No No

SIGNED-INT Allocates a word of storage (32 bits) Native – see #24 Yes No BINARY-LONG-SIGNED,
SIGNED-LONG

SIGNED-LONG Allocates a word of storage (32 bits) Native – see #24 Yes No BINARY-LONG SIGNED,
SIGNED-INT

SIGNED-SHORT Allocates a half-word of storage (16 bits) Native – see #24 Yes No BINARY SHORT SIGNED

UNSIGNED-INT Allocates a word of storage (32 bits) Native – see #24 No – see
#25

No BINARY-LONG UNSIGNED,
UNSIGNED-LONG

UNSIGNED-LONG Allocates a word of storage (32 bits) Native – see #24 No – see
#25

No BINARY-LONG UNSIGNED,
UNSIGNED-INT

UNSIGNED-SHORT Allocates a half-word of storage (16 bits) Native – see #24 No – see
#25

No BINARY-SHORT UNSIGNED

24. Binary data can be stored in either a “Big-Endian” or “Little-Endian” form.

Big-endian data allocation calls for the bytes that comprise a binary item to be allocated such that the least-
significant byte is the right-most byte. For example, a four-byte binary item having a value of decimal 20 would
be big-endian allocated as 00000014 (shown in hexadecimal notation).

Little-endian data allocation calls for the bytes that comprise a binary item to be allocated such that the least-
significant byte is the left-most byte. For example, a four-byte binary item having a value of decimal 20 would be
little-endian allocated as 14000000 (shown in hexadecimal notation).

All CPUs are capable of “understanding” big-endian format, which makes it the “most-compatible” form of binary
storage across computer systems.

Some CPUs – such as the Intel/AMD i386/x64 architecture processors such as those used in most Windows PCs –
prefer to process binary data stored in a little-endian format. Since that format is more efficient on those
systems, it is referred to as the “native” binary format.

13
 In this context, one character is the same as one byte, unless you’ve built yourself an OpenCOBOL system that uses

Unicode (unlikely), in which case 1 character = two bytes.

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-14

On a system supporting only one format of binary storage (generally, that would be big-endian), the terms “most-
efficient” format and “native format” are synonymous.

25. Binary data items that have the UNSIGNED attribute explicitly coded, or that do not have an “S” symbol in their
PICTURE clause cannot preserve negative values that may be stored into them. Attempts to store a negative
value into such a field will actually result in the binary representation of the negative number actually being
interpreted as if it were a positive number. For example, on a computer running an Intel or AMD processor, the
value of -3 expressed as a binary value would be 111111012. If that value is moved into a USAGE BINARY-CHAR
UNSIGNED field, it would actually be interpreted as 0111111012, or 253.

26. Packed-decimal (i.e. USAGE COMP-3 or USAGE PACKED-DECIMAL) data is stored as a series of bytes such that
each byte contains two 4-bit fields with each field representing a “9” in the PICTURE and storing a single decimal
digit. The last byte will always contain a single 4-bit digit (corresponding to a “9” and a 4-bit sign indicator (always
present, even if no “S” symbol is used). The first byte may contain an unused left-most 4-bit field, depending on
how many “9” symbols were used in the PICTURE. The sign indicator will have a value of a hexadecimal A thru F,
with values of A, C, E and F indicating a positive sign and B or D representing a negative value. Therefore, a PIC
S9(3) COMP-3 packed-decimal field with a value of -15 would be stored internally as a hexadecimal 015D (or
perhaps a 015B). If you attempt to store a negative number into a packed decimal field that has no “S” in its
PICTURE, the absolute value of the negative number will actually be stored.

27. The SYNCHRONIZED clause (which may be abbreviated as SYNC) optimizes the storage of binary numeric items to
store them in such a manner as to make it as fast as possible for the CPU to fetch them. This synchronization is
performed as follows:

a. If the binary item occupies one byte of storage, no synchronization is performed.

b. If the binary item occupies two bytes of storage, the binary item is allocated at the next half-word boundary.

c. If the binary item occupies four bytes of storage, the binary item is allocated at the next word boundary.

d. If the binary item occupies four bytes of storage, the binary item is allocated at the next word boundary.

Here’s an example of a group item’s storage allocation with and without using SYNCHRONIZED:

Figure 5-11 - Effect of the SYNCHRONIZED Clause

The grey blocks represent the unused “slack” bytes that are allocated in the Group-Item-2 structure because of
the SYNC clauses.

A C EB D F

A C EB D F

01 Group-Item-1.
05 A PIC X(1).
05 B USAGE BINARY-SHORT.
05 C PIC X(2).
05 D USAGE BINARY-LONG.
05 E PIC X(3).
05 F USAGE BINARY-DOUBLE.

01 Group-Item-2.
05 A PIC X(1).
05 B SYNC USAGE BINARY-SHORT.
05 C PIC X(2).
05 D SYNC USAGE BINARY-LONG.
05 E PIC X(3).
05 F SYNC USAGE BINARY-DOUBLE.

Group-Item-1
Group-Item-2

Word
½

Word
½

Word
½

Word
½

Word
½

Word
½

WordWord Word Word Word Word Word

Bytes Bytes Bytes

Double
Word

Double
Word

Double
Word

Double
Word

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-15

The LEFT and RIGHT options to the SYNCHRONIZED clause are recognized for syntactical compatibility with other
COBOL implementations, but are otherwise non-functional.

28. Initializing a table is one of the trickier aspects of COBOL data definition. There are basically three standard
techniques and a fourth that people familiar with other COBOL implementations but new to OpenCOBOL may find
interesting. So, here are the three “standard” approaches:

a. Don’t bother worrying about it at compile-time. Use the INITIALIZE verb to initialize all data item occurrences
in a table (at run-time) to their data-type-specific default values (numerics: 0, alphabetic and alphanumerics:
SPACES).

b. Initialize small tables at compile time by including a VALUE clause on the group item that serves as a “parent”
to the table, as follows:

05 SHIRT-SIZES VALUE “S 14M 15L 16XL17”.
 10 SHIRT-SIZE-TBL OCCURS 4 TIMES.
 15 SST-SIZE PIC X(2).
 15 SST-NECK PIC 9(2).

c. Initialize tables of almost any size at compilation time by utilizing the REDEFINES clause:

05 SHIRT-SIZE-VALUES.
 10 PIC X(4) VALUE “S 14”.
 10 PIC X(4) VALUE “M 15”.
 10 PIC X(4) VALUE “L 16”.
 10 PIC X(4) VALUE “XL17”.
05 SHIRT-SIZES REDEFINES SHIRT-SIZE-VALUES.
 10 SHIRT-SIZE-TBL OCCURS 4 TIMES.
 15 SST-SIZE PIC X(2).
 15 SST-NECK PIC 9(2).

Admittedly, the table shown in #28c is much more verbose than #28b. What is good about #28c, however, is that
you can have as many FILLER/VALUE items as you need for a larger table (and those values can be as long as
necessary!

Many COBOL compilers do not allow the use of VALUE and OCCURS on the same data item; additionally, they
don’t allow a VALUE clause on a data item subordinate to an OCCURS. OpenCOBOL, however, has neither of
these restrictions! Observe the following example, which illustrates the fourth manner in which tables may be
initialized in OpenCOBOL:

05 X OCCURS 6 TIMES.
 10 A PIC X(1) VALUE „?‟.
 10 B PIC X(1) VALUE „%‟.
 10 N PIC 9(2) VALUE 10.

In this example, all six “A” items will be initialized to “?”, all six “B” items will be initialized to “%” and all six “N”
items will be initialized to 10. It’s not clear exactly how many times this sort of initialization will be useful, but it’s
there if you need it.

5.4. Condition Names

Figure 5-12 - Level-88 Condition Name Description Syntax

Condition names are
Boolean (i.e. “TRUE” /
“FALSE”) data items.

1. Condition names are always defined subordinate to another data item. That data item must be an elementary
item.

2. Condition names do not occupy any storage.

3. The VALUE(s) specified for the condition name specify the specific values and/or ranges of values of the parent
elementary data item that will cause the condition name to have a value of TRUE.

VALUE IS
VALUES ARE

literal-1
THROUGH
THRU

literal-2

88 condition-name-1

[WHEN SET TO FALSE IS literal-3]

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-16

4. The optional FALSE clause defines an explicit value that will be assigned to the parent elementary data item
should the SET statement ever be used to set the condition-name-1 to FALSE. See section 6.39.6 for more
information on how the SET statement can be used to specify the TRUE/FALSE value of a condition name.

5. See section 6.1.4.2.1 for a general discussion of condition names.

5.5. Constant Descriptions

Figure 5-13 - Level-78 Constant Description Syntax

Data descriptions of
these forms do not
actually allocate any
storage, but instead
are a means of
associating a name
with an alphanumeric
or numeric literal.

1. The two forms are essentially identical when defining a value of a literal. Defining a constant whose value is the
length of another item is – as you can see – possible only using the “01 CONSTANT” form.

2. The GLOBAL clause, while recognized syntactically, is currently unsupported by OpenCOBOL and should generate
a compiler warning if used. As of the Feb 06 2009 packaging of OpenCOBOL 1.1, however, its use will actually
abort the compiler.

literal-2
LENGTH OF identifier-3 .
BYTE-LENGTH OF identifier-4

01 identifier-2 CONSTANT [IS GLOBAL] AS

78 identifier-1 VALUE IS literal-1 .

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-17

5.6. Screen Descriptions

Figure 5-14 - SCREEN SECTION Data Item Description Syntax

The syntax skeleton
shown here describes
how data items are
defined in the SCREEN
SECTION.

These data items are
used via special forms
of the ACCEPT (section
6.4) and DISPLAY
(section 6.14.4) verbs
to create TUI (that is
“Textual User
Interface” programs.

1. Data items with level numbers 66, 78 and 88 may be used in the SCREEN SECTION; they have the same syntax,
rules and usage as they do in the other DATA DIVISION sections.

2. Use the BELL or BEEP clauses (they are synonymous) to cause an audible tone to occur when the screen item is
DISPLAYed.

level-number

.

LINE NUMBER IS [PLUS]
integer-2
identifier-2

PICTURE IS picture-string

VALUE IS literal-1

USING identifier-6

FROM

TO identifier-8

identifier-7
literal-2

[JUSTIFIED RIGHT]

[BLANK WHEN ZERO]

[OCCURS integer-1 TIMES]

[BELL | BEEP]

[AUTO | AUTO-SKIP | AUTOTERMINATE]

[UNDERLINE]

[OVERLINE]

[SECURE]

[REQUIRED]

[FULL]

[PROMPT]

[REVERSE-VIDEO]

[BLANK LINE | SCREEN]

[ERASE EOL | EOS]

identifier-1
FILLER

SIGN IS [SEPARATE CHARACTER]
LEADING
TRAILING

COLUMN NUMBER IS [PLUS]
integer-3
identifier-3

FOREGROUND-COLOR IS
integer-4
identifier-4

HIGHLIGHT
LOWLIGHT

[BLINK] BACKGROUND-COLOR IS
integer-5
identifier-5

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-18

3. The AUTO clause (the three forms are all equivalent) will cause the cursor to automatically advance to the next
input-enabled field if the field having the AUTO clause is completely filled.

4. The UNDERLINE and OVERLINE clauses are essentially non-functional on Windows systems as those video
attributes are not currently supported by the Windows console window API. The UNDERLINE clause will have an
effect, however, as it will make the foreground color of the field blue regardless of the value specified (or implied)
by the FOREGROUND-COLOR attribute. Whether or not these clauses operate on UNIX systems will depend upon
the video attributes of the terminal output device being used.

5. The SECURE attribute may only be used on a field allowing data entry (USING or TO). This attribute will cause all
data entered into the field to appear as asterisks.

6. The REQUIRED and FULL attributes, while syntactically acceptable, are non-functional.

7. The PROMPT attribute is superfluous in OpenCOBOL as its behavior is assumed on all input fields.
14

8. The REVERSE-VIDEO attribute reverses the meaning of the specified or implied FOREGROUND-COLOR and
BACKGROUND-COLOR attributes.

9. The BLANK clause will blank-out the screen or line from the point indicated by any LINE and/or COLUMN clause on
the data item. In addition, the console window foreground and background colors will be set to whatever is
specified on the item. Use of this clause ANYWHERE within an 01-level item (or its subordinate items, if any) will
cause ALL displayed fields ANYWHERE within that 01-level item (or its subordinate items) to be invisible.

10. The ERASE clause will erase the remainder of the console window’s current line (EOL) or the console window
screen (EOS) starting at the end of the field having the ERASE clause to be erased and to have its colors set to the
foreground and background colors in effect for the field containing the ERASE clause.

11. Without LINE or COLUMN clauses, SCREEN SECTION fields will display on the console window beginning at
whatever line/column coordinate is stated or implied by the ACCEPT or DISPLAY statement that presents the
screen item. After a field is presented to the console window, the next field will be presented immediately
following that field.

The LINE and COLUMN clauses provide a means of explicitly stating where a field should be presented on the
console window. Coordinates may be stated on an absolute basis (i.e. “LINE 1 COLUMN 5”) or on a relative basis
based upon the end of the previously-presented field (i.e. “LINE PLUS 2 COLUMN PLUS 1”). Identifiers or literals
may be used to define the absolute or relative position. If identifiers are used, they must be PIC 9 items without
editing symbols (any numeric USAGE is allowed except for COMPUTATIONAL-1 or COMPUTATIONAL-2. Note that
either of these floating-point USAGE specifications will be accepted, but will produce unpredictable results.

Fields do not need to be defined in LINE/COLUMN sequence of their presentation, unless of course you’re relying
on the implicit positioning of screen items by not using LINE and COLUMN.

The TAB and BACK-TAB (Shift-TAB) keys will position the cursor from field to field in the line/column sequence in
which the fields occur on the console window, regardless of the sequence in which they were defined in the
SCREEN SECTION.

You may abbreviate COLUMN as COL, if you wish.

14

 The PROMPT attribute is used to specify that empty input fields will be marked by a non-blank character to ensure
they’re visible. This functionality is ALWAYS on for all editable screen fields in OpenCOBOL (an underscore
character is used).

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-19

12. The FOREGROUND-COLOR and BACKGROUND-COLOR clauses are used to specify the color of text (foreground) or
the screen (background). You specify colors by number (0-7) according to the following:

Figure 5-15 - Screen Color Numbers

Integer Color

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Yellow

7 White

13. The HIGHLIGHT and LOWLIGHT options control the intensity of text (foreground). This is intended to provide a
three-level intensity scheme (LOWLIGHT, nothing-specified, HIGHLIGHT), but the Windows console only supports
two-levels, so LOWLIGHT is the same as leaving this clause off altogether. Using this modifier to the
FOREGROUND-COLOR attribute, you can actually have sixteen text colors, not just eight, as follows:

Figure 5-16 - LOWLIGHT / HIGHLIGHT Effect on Screen Colors

FOREGROUND-COLOR integer LOWLIGHT HIGHLIGHT

0 Black Dark Grey

1 Dark Blue / Indigo Bright Blue

2 Dark Green Bright Green

3 Dark Cyan Bright Cyan

4 Dark Red Bright Red

5 Dark Magenta Bright Magenta

6 Gold / Brown Yellow

7 Light Grey White

14. The BLINK attribute modifies the visual appearance of the BACKGROUND-COLOR specification. The Windows
console does not support blinking, so the visual effect of BLINK in the Windows version of OpenCOBOL is to
provide the same sixteen colors to the BACKGROUND-COLOR palette as are possible with FOREGROUND-COLOR
combined with LOWLIGHT/HIGHLIGHT.

15. Foreground and background color attributes are inheritable from other fields. They are not inherited from the
prior field encountered but rather from parent data items (data items with numerically lower level numbers).
Observe the following…

78 Black VALUE 0.
78 Blue VALUE 1.
78 Green VALUE 2.
78 White VALUE 7.
...
 02 XYZ BACKGROUND-COLOR Black FOREGROUND-COLOR Green ...
 05 ABC BACKGROUND-COLOR Blue FOREGROUND-COLOR White ...
 05 DEF (no BACKGROUND-COLOR or FOREGROUND-COLOR specified) ...

The color of field DEF will be Green-on-White (inherited from XYZ)

16. The VALUE clause is used to define fixed text that cannot be changed.

17. The FROM clause is used to define a field whose contents should come from the specified literal or identifier.

18. The TO clause is used to define a data-entry field with no initial value; when a value is entered, it will be saved to
the specified identifier.

19. The USING clause is a combination of “FROM identifier” and “TO identifier”.

OpenCOBOL 1.1 Programmers Guide DATA DIVISION

06FEB2009 Version Page 5-20

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-1

6. PROCEDURE DIVISION

6.1. General PROCEDURE DIVISION Components

6.1.1. Table References

COBOL uses parenthesis to specify the subscripts used to reference table entries (tables in COBOL are what other
programming languages refer to as arrays).

For example, observe the following data structure which simulates a 4 column by 3 row grid of characters:

01 GRID.
 05 GRID-ROW OCCURS 3 TIMES.
 10 GRID-COLUMN OCCURS 4 TIMES.
 15 GRID-CHARACTER PIC X(1).

A reference to the GRID-CHARACTER shaded in the following diagram:

Would be coded as:

GRID-CHARACTER (2, 3)

Subscripts may be specified as numeric (integer) literals, PIC 9 (integer) data items, USAGE INDEX data items or
arithmetic expressions resulting in an integer value involving any combination of these. The ability to use full
arithmetic expressions as table (array) subscripts, while common in many languages, is rare in the COBOL universe.
See section 6.1.4.1 for a discussion of arithmetic expressions.

6.1.2. Qualification of Data Names

COBOL allows data names to be duplicated within a program, provided references to those data names may be made
in such a manner as to make those references unique through a process known as qualification.

To see qualification at work, observe the following segments of two data records defined in a COBOL program:

01 EMPLOYEE.
 05 MAILING-ADDRESS.
 10 STREET PIC X(35).
 10 CITY PIC X(15).
 10 STATE PIC X(2).
 10 ZIP-CODE.
 15 ZIP-CODE-5 PIC 9(5).
 15 FILLER PIC X(4).
01 CUSTOMER.
 05 MAILING-ADDRESS.
 10 STREET PIC X(35).
 10 CITY PIC X(15).
 10 STATE PIC X(2).
 10 ZIP-CODE.
 15 ZIP-CODE-5 PIC 9(5).
 15 FILLER PIC X(4).

Now, let’s deal with the problem of setting the CITY portion of an EMPLOYEEs MAILING-ADDRESS to “Philadelphia”.
Clearly, the following cannot work because the compiler will be unable to determine which of the two CITY fields you
are referring to:

MOVE “Philadelphia” TO CITY.

We could qualify the reference to CITY as follows, in an attempt to correct the problem:

MOVE “Philadelphia” TO CITY OF MAILING-ADDRESS.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-2

Unfortunately that too is insufficient because it is still insufficient to identify specifically which CITY is being
referenced. To truly identify which specific CITY you want, you’d have to code the following:

MOVE “Philadelphia” TO CITY OF MAILING-ADDRESS OF EMPLOYEE.

Now there can be no confusion as to which CITY is being changed. Fortunately, you don’t need to be so specific;
COBOL allows intermediate qualification levels to be omitted. This allows you to specify:

MOVE “Philadelphia” TO CITY OF EMPLOYEE.

If you need to qualify a reference to a table, do so as follows:

identifier-1 OF identifier-2 (subscript …)

The reserved word “IN” may be used in lieu of “OF”.

6.1.3. Reference Modifiers

Figure 6-1 - Reference Modifier Syntax

The COBOL ’85 standard
introduced the concept of a
reference modifier to
facilitate references to only a
portion of a data item;
OpenCOBOL fully supports
reference modification.

The start value indicates the starting character position being referenced (character position values start with 1, not 0
as is the case in some programming languages) and length specifies how many characters are wanted. If no length is
specified, a value equivalent to the remaining character positions from start to the end will be assumed.

Here are a few examples:

CUSTOMER-LAST-NAME (1:3) references the first three characters of CUSTOMER-LAST-NAME

CUSTOMER-LAST-NAME (4:) references all character positions of CUSTOMER-LAST-NAME from the fourth
onward.

FUNCTION CURRENT-DATE (5:2) references the current month (see the documentation of the CURRENT-DATE
intrinsic function on page 6-13 for details)

Hex-Digits (Nibble + 1:1) Assuming that “Nibble” is a numeric data item with a value in the range 0-15, and
Hex-Digits is a PIC X(16) item with a value of “0123456789ABCDEF”, this converts
that numeric value to a hexadecimal digit.

Hex-Digits (Nibble + 1:) Does the same as the above – if you leave out the length, 1 is assumed; YOU STILL
NEED THE “:” CHARACTER THOUGH.

Array-Element (6) (7:5) References 5 characters in the 6
th

 occurrence of Array-Element, starting at
character position 7.

Reference modification may be used anywhere an identifier is legal, including serving as the receiving field of
statements like MOVE, STRING and ACCEPT, to name a few.

6.1.4. Expressions

OpenCOBOL, like other COBOL implementations, supports two basic types of expressions:

 Arithmetic expressions, which calculate a numeric result

 Conditional Expressions, which calculate a TRUE or FALSE value

Unlike other programming languages, which allow arithmetic values such as 0 and -1 to represent FALSE and TRUE,
respectively, COBOL treats logical TRUE/FALSE values as something different from 0/-1. OpenCOBOL adheres to this
policy.

identifier-1 [OF identifier-2] [(subscript ...)]
intrinsic-function-reference (start : [length])

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-3

6.1.4.1. Arithmetic Expressions

Arithmetic expressions are formed using following operators. In complex expressions composed of multiple
operators, a precedence of operation applies whereby those operations having a higher precedence are computed
first before operations with a lower precedence.

Precedence / Operation Discussion
Figure 6-2 – Unary - Operator Syntax

Precedence: 1
ST

 (Highest)

The unary - operator returns the arithmetic
negation of its single argument, effectively
returning as its value the product of its argument
and -1.

Figure 6-3 – Unary + Operator Syntax

Precedence: 1
ST

 (Highest)

The unary + operator returns the value of its single
argument, effectively returning as its value the
product of its argument and +1.

Figure 6-4 - Exponentiation Operator Syntax

Precedence: 2
nd

The value of the left-hand argument raised to the
power indicated by the right-hand argument is
computed. OpenCOBOL allows the “^” symbol to
be used in lieu of the “**” symbol.

Figure 6-5 - Exponentiation Operator Syntax

Precedence: 3
rd

The product of the left-hand argument and the
right-hand argument is computed.

Figure 6-6 - Division Operator Syntax

Precedence: 3
rd

The value of the left-hand argument divided by the
right-hand argument is computed.

numeric-literal-1
identifier-1
(arith-expr-1)

--

numeric-literal-1
identifier-1
(arith-expr-1)

+

numeric-literal-1
identifier-1
(arith-expr-1)

**
numeric-literal-2
identifier-2
(arith-expr-2)

numeric-literal-1
identifier-1
(arith-expr-1)

*

numeric-literal-2
identifier-2
(arith-expr-2)

numeric-literal-1
identifier-1
(arith-expr-1)

/
numeric-literal-2
identifier-2
(arith-expr-2)

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-4

Precedence / Operation Discussion
Figure 6-7 - Addition Operator Syntax

Precedence: 4
th

 (Lowest)

The sum of the left-hand argument and the right-
hand argument is computed.

Figure 6-8 - Subtraction Operator Syntax

Precedence: 4
th

 (Lowest)

The value of the right-hand argument subtracted
from the left-hand argument is computed.

The COBOL standards require the use of at least one space before and after the exponentiation, multiplication,
division, addition and subtraction operators. This is the best policy to follow when coding expressions as it ensures
compatibility with other COBOL implementations and avoids the need to deal with the following special rules which
define the circumstances under which leading and/or trailing spaces may be omitted:

1. OpenCOBOL does not actually require leading or trailing spaces around the exponentiation, multiplication or
division operators.

2. The ADDITION operator must be followed by a space if it is followed by an unsigned numeric literal. Failure
to do so (for example: “4+3”) will result in an “Invalid Expression” error because the compiler will treat the
“+” as an attempt to specify a signed numeric literal, leaving the expression with no operator. In any other
circumstances, the leading and trailing spaces around the ADDITION operator are optional.

3. The SUBTRACTION operator must be followed by a space if it is followed by an unsigned numeric literal.
Failure to do so (for example: “4-3”) will result in an “Invalid Expression” error because the compiler will treat
the “-” as an attempt to specify a signed numeric literal, leaving the expression with no operator.

4. The SUBTRACTION operator must have a leading and/or trailing space if neither argument is a parenthesized
expression. Failure to include one or the other space (“3-Arg”, “Arga-Argb”, …) will cause the compiler to
look for a defined reserved word or user-defined name that (hopefully) doesn’t exist – generating a
“‘identifier’ Undefined” error. If you are really unlucky, it actually WILL find such an identifier, which is
almost certain to cause runtime problems!

5. If the argument of a UNARY PLUS operator is an unsigned numeric literal, the unary plus operator must be
followed by a space to avoid being treated as part of the numeric literal (thus making it a signed positive
numeric literal).

6. If the argument of a UNARY NEGATION operator is an unsigned numeric literal, the unary negation operator
must be followed by a space to avoid being treated as part of the numeric literal (thus making it a signed
negative numeric literal).

numeric-literal-1
identifier-1
(arith-expr-1)

+
numeric-literal-2
identifier-2
(arith-expr-2)

numeric-literal-1
identifier-1
(arith-expr-1)

–
numeric-literal-2
identifier-2
(arith-expr-2)

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-5

Here are some examples of arithmetic expressions (all of which involve numeric literals, to simplify the discussion).

Expression Result Notes

3 * 4 + 1 13 * has precedence over +

2 ^ 3 * 4 - 10 22 2
3

is 8, times 4 is 32, minus 10 is 22.

2 ** 3 * 4 - 10 22 Same as the above – OpenCOBOL allows either “^” or “**” to be used as the exponentiation
operator.

3 * (4 + 1) 15 Parenthesis provide for a recursive application of the arithmetic expression rules, allowing
arithmetic expressions to become components within other, more complex, arithmetic
expressions.

5 / 2.5 + 7 * 2
– 1.15

15.35 Integer and non-integer operands may be freely intermixed

Of course, arithmetic expression operands may be numeric data items (any USAGE except DISPLAY, POINTER or
PROGRAM POINTER) as well as numeric literals.

6.1.4.2. Conditional Expressions

Conditional expressions are expressions which identify the conditions under which a program may make a decision
about processing to be performed. As such, conditional expressions produce a value of TRUE or FALSE.

There are seven types of conditional expressions, as follows, in increasing order of complexity.

6.1.4.2.1. Condition Names (Level-88 Items)

These are the simplest of all conditions. Observe the following code:

05 SHIRT-SIZE PIC 99V9.
 88 LILLIPUTIAN VALUE 0 THRU 12.5
 88 XS VALUE 13 THRU 13.5.
 88 S VALUE 14, 14.5.
 88 M VALUE 15, 15.5.
 88 L VALUE 16, 16.5.
 88 XL VALUE 17, 17.5.
 88 XXL VALUE 18, 18.5.
 88 HUMUNGOUS VALUE 19 THRU 99.9.

The condition names “LILLIPUTIAN”, “XS”, “S”, “M”, “L”, “XL”, “XXL” and “HUMONGOUS” will have TRUE or FALSE
values based upon the values within their parent data item (SHIRT-SIZE). So, a program wanting to test whether or
not the current SHIRT-SIZE value can be classified as “XL” could have that decision coded as a combined condition (the
most complex type of conditional expression), as follows:

IF SHIRT-SIZE = 17 OR SHIRT-SIZE = 17.5

Or it could utilize the condition name XL as follows:

IF XL

6.1.4.2.2. Class Conditions

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-6

Figure 6-9 - Class Condition Syntax

Class conditions evaluate the type of data that is
currently stored in a data item.

1. The NUMERIC class test considers only the characters “0”, “1”, … , “9” to be numeric; only a data item containing
nothing but digits will pass a IS NUMERIC class test. Spaces, decimal points, commas, currency signs, plus signs,
minus signs and any other characters except the digit characters will all fail “IS NUMERIC” class tests.

2. The ALPHABETIC class test considers only upper-case letters, lower-case letters and SPACES to be alphabetic in
nature.

3. The ALPHABETIC-LOWER and ALPHABETIC-UPPER class conditions consider only spaces and the respective type of
letters to be acceptable in order to pass such a class test.

4. Only data items whose USAGE is either explicitly or implicitly defined as DISPLAY may be used in NUMERIC or any
of the ALPHABETIC class conditions.

5. Some COBOL implementations disallow the use of group items or PIC A items with NUMERIC class conditions and
the use of PIC 9 items with ALPHABETIC class conditions. OpenCOBOL has no such restrictions.

6. The OMITTED class condition is used when it is necessary for a subroutine to determine whether or not a particular
argument was passed to the subroutine. In such class conditions, identifier-1 must be a LINKAGE SECTION item
defined on the USING clause of the subprograms “PROCEDURE DIVISION” header. See section 6.7 for the method
to use when omitting arguments from a CALL to a subprogram.

7. The class-name-1 option allows you to test for a user-defined class. Here’s an example. First, assume the following
SPECIAL-NAMES definition of the user-defined class “Hexadecimal”:

SPECIAL-NAMES.

 CLASS Hexadecimal IS „0‟ THRU „9‟, „A‟ THRU „F‟, „a‟ THRU „f‟.

Now observe the following code, which will execute the 150-Process-Hex-Value procedure if Entered-Value
contains nothing but valid hexadecimal digits:

 IF Entered-Value IS Hexadecimal
 PERFORM 150-Process-Hex-Value
 END-IF

6.1.4.2.3. Sign Conditions

Figure 6-10 - Sign Condition Syntax

Sign conditions evaluate the numeric state of a PIC 9 data
item.

1. Only data items defined with some sort of numeric USAGE/PICTURE can be used for this type of class condition.
2. A POSTIVE or NEGATIVE class condition will be TRUE only if the value of identifier-1 is strictly greater than or less

than zero, respectively. A ZERO class condition can be passed only if the value of identifier-1 is exactly zero.

identifier-1 IS [NOT]

NUMERIC
ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
OMITTED
class-name-1

POSITIVE
NEGATIVE
ZERO

identifier-1 IS [NOT]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-7

6.1.4.2.4. Switch-Status Conditions

Figure 6-11 - Using Switch Conditions

In the SPECIAL-
NAMES paragraph
(see section 4.1.4), an
external switch name
can be associated
with one or more
condition names.
These condition
names may then be
used to test the
ON/OFF status of the
external switch.

An example is shown
to the left.

.

.

.
ENVIRONMENT DIVISION.
.
.
.
SPECIAL-NAMES.

SWITCH-1 IS External-Stat-1
ON STATUS IS OK-To-Display

.

.

.
PROCEDURE DIVISION.
.
.
.

IF OK-To-Display
DISPLAY ‘Switch 1 Set’
END-DISPLAY

END-IF
.
.
.

$ COB_SWITCH_1=ON
$ export COB_SWITCH_1
$ testprog
Switch 1 Set
$

Setting the switch and
running the program…

Relevant sections of ‘testprog’…

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-8

6.1.4.2.5. Relation Conditions

Figure 6-12 - Relation Condition Syntax

These conditions
evaluate how two
different values
“relate” to each
other.

1. When comparing one numeric value to another, the USAGE and number of significant digits in either value are
irrelevant as the comparison is performed using the actual algebraic values.

2. When comparing strings, the comparison is made based upon the program’s collating sequence (see section 4.1.2).
When the two string arguments are of unequal length, the shorter is assumed to be padded (on the right) with a
sufficient number of SPACES as to make the two strings of equal length. String comparisons take place on a
corresponding character-by-character basis until an unequal pair of characters is found. At that point, the relative
position of where each character in the pair falls in the collating sequence will determine which is greater (or less)
than the other.

6.1.4.2.6. Combined Conditions

Figure 6-13 - Combined Condition Syntax

A combined condition is one that computes a
TRUE/FALSE value from the TRUE/FALSE values of two
other conditions (which could – themselves – be
combined conditions).

1. If either condition has a value of TRUE, the result of ORing the two together will result in a value of TRUE. Only
when ORing two FALSE conditions will a result of FALSE occur.

2. In order for AND to yield a value of TRUE, both conditions must have a value of TRUE. In all other circumstances,
AND produces a FALSE value.

3. When chaining multiple, similar conditions together with the same operator (OR/AND), and left or right arguments
having common operators and subjects, it is possible to abbreviate the program code. For example:

IF ACCOUNT-STATUS = 1 OR ACCOUNT-STATUS = 2 OR ACCOUNT-STATUS = 7

Could be abbreviated as:

IF ACCOUNT-STATUS = 1 OR 2 OR 7

IS EQUAL TO
IS =
EQUALS

IS NOT EQUAL TO
IS NOT =

IS GREATER THAN
IS >

IS LESS THAN
IS <

IS GREATER THAN OR EQUAL TO
IS >=
IS NOT LESS THAN

IS LESS THAN OR EQUAL TO
IS <=
IS NOT GREATER THAN

identifier-2
literal-2
arith-expr2
index-name-2

identifier-1
literal-1
arith-expr-1
index-name-1

AND
OR

condition-1 condition-2

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-9

4. Just as multiplication takes precedence over addition in arithmetic expressions, so does AND take precedence over
OR in combined conditions. Use parenthesis to change this precedence, if necessary. For example:

FALSE OR TRUE AND TRUE evaluates to TRUE

(FALSE OR FALSE) AND TRUE evaluates to FALSE

FALSE OR (FALSE AND TRUE) evaluates to TRUE

6.1.4.2.7. Negated Conditions

Figure 6-14 - Negated Condition Syntax

A condition may be negated by prefixing it with the NOT
operator.

1. The NOT operator has the highest precedence of all logical operators, just as a unary minus sign (which negates a
numeric value) is the highest precedence arithmetic operator.

2. Parenthesis must be used to explicitly signify the sequence in which conditions are evaluated and processed if the
default precedence isn’t desired. For example:

NOT TRUE AND FALSE AND NOT FALSE evaluates to FALSE AND FALSE AND TRUE which evaluates to FALSE

NOT (TRUE AND FALSE AND NOT FALSE) evaluates to NOT (FALSE) which evaluates to TRUE

NOT TRUE AND (FALSE AND NOT FALSE) evaluates to FALSE AND (FALSE AND TRUE) which evaluates to
FALSE

6.1.5. Use of Periods (.)

All COBOL implementations distinguish between sentences and statements in the PROCEDURE DIVISION. A statement
is a single executable COBOL instruction. For example, these are all statements:

MOVE SPACES TO Employee-Address
ADD 1 TO Record-Counter
DISPLAY “Record-Counter=” Record-Counter

Some COBOL statements have a “scope of applicability” associated with them where one or more other statements
can be considered to be part of or related to the statement in question. An example of such a situation might be the
following, where the interest on a loan is being calculated and displayed - 4% interest if the loan balance is under
$10000 and 4.5% otherwise:

IF Loan-Balance < 10000
 MULTIPLY Loan-Balance BY 0.04 GIVING Interest
ELSE
 MULTIPLY Loan-Balance BY 0.045 GIVING Interest
DISPLAY “Interest Amount = “ Interest

In this example, the “IF” statement actually has a scope that can include two sets of associated statements – one set
to be executed when the “IF” condition is TRUE and another if it is FALSE.

Unfortunately, there’s a problem with the above. A human being looking at that code will probably understand that
the DISPLAY statement, because of its lack of indentation, is to be executed regardless of the TRUE/FALSE value of the
“IF” condition. Unfortunately, the OpenCOBOL compiler (or any other COBOL compiler for that matter) won’t see it
that way because it really couldn’t care less what sort of indentation, if any, is used. In fact, the OpenCOBOL compiler
would be just as happy to see the code written like this:

IF Loan-Balance < 10000 MULTIPLY Loan-balance BY 0.04
GIVING Interest ELSE MULTIPLY Loan-Balance BY 0.045
GIVING Interest DISPLAY “Interest Amount = “ Interest

So how then do we inform the compiler that the DISPLAY statement is outside the scope of the “IF”?

That’s where sentences come in.

NOT condition

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-10

A COBOL sentence is defined as any arbitrarily long sequence of statements, followed by a period (.) character. The
period character is what terminates the scope of a set of statements. Therefore, our example needs to be coded like
this:

IF Loan-Balance < 10000
 MULTIPLY Loan-Balance BY 0.04 GIVING Interest
ELSE
 MULTIPLY Loan-Balance BY 0.045 GIVING Interest.
DISPLAY “Interest Amount = “ Interest

See the period at the end of the second MULTIPLY? That is what terminates the scope of the “IF”, thus making the
DISPLAY something that will be executed regardless of how the “Loan-Balance < 10000” test evaluated.

6.1.6. Use of “VERB” / “END-VERB” Constructs

Prior to the 1985 COBOL standard, using a period character was the only way to signal the end of a statement’s scope.
Unfortunately, this caused some problems.

Take a look at this code:

IF A = 1
 IF B = 1
 DISPLAY “A & B = 1”
ELSE
 IF B = 1
 DISPLAY “A NOT = 1 BUT B = 1”
 ELSE
 DISPLAY “NEITHER A NOR B = 1”.

The problem with this code is the fact that the ELSE will be associated with the “IF B = 1” statement, not the “IF A = 1”
statement (remember – no COBOL compiler cares about how you indent your code). This sort of problem led to the
following band-aid solution

15
 added to the COBOL language:

IF A = 1
 IF B = 1
 DISPLAY “A & B = 1”
 ELSE
 NEXT SENTENCE
ELSE
 IF B = 1
 DISPLAY “A NOT = 1 BUT B = 1”
 ELSE
 DISPLAY “NEITHER A NOR B = 1”.

The NEXT SENTENCE statement (see section 6.30) informs COBOL that if the “B = 1” condition is false, control should
fall into the first statement that follows the next period.

With the 1985 standard for COBOL, a much more elegant solution was introduced. Those COBOL verbs (statements)
that needed such a thing were allowed to use an “END-verb” construct to end their scope without disrupting the
scope of any statements whose scope they might have been in. Any COBOL 85 compiler would have allowed the
following solution to our problem:

IF A = 1
 IF B = 1
 DISPLAY “A & B = 1”
 END-IF
ELSE
 IF B = 1
 DISPLAY “A NOT = 1 BUT B = 1”
 ELSE
 DISPLAY “NEITHER A NOR B = 1”.

15
 Yes, I realize you could have changed the code to “IF A = 1 AND B = 1”, but that wouldn’t have allowed me to make

my case here

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-11

This new facility made the period almost obsolete, as our program segment would probably be coded like this today:

IF A = 1
 IF B = 1
 DISPLAY “A & B = 1”
 END-IF
ELSE
 IF B = 1
 DISPLAY “A NOT = 1 BUT B = 1”
 ELSE
 DISPLAY “NEITHER A NOR B = 1”
 END-IF
END-IF

COBOL (OpenCOBOL included) still requires that each PROCEDURE DIVISION paragraph contain at least once sentence
if there is any executable code in that paragraph, but a popular coding standard is now to simply code a single period
right before the end of each paragraph. Check out the “OCic” sample program in section 8.3 and you’ll see how that
would be done.

The standard for the COBOL language shows the various “END-verb” specifications to be optional because using a
period as a scope-terminator remains legal. Some statements have an “END-verb” scope-terminator defined for them
that they don’t appear to need.

16

If you will be porting existing code over to OpenCOBOL, you’ll find it an accommodating facility capable of conforming
to language and coding standards that code is likely to use. If you are creating new OpenCOBOL programs, however, I
would strongly counsel you to use the “END-verb” structures religiously in those programs.

6.1.7. Intrinsic Functions

OpenCOBOL supports a variety of “intrinsic functions” that may be used anywhere in the PROCEDURE DIVISION where
a literal is allowed. For example:

MOVE FUNCTION LENGTH(Employee-Last-Name) TO Employee-LN-Len.

Note how the word “FUNCTION” is part of the syntax when you use an intrinsic function. You can use intrinsic
functions without having to include the reserved word FUNCTION via settings in the REPOSITORY paragraph of the
CONFIGURATION SECTION. See section 4.1.3 for more information.

The following intrinsic functions, known to other “dialects” of COBOL, are defined to OpenCOBOL as reserved words
but are not otherwise implemented currently. Any attempts to use these functions will result in a compile-time error
message.

BOOLEAN-OF-INTEGER HIGHEST-ALGEBRAIC NUMVAL-F

CHAR-NATIONAL INTEGER-OF-BOOLEAN STANDARD-COMPARE

DISPLAY-OF LOCALE-COMPARE TEST-NUMVAL

EXCEPTION-FILE-N LOWEST-ALGEBRAIC TEST-NUMVAL-C

EXCEPTION-LOCATION-N NATIONAL-OF TEST-NUMVAL-F

The supported intrinsic functions are listed in the following table, along with their syntax and usage notes. Remember
that the keyword FUNCTION is required to be specified immediately before the function name in order to use the
function, unless otherwise indicated via the REPOSITORY paragraph of the CONFIGURATION SECTION.

6.1.7.1. ABS(number)

Determines and returns the absolute value of the number (a PIC 9 item or numeric literal) supplied as an argument.

16
 STRING (section 6.43) and UNSTRING (section 6.49), for example – could it be there are plans in the works for a

future standard to introduce an option to such statements that would need a scope-terminator?

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-12

6.1.7.2. ACOS(angle)

The ACOS function determines and returns the trigonometric arc-cosine, or inverse cosine, of the angle (a PIC 9 item
or numeric literal) supplied as an argument.

6.1.7.3. ANNUITY(interest-rate, number-of-periods)

This function returns a numeric value approximating the ratio of an annuity paid at the specified interest-rate (PIC 9
items or numeric literal) for each of the specified number-of-periods (PIC 9 items or numeric literal).

The interest-rate is the rate of interest paid at each payment. If you only have an annual interest rate and you wish to
compute annuity payments for monthly payments, divide the annual interest rate by 12 and use that value for
interest-rate on this function.

Multiply this result times the desired principal amount to determine the amount of each period’s payment.

A note for the financially challenged: an annuity is basically a reverse loan; an accountant would take the result of this
function multiplied by -1 to compute a loan payment you are making.

6.1.7.4. ASIN(number)

The ASIN function determines and returns the trigonometric arc-sine, or inverse sine, of the angle (a PIC 9 item or
numeric literal) supplied as an argument.

6.1.7.5. ATAN(number)

Use this function to determine and return the trigonometric arc-tangent, or inverse tangent, of the angle (a PIC 9 item
or numeric literal) supplied as an argument.

6.1.7.6. BYTE-LENGTH(string)

BYTE-length returns the length – in bytes – of the specified string (a group item, USAGE DISPLAY elementary item or
alphanumeric literal). This intrinsic function is identical to the LENGTH function.

6.1.7.7. CHAR(integer)

This function returns the character in the ordinal position specified by the integer argument (a PIC 9 item or numeric
literal; no fractional part is allowed) from the collating sequence being used by the program.

For example, if the program is using the (default) ASCII characterset, CHAR(34) returns the 34
th

 character in the ASCII
characterset – an exclamation-point (“!”). If you are using this function to convert a numeric value to its
corresponding ASCII character, you must use an argument value one greater than the numeric value.

If an argument whose value is less than 1 or greater than 256 is specified, the character in the program collating
sequence corresponding to a value of all zero bits is returned.

The following code is an alternative approach when you just wish to convert a number to its ASCII equivalent:

01 Char-Value.
 05 Numeric-Value USAGE BINARY-CHAR.
.
.
.
 MOVE numeric-character-value TO Numeric-Value
 The Char-Value item now has the corresponding ASCII character value

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-13

6.1.7.8. COMBINED-DATETIME(days, seconds)

This function returns a 12-digit result, the first seven digits of which are the value of the days argument (a PIC 9 item
or a numeric literal) and the last five of which are the value of the seconds argument (a PIC 9 item or a numeric literal).

If a days value less than 1 or greater than 3067671 is specified, or if a seconds value less than 1 or greater than 86400
is specified, a value of 0 is returned and a runtime error will result.

6.1.7.9. CONCATENATE(string-1 [, string-2] …)

This function concatenates the specified strings (group items, USAGE DISPLAY elementary items and/or alphanumeric
literals) together into a single string result.

If a numeric literal or PIC 9 identifier is specified as a string, decimal points will be removed and negative signs in PIC
S9 fields will be inserted as defined by the SIGN clause (or absence thereof) of the field. Numeric literals are
processed as if SIGN IS TRAILING were in effect.

6.1.7.10. COS(number)

The COS function determines and returns the trigonometric cosine of the angle (a PIC 9 item or numeric literal)
supplied as an argument.

6.1.7.11. CURRENT-DATE

Returns the current date and time as the following 21-character structure:

01 CURRENT-DATE-AND-TIME.
 05 CDT-Year PIC 9(4).
 05 CDT-Month PIC 9(2). *> 01-12
 05 CDT-Day PIC 9(2). *> 01-31
 05 CDT-Hour PIC 9(2). *> 00-23
 05 CDT-Minutes PIC 9(2). *> 00-59
 05 CDT-Seconds PIC 9(2). *> 00-59
 05 CDT-Hundredths-Of-Secs PIC 9(2). *> 00-99
 05 CDT-GMT-Diff-Hours PIC S9(2)
 SIGN LEADING SEPARATE.
 05 CDT-GMT-Diff-Minutes PIC 9(2). *> 00 or 30

Since the CURRENT-DATE function has no arguments, no parenthesis should be specified.

6.1.7.12. DATE-OF-INTEGER(integer)

This function returns a calendar date in yyyymmdd format. The date is determined by adding the number of days
specified as integer (a PIC 9 item or numeric literal; cannot contain a fractional part) to December 31, 1600. For
example, DATE-OF-INTEGER(1) returns 16010101.

A value less than 1 or greater than 3067671 (9999/12/31) will return a result of 0.

6.1.7.13. DATE-TO-YYYYMMDD(yymmdd [, yy-cutoff])

You can use this function to convert the six-digit date specified as yymmdd (a PIC 9 data item or a numeric literal) to
an eight-digit format (yyyymmdd). The optional yy-cutoff (a PIC 9 data item or a numeric literal) argument is the year
cutoff used to delineate centuries; if the year component of the date meets or exceeds this cutoff value, the result will
be 19yymmdd; if the year component of the date is less than the cutoff value, the result will be 20yymmdd. The
default cutoff value if no second argument is given will be 50.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-14

6.1.7.14. DAY-OF-INTEGER(integer)

This function returns a calendar date in yyyyddd (i.e. Julian) format. The date is determined by adding the number of
days specified as integer (a PIC 9 item or numeric literal; cannot contain a fractional part) to December 31, 1600. For
example, DATE-OF-INTEGER(1) returns 1601001.

A value less than 1 or greater than 3067671 (9999/12/31) will return a result of 0.

6.1.7.15. DAY-TO-YYYYDDD(yyddd [, yy-cutoff])

You can use this function to convert the five-digit date specified as yyddd (a PIC 9 data item or a numeric literal) to a
seven-digit format (yyyyddd). The optional yy-cutoff argument (a PIC 9 data item or a numeric literal) is the year
cutoff used to delineate centuries; if the year component of the date meets or exceeds this cutoff value, the result will
be 19yyddd; if the year component of the date is less than the cutoff, the result will be 20yyddd. The default cutoff
value if no second argument is given will be 50.

6.1.7.16. E

This function returns the mathematical constant “E” (the base of natural logarithms). The maximum precision with
which this value may be returned is 2.7182818284590452353602874713526625.

Since the E function has no arguments, no parenthesis should be specified.

6.1.7.17. EXCEPTION-FILE

This function returns I/O exception information from the most-recently executed input or output statement. The
information is returned to a structure resembling the following:

01 INPUT-OUTPUT-EXCEPTION.
 05 IOE-FILE-STATUS PIC 9(2).
 05 IOE-FILE-SELECT-NAME PIC X(32).

See

Figure 4-11 for information about possible file-status values.

The name returned after the file status information will be the “SELECT” name of the file, and it will be returned ONLY
if the returned file status value is not 00.

Since the EXCEPTION-FILE function has no arguments, no parenthesis should be specified.

6.1.7.18. EXCEPTION-LOCATION

This function returns exception information from the most-recently failing statement. The information is returned to
a 1023 character string in one of the following formats, depending on the nature of the failure:

program-id; paragraph OF section; statement-number
program-id; section; statement-number
program-id; paragraph; statement-number
program-id; statement-number

Since the EXCEPTION-LOCATION function has no arguments, no parenthesis should be specified.

The program must be compiled with the “-g” option for this function to return any meaningful information.

See section 6.5.1 for an example of this function at work.

6.1.7.19. EXCEPTION-STATEMENT

This function returns the most-recent COBOL statement that generated an exception condition.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-15

Since the EXCEPTION-STATEMENT function has no arguments, no parenthesis should be specified.

The program must be compiled with the “-g” option for this function to return any meaningful information.

See section 6.5.1 for an example of this function at work.

6.1.7.20. EXCEPTION-STATUS

This function returns the error type (as a text string) from the most-recent COBOL statement that generated an
exception condition.

Since the EXCEPTION-STATUS function has no arguments, no parenthesis should be specified.

See section 6.5.1 for an example of this function at work.

6.1.7.21. EXP(number)

Computes and returns the value of the mathematical constant “e” raised to the power specified by number (a PIC 9
item or numeric literal).

6.1.7.22. EXP10(number)

Computes and returns the value of 10 raised to the power specified by number (a PIC 9 item or numeric literal).

6.1.7.23. FRACTION-PART(number)

This function returns that portion of number that occurs to the right of the decimal point. Number must be a numeric
data item or a numeric literal. FRACTION-PART(3.1415), for example, returns a value of 0.1415. This function is
equivalent to the expression:

number – FUNCTION INTEGER-PART(number)

6.1.7.24. FACTORIAL(number)

This function computes and returns the factorial value of number (a PIC 9 item or numeric literal).

6.1.7.25. INTEGER(number)

The INTEGER function returns the greatest integer value that is less than or equal to number (a PIC 9 item or numeric
literal).

6.1.7.26. INTEGER-OF-DATE(date)

This function converts date (a PIC 9 item or numeric literal; cannot contain a fractional part) – presumed to be a
Gregorian calendar form standard date (YYYYMMDD) - to integer date form – that is, the number of days that have
transpired since 1600/12/31.

6.1.7.27. INTEGER-OF-DAY(date)

This function converts date (a PIC 9 item or numeric literal; cannot contain a fractional part) – presumed to be a Julian
calendar form standard date (YYYYDDD) to integer date form – that is, the number of days that have transpired since
1600/12/31.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-16

6.1.7.28. INTEGER-PART(number)

Returns the integer portion of the value of number (a PIC 9 item or numeric literal).

6.1.7.29. LENGTH(string)

Returns the length – in bytes – of string (a group item, USAGE DISPLAY elementary item or alphanumeric literal). This
intrinsic function is identical to the BYTE-LENGTH function.

6.1.7.30. LOCALE-DATE(date [, locale])

Converts the eight-digit date (a PIC 9 item or numeric literal; cannot contain a fractional part) from YYYYMMDD format
to the format appropriate to the current locale. On a Windows system, this will be the “short date” format as set
using Control Panel.

You may include an optional second argument to specify the locale name (group item or PIC X identifier) you’d like to
use for date formatting. If used, this second argument MUST be an identifier. Locale names are specified using UNIX-
standard names. The complete list of supported locale names is shown in Figure 4-7.

6.1.7.31. LOCALE-TIME(time [, locale])

Converts the four- (HHMM) or six-digit (HHMMSS) time (a PIC 9 item or numeric literal; cannot contain a fractional
part) to a format appropriate to the current locale. On a Windows system, this will be the “time” format as set using
Control Panel.

You may include an optional locale name (a group item or PIC X identifier) you’d like to use for time formatting. If
used, this second argument MUST be an identifier. Locale names are specified using UNIX-standard names. The
complete list of supported locale names is shown in Figure 4-7.

6.1.7.32. LOCALE-TIME-FROM-SECS(seconds [, locale])

Converts the number of seconds since midnight (a PIC 9 item or numeric literal; cannot contain a fractional part) to a
format appropriate to the current locale. On a Windows system, this will be the “time” format as set using Control
Panel.

You may include an optional locale name (a group item or PIC X identifier) you’d like to use for time formatting. If
used, this second argument MUST be an identifier. Locale names are specified using UNIX-standard names. The
complete list of supported locale names is shown in Figure 4-7.

6.1.7.33. LOG(number)

Computes and returns the natural logarithm (base “e”) of number (a PIC 9 item or numeric literal).

6.1.7.34. LOG10(number)

Computes and returns the base 10 logarithm of number (a PIC 9 item or numeric literal).

6.1.7.35. LOWER-CASE(string)

This function returns the value of string (a group item, USAGE DISPLAY elementary item or alphanumeric literal),
converted entirely to lower case.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-17

6.1.7.36. MAX(number-1 [, number-2] …)

This function returns the maximum value from the specified list numbers (PIC 9 items and/or numeric literals).

6.1.7.37. MIN(number-1 [, number-2] …)

This function returns the minimum value from the specified list numbers (PIC 9 items and/or numeric literals).

6.1.7.38. MEAN(number-1 [, number-2] …)

This function returns the statistical mean value of the specified list numbers (PIC 9 items and/or numeric literals).

6.1.7.39. MEDIAN(number-1 [, number-2] …)

This function returns the statistical median value of the specified list numbers (PIC 9 items and/or numeric literals).

6.1.7.40. MIDRANGE(number-1 [, number-2] …)

The MIDRANGE (middle range) function returns a numeric value that is the arithmetic mean (average) of the values of
the minimum and maximum numbers (PIC 9 items and/or numeric literals).

6.1.7.41. MOD(value, modulus)

Returns value modulo modulus. Both arguments may be PIC 9 data items or numeric literals. Either (or both) may
have a non-integer value.

The result is determined according to the following formula:

value - (modulus * FUNCTION INTEGER (value / modulus))

6.1.7.42. NUMVAL(string)

The NUMVAL function converts a string (a group item, USAGE DISPLAY elementary item or alphanumeric literal) to its
corresponding numeric value by parsing that string according to the rules for COBOL PICTURE editing. For example,
the string “12,345.55” will be converted to a numeric value of 12345.55.

17

6.1.7.43. NUMVAL-C(string [, symbol])

This function performs a function similar to that of the NUMVAL function, but provides for the specification of a
converts a string (a group item, USAGE DISPLAY elementary item or alphanumeric literal) to its corresponding numeric
value by parsing that string according to the rules for COBOL PICTURE editing. The optional symbol character
represents the currency symbol (a group item, USAGE DISPLAY elementary item or alphanumeric literal) that occurs
within string. For example, the string “$12,345.55” will be converted to a numeric value of 12345.55 (“$” is the
assumed default currency symbol).

18

17
 The string parsing rules for NUMVAL and NUMVAL-C are quite loose, essentially ignoring any non-numeric or

invalid characters. Thus, both routines will generate a result of 1234 for “$1,234”, “******1234”, “xxxxx12xxxx34”
and so on.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-18

6.1.7.44. ORD(char)

This function returns the ordinal position in the program characterset (usually ASCII) corresponding to the 1
st

character of the char argument (a group item, USAGE DISPLAY elementary item or alphanumeric literal). For example,
assuming the program is using the standard ASCII collating sequence, ORD(“!”) returns 34 because “!” is the 34

th
 ASCII

character. If you are using this function to convert an ASCII character to its numeric value, you must subtract one from
the result.

The following code is an alternative approach when you just wish to convert an ASCII character to its numeric
equivalent:

01 Char-Value.
 05 Numeric-Value USAGE BINARY-CHAR.
.
.
.
 MOVE “character” TO Char-Value
 The Numeric-Value item now has the corresponding numeric value

6.1.7.45. ORD-MAX(char-1 [, char-2] …)

This function returns the ordinal position in the argument list corresponding to the argument whose 1
st

 character has
the highest position in the program collating sequence (usually ASCII). For example, assuming the program is using the
standard ASCII collating sequence, ORD-MAX(“Z”, “z", “!”) returns 2 because the ASCII character “z” occurs after “Z”
and “!” in the program collating sequence. Each char argument is a group item, USAGE DISPLAY elementary item or
alphanumeric literal

6.1.7.46. ORD-MIN(char-1 [, char-2] …)

This function returns the ordinal position in the argument list corresponding to the argument whose 1
st

 character has
the lowest position in the program collating sequence (usually ASCII). For example, assuming the program is using the
standard ASCII collating sequence, ORD-MAX(“Z”, “z", “!”) returns 3 because the ASCII character “!” occurs before “Z”
and “z” in the program’s collating sequence. Each char argument is a group item, USAGE DISPLAY elementary item or
alphanumeric literal

6.1.7.47. PI

This function returns the mathematical constant “PI”. The maximum precision with which this value may be returned
is 3.1415926535897932384626433832795029.

Since the PI function has no arguments, no parenthesis should be specified.

6.1.7.48. PRESENT-VALUE(rate,value-1 [, value-2])

The PRESENT-VALUE function returns a value that approximates the present value of a series of future period-end
amounts specified by the various value arguments at a discount rate specified by the rate argument. All arguments
are PIC 9 items and/or numeric literals.

The following formula summarizes the functions operation:

6.1.7.49. RANDOM [(seed)]

The RANDOM function returns a non-integer value in the range 0 to 1 (for example, 0.123456789).

If seed is specified, it must be zero or a positive integer (specified as a PIC 9 item and/or numeric literal). It is used as
the seed value to generate a sequence of pseudo-random numbers.

If a subsequent reference specifies seed, a new sequence of pseudo-random numbers is started.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-19

If the first executed reference to this function does not specify a seed, the seed will be supplied by the compiler.

In each case, subsequent references without specifying a seed return the next number in the current sequence.

6.1.7.50. RANGE(number-1 [, number-2] …)

The RANGE function returns a value that is equal to the value of the maximum number in the argument list minus the
value of the minimum number argument. All arguments are PIC 9 items and/or numeric literals.

6.1.7.51. REM(number, divisor)

This function returns a numeric value that is the remainder of number divided by divisor. Both arguments may be PIC
9 items and/or numeric literals.

The result is determined according to the following formula:

number - (divisor * FUNCTION INTEGER-PART (number / divisor))

6.1.7.52. REVERSE(string)

This function returns the byte-by-byte reversed value of the specified string (a group item, USAGE DISPLAY elementary
item or alphanumeric literal).

6.1.7.53. SECONDS-FROM-FORMATTED-TIME(format,time)

This function decodes a string whose value represents a formatted time and returns the total number of seconds that
string represents. The time string must contain hours, minutes and seconds. The time argument may be specified as a
group item, USAGE DISPLAY elementary item or an alphanumeric literal.

The format argument is a string (a group item, USAGE DISPLAY elementary item or an alphanumeric literal)
documenting the format of time using “hh”, “mm” and “ss” to denote where the respective time information can be
found. Any other characters found in format represent character positions that will be ignored. For example, a
format of “hhmmss” indicates that time will be treated as a six-digit value where the first two characters are the
number of hours, the next two represent minutes and the last two represent seconds. Similarly, a format of
“hh:mm:ss” states that time will be an eight-character string where characters 3 and 6 will be ignored.

6.1.7.54. SECONDS-PAST-MIDNIGHT

This function returns the current time of day expressed as the total number of elapsed seconds since midnight.

6.1.7.55. SIGN(number)

The SIGN function returns a -1 if the value of number (a PIC 9 item or numeric literal) is negative, a zero if the value of
number is exactly zero and a 1 if the value of number if greater than 0.

6.1.7.56. SIN(angle)

Determines and returns the trigonometric sine of the specified angle (a PIC 9 item or numeric literal).

6.1.7.57. SQRT(number)

The SQRT function returns a numeric value that approximates the square root of number (a PIC 9 item or numeric
literal with a non-negative value).

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-20

6.1.7.58. MEAN(number-1 [, number-2] …)

This function returns the statistical standard deviation of the specified list numbers (PIC 9 items and/or numeric
literals).

6.1.7.59. STORED-CHAR-LENGTH(string)

Returns the length – in bytes – of the specified string (a group item, USAGE DISPLAY elementary item or alphanumeric
literal) MINUS the total number of trailing spaces, if any.

6.1.7.60. SUBSTITUTE(string,from-1,to-1 [, from-n,to-n])

This function parses the specified string, replacing all occurrences of the from-n strings with the corresponding to-n
strings. The from strings must match exactly with regard to value and case. The from strings do not have to be the
same length as the to strings. All arguments are group items, USAGE DISPLAY elementary items or alphanumeric
literals.

A null to string will be treated as a single SPACE.

6.1.7.61. SUBSTITUTE-CASE(string,from-1,to-1 [, from-n,to-n])

The SUBSTITUTE-CASE function operates the same as the SUBSTITUTE function, except that from string matching is
performed without regard for case. All arguments are group items, USAGE DISPLAY elementary items or alphanumeric
literals.

6.1.7.62. SUM(number-1 [, number-2] …)

The SUM function returns a value that is the sum of the number arguments (PIC 9 items and/or numeric literals).

6.1.7.63. TAN(angle)

Determines and returns the trigonometric tangent of the specified angle (a PIC 9 item or numeric literal).

6.1.7.64. TEST-DATE-YYYYMMDD(date)

Determines if the supplied date (a PIC 9 item or numeric literal; cannot contain a fractional part) is a valid date of the
form yyyymmdd and that the date is in the range 1601/01/01 to 9999/12/31. If it is value, a 0 value is returned. If it
isn’t, a value of 1 is returned.

6.1.7.65. TEST-DAY-YYYYDDD(date)

Determines if the supplied date (a PIC 9 item or numeric literal (cannot contain a fractional part) is a valid date of the
form yyyyddd and that the date is in the range 1601001 to 9999365. If it is value, a 0 value is returned. If it isn’t, a
value of 1 is returned.

6.1.7.66. TRIM(string[, LEADING|TRAILING])

This function removes leading or trailing spaces from the specified string (a group item, USAGE DISPLAY elementary
item or alphanumeric literal). The second argument is specified as a keyword, not a quoted string or identifier. If no
second argument is specified, both leading and trailing spaces will be removed.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-21

6.1.7.67. UPPER-CASE(string)

This function returns the value of string (a group item, USAGE DISPLAY elementary item or alphanumeric literal),
converted entirely to upper case.

6.1.7.68. VARIANCE(number-1 [, number-2] …)

This function returns the statistical variance of the specified list numbers (PIC 9 items and/or numeric literals).

6.1.7.69. WHEN-COMPILED

This function returns date and time the program was compiled in the same format as the result returned by the
CURRENT-DATE function.

Since the WHEN-COMPILED function has no arguments, no parenthesis should be specified.

6.1.7.70. YEAR-TO-YYYY (yy [, yy-cutoff])

YEAR-TO-YYYY converts yy (a) - a two-digit year - to a four-digit format (yyyy). The optional yy-cutoff argument (also a
PIC 9 data item or numeric literal) is the year cutoff used to delineate centuries; if yy meets or exceeds this cutoff
value, the result will be 19yy; if yy is less than the cutoff, the result will be 20yy. The default cutoff value if no second
argument is given will be 50.

6.1.8. Special Registers

OpenCOBOL, like other COBOL dialects, includes a number of data items that are automatically available to a
programmer without the need to actually define them in the DATA DIVISION. COBOL refers to such items as registers
or special registers. The special registers available to an OpenCOBOL program are as follows:

Figure 6-15 - Special Registers

Register Name Implied COBOL
PIC/USAGE

18

Usage

LINAGE-COUNTER BINARY-LONG
SIGNED

An occurrence of this register exists for each SELECTed file
having a LINAGE clause (see section 5.1). If there are multiple
files whose FDs have a LINAGE clause, any explicit references
to this register will require qualification (using “OF file-
name”).

The value of this register will be the current logical line
number within the page body (see section 5.1 for a discussion
of how the LINAGE clause structures logical pages).

DO NOT MODIFY THE CONTENTS OF THIS REGISTER.

NUMBER-OF-CALL-PARAMETERS BINARY-LONG
SIGNED

This register contains the number of arguments passed to a
subprogram. Its value will be zero when referenced in a main
program.

See the C$NARG built-in subroutine documentation in section
7.3.1.7 for another way of retrieving the same data.

18
 See section 5.3 for a description of the PICTURE / USAGE specifications

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-22

Register Name Implied COBOL
PIC/USAGE

18

Usage

RETURN-CODE BINARY-LONG
SIGNED

This register provides a numeric data item into which a
subroutine may MOVE a value prior to transferring control
back to the program that CALLed it, or into which a main
program may MOVE a value before returning control to the
operating system.

Many built-in subroutines (section 7.3) will return a value
using this register.

These values are – by convention – used to signify success
(usually with a value of 0) or failure (usually with a non-zero
value) of the process the program setting the RETURN-CODE
value was attempting to perform.

SORT-RETURN BINARY-LONG
SIGNED

This register is used to report the success/fail status of a
RELEASE or RETURN statement. A value of 0 is reported on
success. A value of 16 denotes failure. An “AT END”
condition on a RETURN is not considered a failure.

WHEN-COMPILED See “Usage” This register contains the date and time the program was
compiled in the format “mm/dd/yyhh.mm.ss”. Note that
only a two-digit year is provided.

6.1.9. Controlling Concurrent Access to Files

The manipulation of data files is one of the COBOL language’s great strengths. There are features built-in to the
COBOL language to deal with the possibility that multiple programs may be attempting to access the same file
concurrently. Multiple program concurrent access is dealt with in two ways – file sharing and record locking.

Not all OpenCOBOL implementations support file sharing and record-locking options. Whether they do or not
depends upon the operating system they were built for and the build options that were used when the specific
OpenCOBOL implementation was generated.

6.1.9.1. File Sharing

OpenCOBOL controls concurrent-file access at the highest level through the concept of file sharing, enforced when a
program attempts to OPEN a file (see section 6.31). This is accomplished via a UNIX operating-system routine called
“fcntl()”. That module is not currently supported by Windows

19
 and is not present in the MinGW Unix-emulation

package. OpenCOBOL builds created using a MinGW environment will be incapable of supporting file-sharing controls
– files will always be shared in such environments. An OpenCOBOL build created using the Cygwin environment on
Windows would have access to “fcntl()” and therefore will support file sharing. Of course, actual Unix builds of
OpenCOBOL, as well as MacOS builds

20
, will have no issues using BDB because “fcntl()” is built-in to Unix.

Any limitations you impose on a successful OPEN will remain in place until your program either issues a CLOSE against
the file or terminates.

There are three ways in which concurrent access to a file may be controlled at the file level:

19
 Windows has other means of providing equivalent functionality to “fcntl()”, but the BDB package was not coded to

utilize them. The use of other advanced file I/O packages that support both the UNIX and Windows concurrent-
access routines (such as VBISAM) are currently under investigation by the author.

20
 Apple Computer’s MacOS X operating system is based on an open-source version of UNIX and therefore includes

support of “fcntl()”.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-23

Sharing
Option

Effect

ALL
OTHER

When your program opens a file in this manner, no restrictions will be placed on other programs
attempting to OPEN the file after your program did. This is the default sharing mode.

NO
OTHER

When your program opens a file in this manner, your program announces that it is unwilling to allow
any other program to have any access to the file as long as you are using that file; OPEN attempts
made in other programs will fail with a file status of 37 (“PERMISSION DENIED”) until such time as you
CLOSE the file (see section 6.9).

READ
ONLY

Opening a file in this manner indicates you are willing to allow other programs to OPEN the file for
INPUT while you have it OPEN. If they attempt any other OPEN, their OPEN will fail with a file status
of 37.

Of course, your program may fail if someone else got to the file first and OPENed it with a sharing option that imposed
file-sharing limitations.

6.1.9.2. Record Locking

Record-locking is supported by advanced file-management software that provides a single point-of-control for access
to files (usually ORGANIZATION INDEXED files). One such runtime package capable of doing this is the Berkely
Database (BDB) package. The various I/O statements are capable of imposing limitations on the access – by other
concurrently-executing programs – to the file record they just accessed. These limitations are syntactically imposed by
placing a lock on the record. Other records in the file remain available, assuming that file-sharing limitations imposed
at OPEN-time didn’t prevent access to the entire file.

Locks remain in-effect until a program holding the lock terminates, Issues a CLOSE (section 6.9) against the file, issues
an UNLOCK (section 6.48) against the file, executes a COMMIT (section 6.10) or executes a ROLLBACK (section 6.37).

The record locking options (not all options are available to all statements) are as shown in the following table.

Record
Locking
Option

Effect

WITH LOCK Access to the record by other programs will be denied.

WITH NO
LOCK

The record will not be locked. This is the default locking option in effect for all statements.

IGNORING
LOCK
WITH IGNORE
LOCK

This option is possible only when reading records – it informs OpenCOBOL that any locks held by
other programs should be ignored.

The two options shown are synonymous.

WITH WAIT This option is possible only when reading records – it informs OpenCOBOL that the program is willing
to wait for a lock held on the record being read to be released.

Without this option, an attempt to read a locked record will be immediately aborted and a file status
of 47 will be returned.

With this option, the program will wait for a pre-configured time for the lock to be released. If the
lock is released within the preconfigured wait time, the read will be successful. If the pre-configured
wait time expires before the lock is released, the read attempt will be aborted and a 47 file status will
be issued.

If the OpenCOBOL build you are using was configured to use BDB, record locking will be available by using the
execution-time environment variable DB_HOME (see section 7.2.4).

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-24

6.2. General Format of the PROCEDURE DIVISION

Figure 6-16 - General PROCEDURE DIVISION Syntax

The first (optional) segment of
the PROCEDURE DIVISION is a
special area known as
“declaratives”. In this area, you
may define processing routines
that are to be used as special
“trap” routines executed only
when certain events occur. These
will be described in section 6.3.

The various sections and
paragraphs in which the
procedural logic of your program
will be coded will follow any
“declaratives”. The PROCEDURE
DIVISION is the only one of the
COBOL divisions that allows you
to create your own sections and
paragraphs.

1. The USING and RETURNING clauses define arguments to a program serving as a subroutine. All identifiers
specified on these clauses must be defined in the LINKAGE SECTION of the program in which the USING and/or
RETURNING clauses appear.

2. The CHAINING clause should be used only by a program that will be invoked by another program via the CHAIN
verb. The identifiers specified with CHAINING clauses must be defined in the LINKAGE SECTION of the program in
which the CHAINING clauses appear. Chaining, however, is currently syntactically supported by OpenCOBOL but
is otherwise non-functional. Attempts to use the CHAIN verb will be rejected.

3. While intended for use with user-defined FUNCTIONs (which are not currently supported by OpenCOBOL), the
RETURNING clause can be used as a means of specifying and documenting an argument to a subprogram in which
a value is returned.

4. The BY REFERENCE clause indicates that the program will be passed the address of the data item corresponding to
a program argument; this program will be allowed to modify the contents of any BY REFERENCE argument. BY
REFERENCE is the assumed default for all USING/CHAINING arguments (CHAINING arguments must be BY
REFERENCE).

5. The BY VALUE clause indicates the program will be passed a read-only copy of the data item from the calling
program that corresponds to the argument. The contents of BY VALUE arguments cannot be changed by the
subprograms receiving them.

6. The USING mechanism is NOT how OpenCOBOL programs should retrieve their command-line arguments as is the
case in some mainframe implementations of COBOL. See the ACCEPT verb for information on how program
command line arguments should be retrieved.

7. The various SIZE clauses specify the size (in bytes) of received arguments. The SIZE IS AUTO clause (the default)
indicates that argument size will be determined automatically based upon the size of the item in the calling

PROCEDURE DIVISION

[RETURNING identifier-1] .

USING
CHAINING argument-1 ...

argument Format:

BY
REFERENCE
VALUE

SIZE IS AUTO
SIZE IS DEFAULT
[UNSIGNED] SIZE IS integer-1

[declaratives-entry] ...

[section-name -1 SECTION.]
paragraph-name-1.

[procedural-statement-1] …

[OPTIONAL]

identifier-2

...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-25

program. The remaining SIZE options allow you to force a specific size to be assumed, with SIZE IS DEFAULT being
the same as UNSIGNED SIZE IS 4.

6.3. General Format for DECLARATIVES Entries

Figure 6-17 - General DECLARATIVES Syntax

The
DECLARATIVES
area of the
PROCEDURE
DIVISION allows
the programmer
to define a series
of “trap” routines
capable of
intercepting
certain events that
may occur at
program
execution time.

1. Since the RWCS is not currently supported by OpenCOBOL, the USE BEFORE REPORTING clause will be
syntactically recognized but rejected as being unsupported.

2. The USE FOR DEBUGGING clause will be syntactically recognized but will be ignored. If you use the “-Wall” or
“-W” compiler switches you will receive a warning message stating this feature is not yet implemented.

3. The USE AFTER STANDARD ERROR PROCEDURE clause defines a routine invoked any time a failure is encountered
with the specified I/O type (or against the specified file(s).

4. The GLOBAL option, if used, allows a declaratives procedure to be used across all program units in the same
compilation unit.

5. DECLARATIVES routines (of any type) may not reference any procedures outside the scope of the DECLARATIVES
area except for referencing them via the PERFORM statement.

DECLARATIVES.

END DECLARATIVES.

section-name-1 SECTION.

paragraph-name-1.

USE

EXCEPTION
ERROR[GLOBAL] AFTER STANDARD PROCEDURE ON

INPUT
OUTPUT
I-O
EXTEND
file-name-1 ...

ALL PROCEDURES
procedure-name-1FOR DEBUGGING ON

[GLOBAL] BEFORE REPORTING identifier-1

.

statement-1 ...

...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-26

6.4. ACCEPT

6.4.1. ACCEPT Format 1 – Read from Console

Figure 6-18 - ACCEPT (Read from Console) Syntax

This format of the ACCEPT verb is used to read a value
from the console window and store it into a data item
(identifier).

1. If the FROM clause is used, the specified mnemonic-name must be either SYSIN or CONSOLE, or a user-defined
mnemonic-name assigned to one of those two devices via the SPECIAL-NAMES paragraph. The devices SYSIN and
CONSOLE may be used interchangeably and both reference the console window.

2. If no FROM clause is specified, FROM CONSOLE is assumed.

6.4.2. ACCEPT Format 2 – Retrieve Command-Line Arguments

Figure 6-19 - ACCEPT (Command Line Arguments) Syntax

This format of the ACCEPT verb is used
to retrieve arguments from the
programs command-line.

1. When you accept from the COMMAND-LINE option, you will retrieve the entire set of arguments entered on the
command line that executed the program, exactly as they were specified. Parsing that returned data into its
meaningful information will be your responsibility.

2. By accepting from ARGUMENT-NUMBER, you will be asking the OpenCOBOL run-time system to parse the
arguments from the command-line and return the number of arguments found. Parsing will be conducted
according to the operating system’s rules, as follows:

 Arguments will be separated by treating SPACES between characters as the delineators between
arguments. The number of spaces separating two non-blank values is irrelevant.

 Strings enclosed in double-quote characters (“) will be treated as a single argument, regardless of how
many spaces (if any) might be imbedded within those quotation characters.

 On Windows systems, single-quote, or apostrophe characters (‘) will be treated just like any other data
character and will NOT delineate strings.

3. By accepting from ARGUMENT-VALUE, you will be asking the OpenCOBOL run-time system to parse the
arguments from the command-line and return the arguments whose number is currently in the ARGUMENT-
NUMBER register

21
. Parsing will be conducted according to the rules set forth in #2 above.

4. The syntax and usage of the optional exception-handler is discussed in section 6.4.7.

21
 Use format #2 of the DISPLAY statement to set ARGUMENT-NUMBER to the desired value

ACCEPT identifier
[FROM mnemonic-name]

[END-ACCEPT]

ACCEPT identifier

[END-ACCEPT]

COMMAND-LINE
ARGUMENT-NUMBER
ARGUMENT-VALUE [exception-handler]

FROM

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-27

6.4.3. ACCEPT Format 3 – Retrieve Environment Variable Values

Figure 6-20 - ACCEPT (Environment Variable Values) Syntax

This format of the ACCEPT verb is used to
retrieve environment variable values.

1. By accepting from ENVIRONMENT-VALUE, you will be asking the OpenCOBOL run-time system to retrieve the
value of the environment variable whose name is currently in the ENVIRONMENT-NAME register

22
.

2. A simpler approach to retrieving an environment variables value is to use “ACCEPT … FROM ENVIRONMENT”.
Using that form, you specify the environment variable to be retrieved right on the ACCEPT command itself.

3. The syntax and usage of the optional exception-handler is discussed in section 6.4.7.

22
 Use format #3 of the DISPLAY statement to set ENVIRONMENT-NAME to the desired environment variable name

[END-ACCEPT]

ENVIRONMENT-VALUE

ENVIRONMENT
Literal-1
Identifier-2

FROM

[exception-handler]

ACCEPT identifier-1

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-28

6.4.4. ACCEPT Format 4 – Retrieve Screen Data

Figure 6-21 - ACCEPT (Retrieve Screen Data) Syntax

This format of
the ACCEPT verb
is used to
retrieve data
from a
formatted
console window
screen using a
data item
defined in the
SCREEN
SECTION.

1. If identifier-1 is defined in the SCREEN SECTION, all cursor positioning (AT) and attribute specifications (WITH) are
taken from the SCREEN SECTION definition and anything specified on the ACCEPT will be ignored. Use the AT and
WITH options only when ACCEPTing a data item that was not defined in the SCREEN SECTION.

2. The various AT clauses provide a means of positioning the cursor to a specific spot on the screen before the
screen is read. The literal-3 / identifier-4 value must be a four-digit value with the 1

st
 two digits indicating the line

where the cursor should be positioned and the last two digits being the column.

3. Most of the WITH options were described in section 5.6, with the exception of the UPDATE and SCROLL options.
With the exception of SCROLL, WITH options should be specified only once.

4. The UPDATE option which causes the current contents of identifier-1 to be displayed before a new value is
accepted.

5. The SCROLL option will cause the entire contents of the screen to be scrolled UP or DOWN by the specified
number of lines before any value is displayed on the screen. It is possible to specify a SCROLL UP clause as well as
a SCROLL DOWN clause. If no LINES specification is made, “1 LINE” will be assumed.

6. The syntax and usage of the optional exception-handler is discussed in section 6.4.7.

ACCEPT identifier-1

[exception-handler]

[END-ACCEPT]

FOREGROUND-COLOR IS
integer-4
identifier-5

BACKGROUND-COLOR IS
integer-5
identifier-6

WITH

...

REQUIRED
FULL
PROMPT

AUTO | AUTO-SKIP | AUTOTERMINATE
BELL | BEEP
REVERSE-VIDEO
UNDERLINE
OVERLINE

SECURE
UPDATE
HIGHLIGHT
LOWLIGHT
BLINK

SCROLL
UP
DOWN BY

integer-6
identifier-7

LINES
LINE

AT
COLUMN
POSITION NUMBER

integer-2
identifier-3

AT LINE NUMBER
integer-1
identifier-2

COLUMN
POSITION NUMBER

integer-2
identifier-3

AT
integer-3
identifier-4

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-29

6.4.5. ACCEPT Format 5 – Retrieve Date/Time

Figure 6-22 - ACCEPT (Retrieve Date/Time) Syntax

This format of the ACCEPT verb is used to retrieve the
current system date and/or time and store it into a data
item.

1. The data retrieved from the system, and the format in which it is structured, will vary according to the following
chart:

ACCEPT Option Data Returned identifier-1 Format

DATE Current date in Gregorian form 01 CURRENT-DATE.
 05 CD-YEAR PIC 9(2).
 05 CD-MONTH PIC 9(2).
 05 CD-DAY-OF-MONTH PIC 9(2).

DATE YYYYMMDD Current date in Gregorian form 01 CURRENT-DATE.
 05 CD-YEAR PIC 9(4).
 05 CD-MONTH PIC 9(2).
 05 CD-DAY-OF-MONTH PIC 9(2).

DAY Current date in Julian form 01 CURRENT-DATE.
 05 CD-YEAR PIC 9(2).
 05 CD-DAY-OF-YEAR PIC 9(3).

DAY YYYYDDD Current date in Julian form 01 CURRENT-DATE.
 05 CD-YEAR PIC 9(4).
 05 CD-DAY-OF-YEAR PIC 9(3).

DAY-OF-WEEK Current day of the week 01 CURRENT-DATE.
 05 CD-DAY-OF-WEEK PIC 9(1).
 88 MONDAY VALUE 1.
 88 TUESDAY VALUE 2.
 88 WEDNESDAY VALUE 3.
 88 THURSDAY VALUE 4.
 88 FRIDAY VALUE 5.
 88 SATURDAY VALUE 6.
 88 SUNDAY VALUE 7.

TIME Current time 01 CURRENT-TIME.
 05 CT-HOURS PIC 9(2).
 05 CT-MINUTES PIC 9(2).
 05 CT-SECONDS PIC 9(2).
 06 CT-HUNDREDTHS-OF-SECS PIC 9(2).

Figure 6-23 - ACCEPT Options for DATE/TIME Retrieval

6.4.6. ACCEPT Format 6 - Retrieve Screen Size Data

Figure 6-24 - ACCEPT (Retrieve Screen Size Data) Syntax

This format of the ACCEPT verb is used to retrieve the
displayable size (in character positions) of the console
window in which the program is executing.

ACCEPT identifier

[END-ACCEPT]

DATE
DATE YYYYMMDD
DAY
DAY YYYYDDD
DAY-OF-WEEK
TIME

FROM

ACCEPT identifier

LINES
COLUMNS

FROM

[END-ACCEPT]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-30

1. In environments such as a Windows console window, where the logical size of the window may far exceed that of
the physical console window, the size returned will be that of the physical console window.

6.4.7. ACCEPT Exception Handling

Figure 6-25 - ACCEPT Exception Handling

The EXCEPTION and NOT EXCEPTION clauses available on
some formats of the ACCEPT verb allow you to specify
code to be executed specifically upon the failure or
success (respectively) of the ACCEPT. Since ACCEPT does
not set any sort of return code or status flag, this is the
only way to detect success and failure.

ON EXCEPTION
imperative-statement-1

NOT ON EXCEPTION
imperative-statement-2

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-31

6.5. ADD

6.5.1. ADD Format 1 – ADD TO

Figure 6-26 - ADD (TO) Syntax

This format of the ADD statement generates
the arithmetic sum of all arguments that
appear before the TO (identifier-1 or literal-1)
and then adds that sum to each of the
identifiers listed after the TO (identifier-2).

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Literal-1 must be a numeric literal.

3. Should a non-integer result be generated and assigned to any of the identifier-2 data items that have the optional
ROUNDED keyword, the result saved into identifier-2 will be rounded according to the standard mathematical
rules for rounding values to the least-significant digit of precision. For example, if the PICTURE is 99V99 and the
result to be saved is 12.152, the saved value will be 12.15 whereas a result of 76.165 would save a value of 76.17.

4. If the optional LENGTH OF clause is used on any literal-1 or identifier-1, the arithmetic value used during the
computation process will be the length – in bytes – of the data item or literal, not the actual value of that data
item or literal.

5. The optional ON SIZE ERROR clause allows you
to specify code that will be executed if the
result to be saved into an identifier-2 item
exceeds the capacity of that item. For
example, if the PICTURE is 99V99 and the result
to be saved is 101.43, a SIZE ERROR condition
would exist. Without an ON SIZE ERROR
clause, OpenCOBOL will store a value of 01.43
into the field. With an ON SIZE ERROR clause,
the value of the identifier-2 item will be
unchanged and imperative-statatement-1 will
be executed. As an illustration, observe the
small demo program and output shown here.
It also illustrates some of the “EXCEPTION”
intrinsic functions (see section 6.1.7).

Figure 6-27 - A Sample Program Using ON SIZE ERROR

6. The NOT ON SIZE ERROR clause, if specified, will execute an imperative statement if the ADD statement did not
encounter a field size overflow condition.

ADD [LENGTH OF]
literal-1
identifier-1

...

TO { identifier-2 [ROUNDED] } ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

1. IDENTIFICATION DIVISION.
2. PROGRAM-ID. corrdemo.
3. DATA DIVISION.
4. WORKING-STORAGE SECTION.
5. 01 Item-1 VALUE 1 PIC 99V99.
6. PROCEDURE DIVISION.
7. 100-Main SECTION.
8. P1.
9. ADD 19 81.43 TO Item-1

10. ON SIZE ERROR
11. DISPLAY 'Item-1:' Item-1
12. DISPLAY 'Error: ' FUNCTION EXCEPTION-STATUS
13. DISPLAY 'Where: ' FUNCTION EXCEPTION-LOCATION
14. DISPLAY ' What: ' FUNCTION EXCEPTION-STATEMENT
15. END-ADD.
16. STOP RUN.

When executed, the program produces the following output:

Item-1:0100
Error: EC-SIZE-OVERFLOW
Where: corrdemo; P1 OF 100-Main; 9
What: ADD

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-32

6.5.2. ADD Format 2 – ADD GIVING

Figure 6-28 - ADD (GIVING) Syntax

This format of the ADD statement generates
the arithmetic sum of all arguments that
appear before the TO (identifier-1 or literal-
1), adds that sum to the contents of
identifier-2 (if any) and then replaces the
contents of the identifiers listed after the
GIVING (identifier-3) with that sum.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Identifier-3 must be a numeric (edited or unedited) data item.

3. Literal-1 must be a numeric literal.

4. The contents of identifier-2 are not altered.

5. The use and behavior of the ROUNDED, LENGTH OF, ON SIZE ERROR and NOT ON SIZE ERROR clauses is as
described in section 6.5.1 for Format 1 of the ADD statement.

6.5.3. ADD Format 3 – ADD CORRESPONDING

Figure 6-29 - ADD (CORRESPONDING) Syntax

This format of the ADD statement
generates code equivalent to
individual ADD TO statements for
corresponding matches of data
items found subordinate to the two
identifiers.

1. The rules for identifying corresponding matches are as discussed in section 6.28.2 – MOVE CORRESPONDING.

2. The use and behavior of the ROUNDED, ON SIZE ERROR and NOT ON SIZE ERROR clauses is as described in section
6.5.1 for Format 1 of the ADD statement.

ADD [LENGTH OF]
literal-1
identifier-1

...

[TO identifier-2]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

GIVING { identifier-3 [ROUNDED] } ...

ADD CORRESPONDING identifier-1 TO identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-33

6.6. ALLOCATE

Figure 6-30 - ALLOCATE Syntax

The ALLOCATE statement is used to dynamically allocate
memory at run-time.

1. If used, expression-1 must be an arithmetic expression with a non-zero positive integer value. To avoid confusing
the 06FEB2009 version of the syntax parser when using the “expression-1 CHARACTERS” option, enclose the
expression in parenthesis so it cannot be mistaken for the “identifier-1” option. This possibility of parser
“confusion” will be corrected in a future OpenCOBOL 1.1 tarball.

2. If used, identifier-1 should be an 01-level item defined with the BASED attribute in WORKING-STORAGE or LOCAL-
STORAGE. It can be an 01 item defined in the LINKAGE SECTION, but using such a data item is not recommended.

3. If used, identifier-2 should be a USAGE POINTER data item.

4. The optional RETURNING clause will return the address of the allocated memory block into the specified USAGE
POINTER item. When this option is used, OpenCOBOL will retain knowledge of the originally-requested size of the
allocated memory block in case a FREE (section 6.19) statement is ever issued against that USAGE POINTER item.

5. When the “identifier-1” option is used, INITIALIZE will initialize the allocated memory block according to the
PICTURE and (if any) VALUE clauses present in the definition of identifier-1 as if a INITIALIZE identifier-1 WITH
FILLER ALL TO VALUE THEN TO DEFAULT were executed once identifier-1 was allocated. See section 6.24 for a
discussion of the INITIALIZE statement.

6. When the “expression-1 CHARACTERS” option is used, INITIALIZE will initialize the allocated memory block to
binary zeros.

7. If the INITIALIZE clause is not used, the initial contents of allocated memory will be left to whatever rules of
memory allocation are in effect for the operating system the program is running under.

8. There are two basic ways in which this statement is used. The simplest is:

ALLOCATE My-01-Item

With this form, a block of storage equal in size to the defined size of My-01-Item (which must have been defined
with the BASED attribute) will be allocated. The address of that block of storage will become the base address of
My-01-Item so that it and its subordinate data items become usable within the program.

A second (and equivalent) approach is:

ALLOCATE LENGTH OF My-01-Item CHARACTERS RETURNING The-Pointer.
SET ADDRESS OF My-01-Item TO The-Pointer.

With this form, the ALLOCATE statements allocates a block of memory exactly the size as would be needed for
My-01-Item; that address is returned into a pointer variable. The SET statement then “bases” the address of My-
01-Item to be the address of the memory block created by the ALLOCATE.

The only real functional difference between these two approaches is that – with the first – the INITIALIZED clause,
if any, will be honored.

9. Referencing a BASED data item either before its storage has been ALLOCATEd or after its storage has been FREEd
will lead to unpredictable results

23
.

23
 The COBOL standards like to use the term “unpredictable results” to indicate any sort of unexpected or undesirable

behavior – the results in this case probably are predictable though – the program will probably abort from
attempting to access an invalid address.

ALLOCATE

[INITIALIZED]

[RETURNING identifier-2]

expression-1 CHARACTERS
identifier-1

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-34

6.7. CALL

Figure 6-31 - CALL Syntax

The CALL
statement is
used to transfer
control to
another
program, called a
subprogram or
subroutine.

1. The expectation is that the subprogram will eventually return control back to the CALLing program, at which point
the CALLing program will resume execution starting with the statement immediately following the CALL.
Subprograms are not required to return to their CALLers, however, and are free to halt program execution if they
wish.

2. The EXCEPTION and OVERFLOW keywords may be used interchangeably.

3. The RETURNING and GIVING keywords may be used interchangeably.

4. The value of literal-1 or identifier-1 is the entry-point of the subprogram you wish to CALL. See sections 7.1.4 and
7.1.5 for more information on how this entry-point is used.

5. When you CALL a subroutine using identifier-1, you are forcing the runtime system to call a dynamically-loadable
module. See section 7.1.4 for information on dynamically-loadable modules.

6. The optional ON EXCEPTION clause specifies code to be executed should the loading of a dynamically-loadable
module fail. By specifying ON EXCEPTION, the default behavior of generating an error message and halting the
program will be overridden – replaced by whatever logic you specify.

7. The optional NOT ON EXCEPTION clause specifies code to be executed should the loading of a dynamically-
loadable module succeed.

8. The USING clause defines a list of arguments that may be passed from the CALLing program to the subprogram.
The manner in which the arguments are passed depends upon the BY clause.

9. If the subprogram being CALLed is an OpenCOBOL program, and if that program had the INITIAL attribute
specified on its PROGRAM-ID clause, all of the subprogram’s DATA DIVISION data will be restored to its initial
state each time the subprogram is executed

24
. This [re]-initialization behavior will always apply to any data

defined in the subprogram’s LOCAL-STORAGE SECTION (if any), regardless of the use (or not) of INITIAL.

24
 This is regardless of which entry-point within the subprogram is CALLed

CALL
identifier-1
literal-1

USING BY
REFERENCE
CONTENT
VALUE

SIZE IS AUTO
SIZE IS DEFAULT
UNSIGNED SIZE IS integer

identifier-2
literal-2

OMITTED

...

EXCEPTION
OVERFLOW

ON imperative-statement-1

RETURNING
GIVING

Identifier-3

[END-CALL]

EXCEPTION
OVERFLOW

NOT ON imperative-statement-2

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-35

10. BY REFERENCE (the default)
passes the address of the
argument to the
subprogram and will allow
the subprogram to change
that arguments value. This
can be dangerous when
passing a literal value as an
argument.

11. BY CONTENT passes the
address of a copy of the
argument to the
subprogram. If the
subprogram changes the
value of such an argument,
the original version of it
back in the CALLing program
remains unchanged.
Clearly, as Figure 6-32
shows, this is the safest way
to pass literal values to a
subprogram.

Figure 6-32 - CALL BY REFERENCE Can Sometimes have Unwanted Effects!

12. BY VALUE passes the address of the argument
as the argument. Check out the coding
example in Figure 6-33. Why would you want
this? The answer is simple – if the subprogram
is written in OpenCOBOL, you probably
wouldn’t! This feature exists to provide
compatibility with C, C++ and other languages.

13. The RETURNING clause allows you to specify a
data item into which the subroutine should
return a value. If you use this clause on the
CALL, the subroutine should include a
RETURNING clause on its PROCEDURE
DIVISION header. Of course, a subroutine may
pass a value back in ANY argument passed BY
REFERENCE.

14. For additional information, see sections 6.8
(CANCEL), 6.16 (ENTRY), 6.18 (EXIT) and 6.21
(GOBACK).

Figure 6-33 - CALL BY VALUE

IDENTIFICATION DIVISION.
PROGRAM-ID. testbed.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
000-Main.

DISPLAY "MAIN (Before CALL): lit=" "lit".
CALL "testsub" USING BY REFERENCE "lit".
DISPLAY "MAIN (After CALL) : lit=" "lit".
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. testsub.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 Arg1 PIC X(3).
PROCEDURE DIVISION USING Arg1.
000-Main.

MOVE 'XXX' TO Arg1.
EXIT PROGRAM.

END PROGRAM testsub.
END PROGRAM testbed.

This program and subprogram…

Produce this
output…

Since the literal
was passed BY
REFERENCE, it
was actually

changed!

MAIN (Before CALL): lit=lit
MAIN (After CALL) : lit=XXX

IDENTIFICATION DIVISION.
PROGRAM-ID. testbed.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Item USAGE BINARY-LONG VALUE 256.
PROCEDURE DIVISION.
000-Main.

CALL "testsub1"
USING BY CONTENT "lit",

BY VALUE Item.
STOP RUN.

END PROGRAM testbed.
IDENTIFICATION DIVISION.
PROGRAM-ID. testsub1.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 The-Pointer USAGE POINTER.
LINKAGE SECTION.
01 Arg1 PIC X(3).
01 Arg2 PIC X(4).
PROCEDURE DIVISION USING Arg1, Arg2.
000-Main.

SET The-Pointer TO ADDRESS OF Arg2.
DISPLAY "Arg1=" Arg1.
DISPLAY " The-Pointer=" The-Pointer.
EXIT PROGRAM.

END PROGRAM testsub1.

This program and subprogram…

Produce this
output…

Arg1=lit
The-Pointer=0x00000100

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-36

6.8. CANCEL

Figure 6-34 - CANCEL Syntax

The CANCEL statement unloads the dynamically-loadable
module containing the entry-point specified as literal-1 or
identifier-1 from memory.

1. If the dynamically-loadable module unloaded by the CANCEL is subsequently re-executed, all DATA DIVISION
storage for that dynamically-loadable module will once again be in its initial state.

CANCEL
identifier-1
literal-1

...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-37

6.9. CLOSE

Figure 6-35 - CLOSE Syntax

The CLOSE statement terminates
the programs access to the
specified file(s) or to the currently
mounted reel/unit of the file(s).

1. The CLOSE statement may only be executed against files that have been successfully OPENed.

2. The REEL, UNIT and NO REWIND clauses are available only for ORGANIZATION SEQUENTIAL (either LINE or
RECORD BINARY) SEQUENTIAL files. The words REEL and UNIT may be used interchangeably, and reflect a file that
is stored on or will be written to multiple removable tapes/disks. Not all systems support such devices, and
OpenCOBOL features to manipulate such multiple-unit files may not be functional on your system.

3. The REEL and UNIT phrases are intended for use with files which have had MULTIPLE REEL or MULTIPLE UNIT
specified in their SELECT clause. If the run-time system does not recognize multi-unit files, the CLOSE REEL and
CLOSE UNIT statements will perform no function.

4. Once a file has been closed, it cannot be accessed again until it has been successfully re-OPENed.

5. A successful CLOSE without REEL or UNIT executed against a file that was OPENed in either OUTPUT or EXTEND
mode will write any remaining unwritten record buffers to the file; regardless of OPEN mode, any record locks
held for closed files will be released as well. A closed file will then be no longer available for subsequent READ,
WRITE, REWRITE, START or DELETE statements until it is once again OPENed.

6. A CLOSE WITH LOCK option will prevent your program from re-opening the file again in the same program
execution.

7. A successful CLOSE with REEL or UNIT will write any remaining unwritten record buffers to the closed files and will
release any record locks held for those files as well. The currently mounted reel/unit of the file will be
dismounted and the next reel/unit requested. The file’s status remains OPEN.

CLOSE file-name-1

REEL
UNIT FOR REMOVAL

WITH LOCK
WITH NO REWIND

...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-38

6.10. COMMIT

Figure 6-36 - COMMIT Syntax

The COMMIT statement performs an UNLOCK against
every currently-OPEN file.

1. See the UNLOCK statement (section 6.48) for additional details.

COMMIT

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-39

6.11. COMPUTE

Figure 6-37 - COMPUTE Syntax

The COMPUTE statement
provides a means of easily
performing complex
arithmetic operations with a
single statement, instead of
using cumbersome and
possibly confusing sequences
of ADD, SUBTRACT,
MULTIPLY and DIVIDE
statements.

1. The word EQUAL and the equals-sign (=) may be used interchangeably.

2. The ON SIZE ERROR, NOT ON SIZE ERROR and ROUNDED clauses are coded and operate the same as the clauses of
the same name available to the ADD statement (see section 6.5.1).

COMPUTE { identifier-1 [ROUNDED] } ... arithmetic-expression

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

EQUAL
=

[END-COMPUTE]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-40

6.12. CONTINUE

Figure 6-38 - CONTINUE Syntax

The CONTINUE statement is a no-operation statement,
performing no action whatsoever.

1. The CONTINUE statement is often used with IF statements (section 6.23) as a place-holder for conditionally-
executed code that is either not yet needed or not yet designed. The following two sentences are equivalent.
One uses CONTINUE statements to mark places where code may need to be inserted in the future.

“Minimalist” Coding
(Specifying only what is necessary)

Coding With CONTINUE
(Documenting where code might be needed someday)

IF A = 1
 IF B = 1
 DISPLAY „A=1 & B=1‟ END-DISPLAY
 END-IF
ELSE
 IF A = 2
 IF B = 2
 DISPLAY „A=2 & B=2‟ END-DISPLAY
 END-IF
 END-IF
END-IF

IF A = 1
 IF B = 1
 DISPLAY „A=1 & B=1‟ END-DISPLAY
 ELSE
 CONTINUE
 END-IF
ELSE
 IF A = 2
 IF B = 2
 DISPLAY „A=2 & B=2‟ END-DISPLAY
 ELSE
 CONTINUE
 END-IF
 ELSE
 CONTINUE
 END-IF
END-IF

Coding such as this is generally a matter of personal preference or site coding standards. There is no difference in
the object code generated by the two, so there isn’t a run-time efficiency issue (just one of “coding efficiency”).

2. Another IF-statement usage for CONTINUE is to avoid the use of NOT in the conditional expression coded on the
IF statement. This too is a personal and/or site standards issue. Here’s an example:

Without CONTINUE With CONTINUE

IF Action-Flag NOT = „I‟ AND „U‟
 DISPLAY „Invalid Action-Flag‟
 EXIT PARAGRAPH
END-IF

IF Action-Flag = „I‟ OR „U‟
 CONTINUE
ELSE
 DISPLAY „Invalid Action-Flag‟
 EXIT PARAGRAPH
END-IF

Because of the way COBOL (OpenCOBOL included) handles the abbreviation of conditional expressions, the
conditional expression in the left-hand box is actually a short-hand version of the (not-so-intuitive):

IF Action-Flag NOT = „I‟ AND Action-Flag NOT = „U‟

Many programmers would have coded the “IF” (incorrectly) as “IF Action-Flag NOT = „I‟ OR „U‟” – this
is sure to cause run-time problems.

This causes many programmers to consider the code in the right-hand box to be more readable, even though it is
a little longer.

CONTINUE

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-41

6.13. DELETE

Figure 6-39 - DELETE Syntax

The DELETE statement logically deletes a record from
an ORGANIZATION RELATIVE or ORGANIZATION
INDEXED file.

1. The INVALID KEY and NOT INVALID KEY clauses cannot be specified for a file who’s ACCESS MODE IS SEQUENTIAL.

2. The INVALID KEY clause provides the ability to react to a DELETE failure, while the NOT INVALID KEY clause gives
the program the capability of specifying actions to be taken if the DELETE succeeds.

3. The ORGANIZATION of file-name must be RELATIVE or INDEXED.

4. For RELATIVE or INDEXED files in the SEQUENTIAL access mode, the last input-output statement executed for file-
name prior to the execution of the DELETE statement must have been a successfully executed READ statement.
That READ will therefore identify the record to be deleted.

5. If file-name is a RELATIVE file whose ACCESS MODE is either RANDOM or DYNAMIC, the record to be deleted is
the one whose relative record number is currently the value of the field specified as the files RELATIVE KEY.

6. If file-name is an INDEXED file whose ACCESS MODE is RANDOM or DYNAMIC, the record to be deleted is the one
whose primary key is currently the value of the field specified as the RECORD KEY of the file.

7. An INVALID KEY condition will exist, and can be dealt with via the INVALID KEY clause, if the record specified to be
deleted by the RELATIVE KEY or RECORD KEY value does not exist in an access mode RANDOM or DYNAMIC file.
This is a condition that cannot exist for ACCESS MODE SEQUENTIAL files because of rule #4. DELETE failures on
ACCESS MODE SEQUENTIAL files can only be “handled” via DECLARATIVES.

DELETE file-name RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-42

6.14. DISPLAY

6.14.1. DISPLAY Format 1 – Upon Console

Figure 6-40 - DISPLAY (Upon Console) Syntax

This format of the DISPLAY statement displays the
specified identifier contents and/or literal values on the
shell or console window from which the program was
started.

The displayed text will appear starting in column 1 of the
next available line. If all screen lines have previously had
text displayed to them, the screen will scroll upward one
line and the text will appear on the last line.

1. If no UPON clause is specified, UPON CONSOLE will be assumed.

2. The specified mnemonic-name must be CONSOLE, CRT, PRINTER or any user-defined mnemonic name associated
with one of these devices within the SPECIAL-NAMES paragraph (see section 4.1.4). All such mnemonics specify
the same destination – the shell (UNIX) or console (Windows) window from which the program was run.

3. The NO ADVANCING clause, if used, will suppress the normal carriage-return / line-feed sequence that normally is
added to the end of any console display.

6.14.2. DISPLAY Format 2 – Access Command-Line Arguments

Figure 6-41 - DISPLAY (Access Command-line Arguments) Syntax

This form of the DISPLAY
statement may be used to specify
the command-line argument
number to be retrieved by a
subsequent ACCEPT or to specify
a new value for the command-
line arguments themselves.

1. Executing a DISPLAY … UPON COMMAND-LINE will influence subsequent ACCEPT … FROM COMMAND-LINE
statements (which will then return the DISPLAYed value), but will not influence subsequent ACCEPT … FROM
ARGUMENT-VALUE statements – these will continue to return the original program execution parameters.

6.14.3. DISPLAY Format 3 – Access or Set Environment Variables

Figure 6-42 - DISPLAY (Access / Set Environment Variables) Syntax

This form of the DISPLAY
statement can be used to create
or modify environment variables.

1. To create or change an environment variable will require two DISPLAY statements, which must be executed in the
following sequence:

DISPLAY
identifier-1
literal-1

[UPON mnemonic-name]

[END-DISPLAY]

...

[exception-handler]

[WITH NO ADVANCING]

DISPLAY ... UPON
ARGUMENT-NUMBER
COMMAND-LINE

identifier-1
literal-1

[exception-handler]

[END-DISPLAY]

DISPLAY ... UPON
ENVIRONMENT-VALUE
ENVIRONMENT-NAME

identifier-1
literal-1

[exception-handler]

[END-DISPLAY]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-43

DISPLAY
 environment-variable-name UPON ENVIRONMENT-NAME
END-DISPLAY

DISPLAY
 environment-variable-value UPON ENVIRONMENT-VALUE
END-DISPLAY

2. Environment variables created or changed from within OpenCOBOL programs will be available to any sub-shell
processes spawned by that program (i.e. CALL “SYSTEM”) but will not be known to the shell or console window
that started the OpenCOBOL program.

3. Consider using SET ENVIRONMENT (section 6.39.1) in lieu of DISPLAY to set environment variables as it is much
simpler.

6.14.4. DISPLAY Format 4 – Screen Data

Figure 6-43 - DISPLAY (Screen Data) Syntax

This format of the
DISPLAY statement
presents data onto a
formatted screen.

1. If identifier-1 is defined in the SCREEN SECTION, all cursor positioning (AT) and attribute specifications (WITH) are
taken from the SCREEN SECTION definition and anything specified on the DISPLAY will be ignored. Use the AT and
WITH options only when DISPLAYing a data item that was not defined in the SCREEN SECTION.

2. The various AT clauses provide a means of positioning the cursor to a specific spot on the screen before the data
is presented to the screen. The literal-3 / identifier-4 value must be a four-digit value with the 1

st
 two digits

indicating the line where the cursor should be positioned and the last two digits being the column.

3. See section 6.4.4 (ACCEPT ACCEPT Format 4 – Retrieve Screen Data) for a description of the SCROLL option.

4. The remaining “WITH” options were described in section 5.6.

DISPLAY

AT
COLUMN
POSITION NUMBER

integer-3
identifier-4

AT LINE NUMBER
integer-1
identifier-2

COLUMN
POSITION NUMBER

integer-2
identifier-3

AT
integer-4
identifier-5

FOREGROUND-COLOR IS
integer-5
identifier-6

BACKGROUND-COLOR IS
integer-6
identifier-7

WITH

[exception-handler]

[END-DISPLAY]

...

BELL | BEEP
REVERSE-VIDEO
UNDERLINE
OVERLINE
HIGHLIGHT
LOWLIGHT
BLINK

SCROLL
UP
DOWN BY

integer-6
identifier-7

LINES
LINE

identifier-1
literal-1

...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-44

6.14.5. DISPLAY Exception Handling

Figure 6-44 - Exception Handling (DISPLAY) Syntax

The EXCEPTION and NOT EXCEPTION clauses available on
all formats of the DISPLAY verb allow you to specify code
to be executed specifically upon the failure or success
(respectively) of the DISPLAY. Since DISPLAY does not set
any sort of return code or status flag, this is the only way
to detect success and failure.

ON EXCEPTION
imperative-statement-1

NOT ON EXCEPTION
imperative-statement-2

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-45

6.15. DIVIDE

6.15.1. DIVIDE Format 1 – DIVIDE INTO

Figure 6-45 - DIVIDE INTO Syntax

This format of DIVIDE will divide a
specified value into one or more
data items, replacing each of those
data items with the result of its old
value divided by the identifier-1 /
literal-1 value. Any remainder
calculated as a result of the division
is discarded.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Literal-1 must be a numeric literal.

3. The ON SIZE ERROR, NOT ON SIZE ERROR and ROUNDED clauses are coded and operate the same as the clauses of
the same name available to the ADD statement (see section 6.5).

4. If the identifier-1 / literal-1 value is zero, a SIZE ERROR condition will result. A SIZE ERROR will also occur if the
result of the division requires more digits of precision to the left of a decimal-point than are available in any of the
receiving fields.

6.15.2. DIVIDE Format 2 – DIVIDE INTO GIVING

Figure 6-46 - DIVIDE INTO GIVING Syntax

This format of DIVIDE will divide
a specified value (identifier-1 /
literal-1) into another value
(identifier-2 / literal-2) and will
then replace the contents of one
or more receiving data items
(identifier-3 …) with the results of
that division. Any remainder
calculated as a result of the
division is discarded.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Identifier-3 must be a numeric (edited or unedited) data item.

3. Literal-1 and literal-2 must be numeric literals.

4. The ON SIZE ERROR, NOT ON SIZE ERROR and ROUNDED clauses are coded and operate the same as the clauses of
the same name available to the ADD statement (see section 6.5).

5. If the identifier-1 / literal-1 value is zero, a SIZE ERROR condition will result. A SIZE ERROR will also occur if the
result of the division requires more digits of precision to the left of a decimal-point than are available in any of the
receiving fields.

DIVIDE
identifier-1
literal-1

INTO { identifier-2 [ROUNDED] } ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

[END-DIVIDE]

DIVIDE
identifier-1
literal-1

INTO
identifier-2
literal-2

GIVING { identifier-3 [ROUNDED] } ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-46

6.15.3. DIVIDE Format 3 – DIVIDE BY GIVING

Figure 6-47 - DIVIDE BY GIVING Syntax

This format of DIVIDE will divide a
specified value (identifier-1 /
literal-1) by another value
(identifier-2 / literal-2) and will
then replace the contents of one
or more receiving data items
(identifier-3 …) with the results of
that division. Any remainder
calculated as a result of the
division is discarded.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Identifier-3 must be a numeric (edited or unedited) data item.

3. Literal-1 and literal-2 must be numeric literals.

4. The ON SIZE ERROR, NOT ON SIZE ERROR and ROUNDED clauses are coded and operate the same as the clauses of
the same name available to the ADD statement (see section 6.5).

5. If the identifier-2 / literal-2 value is zero, a SIZE ERROR condition will result. A SIZE ERROR will also occur if the
result of the division requires more digits of precision to the left of a decimal-point than are available in any of the
receiving fields.

6.15.4. DIVIDE Format 4 – DIVIDE INTO REMAINDER

Figure 6-48 - DIVIDE INTO REMAINDER Syntax

This format of DIVIDE will divide a
specified value (identifier-1 / literal-
1) into another value (identifier-2 /
literal-2) and will then replace the
contents of a single data item
(identifier-3) with the results of that
division. Any remainder calculated
as a result of the division is saved in
identifier-4.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Identifier-3 and identifier-4 must be numeric (edited or unedited) data items.

3. Literal-1 and literal-2 must be numeric literals.

4. The ON SIZE ERROR, NOT ON SIZE ERROR and ROUNDED clauses are coded and operate the same as the clauses of
the same name available to the ADD statement (see section 6.5).

5. If the identifier-1 / literal-1 value is zero, a SIZE ERROR condition will result. A SIZE ERROR will also occur if the
result of the division requires more digits of precision to the left of a decimal-point than are available in any of the
receiving fields.

[END-DIVIDE]

DIVIDE
identifier-1
literal-1

BY
identifier-2
literal-2 GIVING { identifier-3 [ROUNDED] } ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

DIVIDE
identifier-1
literal-1

INTO
identifier-2
literal-2

GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-47

6.15.5. DIVIDE Format 5 – DIVIDE BY REMAINDER

Figure 6-49 - DIVIDE BY REMAINDER Syntax

This format of DIVIDE will divide a
specified value (identifier-1 / literal-1)
by another value (identifier-2 / literal-
2) and will then replace the contents
of a single receiving data item
(identifier-3) with the results of that
division. Any remainder calculated as
a result of the division is saved in
identifier-4.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Identifier-3 and identifier-4 must be umeric (edited or unedited) data items.

3. Literal-1 and literal-2 must be numeric literals.

4. The ON SIZE ERROR, NOT ON SIZE ERROR and ROUNDED clauses are coded and operate the same as the clauses of
the same name available to the ADD statement (see section 6.5).

5. If the identifier-2 / literal-2 value is zero, a SIZE ERROR condition will result. A SIZE ERROR will also occur if the
result of the division requires more digits of precision to the left of a decimal-point than are available in any of the
receiving fields.

[END-DIVIDE]

DIVIDE
identifier-1
literal-1

BY
identifier-2
literal-2

GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-48

6.16. ENTRY

Figure 6-50 - ENTRY Syntax

The ENTRY statement is used to
define an alternate entry-point
into a subroutine, along with
the arguments that subroutine
will be expecting.

1. You may not use an ENTRY statement in a nested subprogram (see section 2.1).

2. The USING clause matches up against the USING clause of any CALL statements that will be invoking the
subroutine.

3. The literal-1 value will specify the entry-point name of the subroutine. It must be specified exactly on CALL
statements (with regard to the use of upper- and lower-case letters) as it is specified on the ENTRY statement.

ENTRY literal-1

USING

BY

REFERENCE
CONTENT
VALUE

SIZE IS AUTO
SIZE IS DEFAULT
UNSIGNED SIZE IS integer

identifier-1

...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-49

6.17. EVALUATE

Figure 6-51 - EVALUATE Syntax

The EVALUATE
statement provides
a means of defining
processing that
should take place
under a variety of
related circum-
stances

1. The reserved words THRU and THROUGH may be used interchangeably.

2. When using THROUGH, the values connected by a THROUGH clause (arith-expr-n, identifier-n and/or literal-n)
must be the same class. For example:

Legal: Not Legal:
(3 + Years-Of-Service) THROUGH 99
“A” THRU “Z”
X’00’ THRU X’1F’
15.7 THROUGH 19.4

0 THRU “A”
Last-Name THRU Zip-Code (Assuming Last-Name is
PIC X and Zip-Code is PIC 9)

3. The values specified after the EVALUATE verb but before the first WHEN clause are known as selection subjects
while the values specified on each WHEN clause are known as selection objects.

4. Each WHEN clause must have the same number of selection objects as the EVALUATE verb has selection subjects.

5. Each EVALUATE clause’s selection subject will be tested for equality to each WHEN clauses corresponding
selection object.

6. The first WHEN clause found where all such equality tests described in rule #5 result in TRUE results will be the
one whose imperative statement will be executed.

7. If none of the WHEN clauses have all such equality tests as described in rule #5 resulting in TRUE results then the
imperative statement associated with the WHEN OTHER clause (imperative-statement-2) will be executed. If
there is no WHEN OTHER clause, control will simply fall into the next statement following the EVALUATE
statement.

8. Once a WHEN or WHEN OTHER clause’s imperative statement has been executed, control will fall into the next
statement following the EVALUATE statement.

9. Using a selection object of ANY will cause an automatic match with whatever selection subject the ANY was
matched against.

Here’s a “case study” that will illustrate the usefulness of the EVALUATE statement. A program is being developed to
compute the interest to be paid on accounts based upon their average daily balance [ADB]. The business rules for this
process are as follows:

1. Interest-bearing checking accounts will receive no interest if their ADB is less than $1000. Interest-bearing
checking accounts with an ADB $1000 to $1499.99 will receive 1% of the ADB as interest. Those with an ADB of
$1500 or more will receive 1.5% of the ADB as interest.

[END-EVALUATE]

EVALUATE [ALSO] ...

TRUE
FALSE
expression-1
identifier-1
literal-1

TRUE
FALSE
expression-2
identifier-2
literal-2

...

...

Imperative-statement-1

[WHEN OTHER] imperative-statement-2]

WHEN

ANY
condition-1
TRUE
FALSE
[NOT]

arith-expr-2
identifier-3
literal-3

arith-expr-3
identifier-4
literal-4

THROUGH
THRU

ALSO

ANY
condition-2
TRUE
FALSE
[NOT]

arith-expr-4
identifier-5
literal-5

arith-expr-5
identifier-6
literal-6

THROUGH
THRU

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-50

2. Statement savings accounts will receive 1.5% interest on an ADB up to $10000 and 1.75% for any ADB amounts
over $10000.

3. Platinum savings accounts receive 2% interest on their ADB, regardless of average balance amounts.
4. No other types of accounts receive interest.

Here’s a sample OpenCOBOL program that can be used to test an “EVALUATE” implementation of these business
rules. Output from the program is shown in the inset.

Figure 6-52 - An EVALUATE Demo Program

>>SOURCE FORMAT FREE
IDENTIFICATION DIVISION.
PROGRAM-ID. evaldemo.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Account-Type PIC X(1).

88 Interest-Bearing-Checking VALUE 'c'.
88 Statement-Savings VALUE 's'.
88 Platinum-Savings VALUE 'p'.

01 ADB-Char PIC X(10).
01 Ave-Daily-Balance PIC 9(7)V99.
01 Formatted-Amount PIC Z(6)9.99.
01 Interest-Amount PIC 9(7)V99.
PROCEDURE DIVISION.
000-Main.

PERFORM FOREVER
DISPLAY "Enter Account Type (c,s,p,other): " WITH NO ADVANCING
ACCEPT Account-Type
IF Account-Type = SPACES
STOP RUN

END-IF
DISPLAY "Enter Ave Daily Balance (nnnnnnn.nn): " WITH NO ADVANCING
ACCEPT ADB-Char
MOVE FUNCTION NUMVAL(ADB-Char) TO Ave-Daily-Balance
EVALUATE TRUE ALSO Ave-Daily-Balance
WHEN Interest-Bearing-Checking ALSO 0.00 THRU 999.99
MOVE 0 TO Interest-Amount

WHEN Interest-Bearing-Checking ALSO 1000.00 THRU 1499.99
COMPUTE Interest-Amount ROUNDED = 0.01 * Ave-Daily-Balance

WHEN Interest-Bearing-Checking ALSO ANY
COMPUTE Interest-Amount ROUNDED = 0.015 * Ave-Daily-Balance

WHEN Statement-Savings ALSO 0.00 THRU 10000.00
COMPUTE Interest-Amount ROUNDED = 0.015 * Ave-Daily-Balance

WHEN Statement-Savings ALSO ANY
COMPUTE Interest-Amount ROUNDED = 0.015 * Ave-Daily-Balance

+ 0.175 * (Ave-Daily-Balance - 10000)
WHEN Platinum-Savings ALSO ANY
COMPUTE Interest-Amount ROUNDED = 0.020 * Ave-Daily-Balance

WHEN OTHER
MOVE 0 TO Interest-Amount

END-EVALUATE
MOVE Interest-Amount TO Formatted-Amount
DISPLAY "Accrued Interest = " Formatted-Amount

END-PERFORM
.

Enter Account Type (c,s,p,other): c
Enter Ave Daily Balance (nnnnnnn.nn): 250
Accrued Interest = 0.00
Enter Account Type (c,s,p,other): c
Enter Ave Daily Balance (nnnnnnn.nn): 1250
Accrued Interest = 12.50
Enter Account Type (c,s,p,other): c
Enter Ave Daily Balance (nnnnnnn.nn): 1899.99
Accrued Interest = 28.50
Enter Account Type (c,s,p,other): s
Enter Ave Daily Balance (nnnnnnn.nn): 22000.00
Accrued Interest = 2430.00
Enter Account Type (c,s,p,other): p
Enter Ave Daily Balance (nnnnnnn.nn): 1.98
Accrued Interest = 0.04

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-51

6.18. EXIT

Figure 6-53 - EXIT Syntax

The EXIT statement is a multi-purpose statement; it may
provide a common end point for a series of procedures,
exit an inline PERFORM, a paragraph or a section or it
may mark the logical end of a called program.

1. When used without any of the optional clauses, the
“EXIT” statement simply provides a common “GO
TO” end point for a series of procedures. Figure 6-54
illustrates the use of the EXIT statement.

2. When an EXIT statement is used, it must be the only
statement in the paragraph in which it occurs.

3. The EXIT statement is a no-operation statement
(much like the CONTINUE statement).

Figure 6-54 - Using the EXIT Statement

4. An EXIT PARAGRAPH statement transfers control to a point immediately past the end of the current paragraph,
while an EXIT SECTION statement causes control to pass to point immediately past the last paragraph in the
current section.

If the EXIT PARAGRAPH or EXIT SECTION resides in a
paragraph within the scope of a procedural
PERFORM (section 6.32.1), control will be returned
back to the PERFORM for evaluation of any TIMES,
VARYING and/or UNTIL clauses. It the EXIT
PARAGRAPH or EXIST SECTION resides outside the
scope of a procedural PERFORM, control simply
transfers to the first executable statement in the
next paragraph (EXIT PARAGRAPH) or section (EXIT
SECTION).

Figure 6-55 shows how the example shown in Figure
6-54 could have been coded without a GO TO by
utilizing an EXIT PARAGRAPH statement.

Figure 6-55 - Using EXIT PARAGRAPH

5. The EXIT PERFORM and EXIT PERFORM CYCLE statements are intended to be used in conjunction with an inline
PERFORM statement (section 6.32.2).

6. An EXIT PERFORM CYCLE will terminate the current iteration of the inline PERFORM, giving control to any TIMES,
VARYING and/or UNTIL clauses for them to determine if another cycle needs to be performed.

7. An EXIT PERFORM will terminate the inline PERFORM
outright, transferring control to the first statement
following the PERFORM. Figure 6-56 shows the final
modification to the Figure 6-54 example; by using
Inline PERFORM and EXIT PERFORM statements we
can really streamline processing.

Figure 6-56 - Using the EXIT PERFORM Statement

EXIT

PROGRAM
PERFORM [CYCLE]
SECTION
PARAGRAPH

01 Switches.
05 Input-File-Switch PIC X(1).

88 EOF-On-Input-File VALUE „Y‟ FALSE „N‟.
.
.
.

SET EOF-On-Input-File TO FALSE.
PERFORM 100-Process-A-Transaction
UNTIL EOF-On-Input-File.

.

.

.
100-Process-A-Transaction.

READ Input-File AT END
SET EOF-On-Input-File TO TRUE
EXIT PARAGRAPH.

IF Input-Rec of Input-File = SPACES
EXIT PARAGRAPH. *> IGNORE BLANK RECORDS!

process the record just read

01 Switches.
05 Input-File-Switch PIC X(1).

88 EOF-On-Input-File VALUE „Y‟ FALSE „N‟.
.
.
.

SET EOF-On-Input-File TO FALSE.
PERFORM 100-Process-A-Transaction
UNTIL EOF-On-Input-File.

.

.

.
100-Process-A-Transaction.

READ Input-File AT END
SET EOF-On-Input-File TO TRUE
EXIT PARAGRAPH.

IF Input-Rec of Input-File = SPACES
EXIT PARAGRAPH. *> IGNORE BLANK RECORDS!

process the record just read

PERFORM FOREVER
READ Input-File AT END

EXIT PERFORM
END-READ
IF Input-Rec of Input-File = SPACES

EXIT PERFORM CYCLE *> IGNORE BLANK RECORDS!
END-IF
process the record just read

END PERFORM

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-52

8. Finally, the EXIT PROGRAM statement terminates the execution of subroutine (i.e. a program that has been
CALLed by another), returning to the CALLing program at the statement following the CALL. If executed by a main
program, the EXIT PROGRAM statement is non-functional. The COBOL2002 standard has made a common
extension to the COBOL language - the GOBACK statement (section 6.21) - standard; the GOBACK statement
should be strongly considered as the preferred alternative to EXIT PROGRAM for new programs.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-53

6.19. FREE

Figure 6-57 - FREE Syntax

The FREE statement releases memory previously
allocated to the program by the ALLOCATE statement
(section 6.6).

1. Identifier-1 must be a USAGE POINTER data item or an 01-level data item with the BASED attribute.

2. If identifier-1 is a USAGE POINTER data item and it contains a valid address, the FREE statement will release the
memory block the pointer references. In addition, any BASED data items that the pointer was used to provide an
address for will become un-based and therefore un-usable. If identifier-1 did not contain a valid address, no
action will be taken.

3. If identifier-1 is a BASED data item and that data item is currently based (meaning it currently has memory
allocated for it), its memory is released and identifier-1 will become un-based and therefore un-usable. If
identifier-1 was not based, no action will be taken.

4. The ADDRESS OF clause adds no special function to the FREE statement.

FREE { [ADDRESS OF] identifier-1 } ...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-54

6.20. GENERATE

Figure 6-58 - GENERATE Syntax

Although syntactically recognized by the OpenCOBOL
compiler, the GENERATE statement is non-functional
because the RWCS (COBOL Report Writer) is not currently
supported by OpenCOBOL.

identifier-1
report-name-1GENERATE

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-55

6.21. GOBACK

Figure 6-59 - GOBACK Syntax

The GOBACK statement is used to logically terminate an executing program.

1. If executed within a subroutine (i.e. a CALLed program), GOBACK will transfer control back to the CALLing
program, specifically to the statement following the CALL.

2. If executed within a main program, GOBACK will act as a STOP RUN statement (section 6.42).

GOBACK

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-56

6.22. GO TO

6.22.1. GO TO Format 1 – Simple GO TO

Figure 6-60 - Simple GOTO Syntax

This form of the GO TO statement unconditionally transfers control in a program
to the specified procedure-name.

1. If the specified procedure name is a SECTION, control will transfer to the first paragraph in that section.

6.22.2. GO TO Format 2 – GO TO DEPENDING ON

Figure 6-61 - GOTO DEPENDING ON Syntax

This form of the GO TO statement will transfer control to any one of a
number of specified procedure names depending on the numeric value of
the identifier specified on the statement.

1. The PICTURE and/or USAGE of the specified identifier-1 must be such as to define it as a numeric, unedited,
preferably unsigned integer data item.

2. If the value of identifier-1 has the value 1, control will be transferred to the 1
st

 specified procedure name. If the
value is 2, control will transfer to the 2

nd
 procedure name, etc.

3. If the value of identifier-1 is less than 1 or exceeds the total number of procedure names specified on the GO TO
statement, control will simply fall thru into the next statement following the GO TO.

4. The following chart shows how GO TO DEPENDING ON may be used in a real application situation, and compares
it against the two alternatives – IF and EVALUATE.

Figure 6-62 - GOTO DEPENDING ON vs IF vs EVALUATE

GOTO DEPENDING ON IF EVALUATE

 GO TO PROCESS-ACCT-TYPE-1
 PROCESS-ACCT-TYPE-2
 PROCESS-ACCT-TYPE-3
 DEPENDING ON ACCT-TYPE.
 Code to handle invalid account type
 GO TO DONE-WITH-ACCT-TYPE.
PROCESS-ACCT-TYPE-1.
 Code to handle account type 1
 GO TO DONE-WITH-ACCT-TYPE.
PROCESS-ACCT-TYPE-2.
 Code to handle account type 2
 GO TO DONE-WITH-ACCT-TYPE.
PROCESS-ACCT-TYPE-3.
 Code to handle account type 3
DONE-WITH-ACCT-TYPE.

 IF ACCT-TYPE = 1
 Code to handle account type 1
 ELSE IF ACCT-TYPE = 2
 Code to handle account type 2
 ELSE IF ACCT-TYPE = 3
 Code to handle account type 3
 ELSE
 Code to handle invalid account type
 END-IF.

 EVALUATE ACCT-TYPE
 WHEN 1
 Code to handle account type 1
 WHEN 2
 Code to handle account type 2
 WHEN 3
 Code to handle account type 3
 WHEN OTHER
 Code to handle invalid account type
 END-EVALUATE.

There is no question that “modern programming philosophy” would prefer the EVALUATE approach. An
interesting note is that the code generated by the IF and EVALUATE approaches is virtually identical. Sometimes,
NEW, while it might be considered BETTER, doesn’t always mean DIFFERENT!

GO TO procedure-name

GO TO procedure-name-1 ...
DEPENDING ON identifier-1

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-57

6.23. IF

Figure 6-63 - IF Syntax

The IF statement is used to conditionally execute a single
imperative statement or to select one of two different
imperative statements based upon the TRUE/FALSE value
of a conditional expression.

1. If conditional-expression evaluates to TRUE, imperative-statement-1 will be executed regardless of whether or not
an ELSE clause is present. Once imperative-statement-1 has been executed, control falls into the first statement
following the END-IF or to the first statement of the next sentence if there is no END-IF clause.

2. If the optional ELSE clause is present and conditional-expression-1 evaluates to FALSE, then (and only then)
imperative-statement-2 will be executed. Once imperative-statement-2 has been executed, control falls into the
first statement following the END-IF or to the first statement of the next sentence if there is no END-IF clause.

3. See section 6.1.5 for a discussion (and examples) of how periods (.) and END-IF statements are both similar to and
different from each other in the way they are capable of ending the scope of an IF statement.

IF conditional-expression THEN

imperative-statement-1

[ELSE imperative-statement-2]

[END-IF]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-58

6.24. INITIALIZE

Figure 6-64 - INITIALIZE Syntax

 The INITIALIZE
statement sets the
elementary
item(s) specified
as identifier-1, or
those elementary
items subordinate
to group items
specified as
identifier-1 to
specific values.

1. The list of data items eligible to be set to new values by this statement is:

 Every elementary item specified as identifier-1 …, PLUS…

 Every elementary item defined subordinate to every group item specified as identifier-1 …, with the following
exceptions:

 USAGE INDEX items are excluded.

 Items with a REDEFINES as part of their definition are excluded; this means that items subordinate to them
are excluded as well. The identifier-1 items themselves may have a REDEFINES and may be subordinate to
an item that has a REDEFINES, however.

This list is referred to as the list of receiving fields.

2. None of the identifier-1 fields may have the OCCUR DEPENDING ON clause (section 5.3) in their definition nor may
any items subordinate to the identifier-1 fields have an OCCURS DEPENDING ON.

3. The optional WITH FILLER clause, if present, will allow FILLER items to be retained in the list of receiving fields
(otherwise they will be excluded).

4. If no TO VALUE or REPLACING clauses are specified, a DEFAULT clause will be assumed.

5. If the optional REPLACING clause is specified, every possible MOVE of the sending field to every possible receiving
field must be legal in order for the INITIALIZE to by syntactically acceptable to the compiler.

6. Initialization for each receiving field takes place by applying the first of the following rules that apply to the field:

 If a TO VALUE clause exists, does the receiving field qualify as one of the data categories listed on the clause?
If it does, the data item will be initialized to it’s VALUE clause value.

 If a REPLACING clause exists, does the receiving field qualify as one of the data categories listed on the
clause? If it does, the receiving field will be initialized to the specified sending field value.

 If a DEFAULT clause exists, initialize the field to a value appropriate to its USAGE (Alphanumeric and Numeric
initialized to SPACES, Pointer and Program-Pointer initialized to NULL, all numeric and numeric-edited
initialized to ZERO).

INITIALIZE identifier-1 … [WITH FILLER]

TO VALUE

ALL
ALPHABETIC
ALPHANUMERIC
NUMERIC
ALPHANUMERIC-EDITED
NUMERIC-EDITED
NATIONAL
NATIONAL-EDITED

ALL
ALPHABETIC
ALPHANUMERIC
NUMERIC
ALPHANUMERIC-EDITED
NUMERIC-EDITED
NATIONAL
NATIONAL-EDITED

THEN REPLACING
literal-1
identifier-2DATA BY [LENGTH OF]

[THEN TO DEFAULT]

...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-59

6.25. INITIATE

Figure 6-65 - INITIATE Syntax

Although syntactically recognized by the OpenCOBOL compiler, the INITIATE
statement is non-functional because the RWCS (COBOL Report Writer) is not
currently supported by OpenCOBOL.

INITIATE report-name-1 ...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-60

6.26. INSPECT

Figure 6-66 - INSPECT Syntax

This statement is used to perform various counting or data-alteration operations against strings.

1. Identifier-1 and literal-1 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data. Identifier-1
may be a group item.

2. The specification of literal-1 prevents the use of either the REPLACING or CONVERTING clauses.

3. To avoid confusion and/or conflicts, the TALLYING, REPLACING and CONVERTING clauses will be executed in the
order they are coded.

Additional rules for INSPECT vary, depending upon the clause(s) specified.

TALLYING clause rules:

The purpose of the TALLYING clause is to count how many occurrences of a string appear within identifier-1 or
literal-1.

1. Identifier-2 must be an unedited numeric item.

2. Identifier-3 and literal-2 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data.
Identifier-3 may be a group item.

3. Identifier-2 will be incremented by 1 each time the target string being searched for is found in identifier-1.
The target string will be:

a. Any single character if the CHARACTERS option is used; this form basically just counts total characters

b. ALL, all LEADING, only the FIRST or all TRAILING occurrences of Identifier-3 or literal-2.

4. Normally the entire literal-1 or identifier-1 string will be scanned. This behavior may be modified, however,
using the optional BEFORE|AFTER clause to specify a starting and/or ending point based upon data found in
the string being scanned.

literal-1
identifier-1INSPECT

literal-7
identifier-8

BEFORE
AFTER

INITIAL

TALLYING identifier-2 FOR literal-2
identifier-3

ALL
LEADING
TRAILING

CHARACTERS

REPLACING literal-3
identifier-4

ALL
LEADING
FIRST
TRAILING

CHARACTERS

literal-4
identifier-5

BY

CONVERTING TO
literal-5
identifier-6

literal-6
identifier-7

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-61

5. Once an occurrence of the target
string is found and TALLYed, the
INSPECT TALLYING process will resume
from the end of the found occurrence.
This prevents the possibility of
counting overlapping occurrences.

The example shows an 8-character
item whose value is “XXXXXXXX” used
as the object of an INSPECT TALLYING
that is looking for “XX” occurrences:

Figure 6-67 - An INSPECT TALLYING Example

Only four (4) “XX” occurrences were found. Character positions 2-3, 4-5 and 6-7 – even though they are “XX”
occurrences – weren’t counted because they overlapped other occurrences.

REPLACING clause rules:

The purpose of the REPLACING clause is to replace occurrences of a substring within a string with a different
substring of the same length. If you need to replace one or more substrings with others of a different length,
consider using the SUBSTITUTE intrinsic function (section 6.1.7).

1. Identifier-4 and literal-3 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data.
Identifier-4 may be a group item.

2. Identifier-5 and literal-4 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data.
Identifier-5 may be a group item.

3. Identifier-4 / literal-3 must be the same length as identifier-5 / literal-4.

4. The substring specified before the “BY” will be referred to as the target string. The substring specified after
the “BY” will be referred to as the replacement string.

5. Target strings are identified as:

a. Any sequence of characters as long as the length of the replacement string if the CHARACTERS option is
used

b. ALL, all LEADING, only the FIRST or all TRAILING occurrences of Identifier-4 or literal-3.

6. Normally the entire identifier-1 string will be scanned. This behavior may be modified, however, using the
optional BEFORE|AFTER clause to specify a starting and/or ending point based upon data found in the string
being scanned.

7. Once an occurrence of the target string is found and replaced, the INSPECT REPLACING process will resume
from the end of the found occurrence. This prevents the possibility of replacing overlapping occurrences.
This is very similar to how TALLYING handled the possibility of overlapping occurrences.

CONVERTING clause rules:

The purpose of the CONVERTING clause is to perform a series of monoalphabetic substitutions against a data item.

1. Identifier-5 and literal-6 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data.
Identifier-5 may be a group item.

2. Identifier-6 and literal-7 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data.
Identifier-6 may be a group item.

3. Identifier-5 / literal-6 must be the same length as identifier-6 / literal-7.

4. The substring specified before the “TO” will be referred to as the target string. The substring specified after
the “TO” will be referred to as the replacement string.

01 Inspect-Item PIC X(8) VALUE “XXXXXXXX”.
01 Double-X-Counter PIC 9(2).

.

.

.
MOVE 0 TO Double-X-Counter
INSPECT Inspect-Item

TALLYING Double-X-Counter FOR ALL “XX“
DISPLAY

“Count=“ Double-X-Counter
END-DISPLAY

Count=04
Generated
Output

X X X X X X X X

1 2 3 4 5 6 7 8

Inspect-Item

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-62

5. The contents of identifier-1 will be scanned – character by character. For each character, if that character
appears in the target string, the corresponding character (by relative position) in the replacement string will
then replace that character in identifier-1.

6. If the length of the replacement string exceeds that of the target string, the excess will be ignored.

7. If the length of the target string exceeds that of the replacement string, the replacement string will be
assumed to be padded to the right with SPACES to make up the difference.

8. This INSPECT statement clause was introduced in the 1985 standard of COBOL, making the TRANSFORM verb
(section 6.47) obsolete.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-63

6.27. MERGE

Figure 6-68 - MERGE Syntax

 The MERGE statement
combines two or more
identically sequenced files on a
set of specified keys.

1. The sort-file named on the MERGE statement must be defined using a sort description (SD) in the FILE SECTION of
the DATA DIVISION. See section 5.2. This file is referred to in the remainder of this discussion as the “merge file”.

2. File-name-1, file-name-2 and file-name-3 (if specified) must reference ORGANIZATION LINE SEQUENTIAL or
ORGANIZATION RECORD BINARY SEQUENTIAL files. These files must be defined using a file description (FD) in the
FILE SECTION of the DATA DIVISION. See section 5.1. The same file may be used for file-name-1 and file-name-2.

3. The identifier-1 … field(s) must be defined as field(s) within a record of sort-file.

4. The WITH DUPLICATES IN ORDER clause is supported for compatibility purposes, but is non-functional.

5. The record descriptions of file-name-1, file-name-2, file-name-3 (if any) and sort-file are assumed to be identical in
layout and size. While the actual data names used for fields in these files’ records may differ, the structure of
records, PICTURE of fields, size of fields and USAGE of data should match field-by-field across all files.

A common programming technique when using the MERGE statement is to define the records of all files involved
on the MERGE as simple elementary items of the form “01 record-name PIC X(n).” where n is the record size. The
only file where records are actually described in detail would then be the sort-file.

6. The following rules apply to the files named on the USING clause:

a. None of them may be OPEN at the time the MERGE is executed.

b. Each of those files is assumed to be already sorted according to the specifications set forth on the MERGE
statement’s KEY clause.

c. No two of those files may be referenced on a SAME RECORD AREA, SAME SORT AREA or SAME SORT-MERGE
AREA statement

25
.

7. As the MERGE begins execution, the first record in each of the USING files is read.

8. As the MERGE statement executes, the current record from each of the USING files is inspected and compared to
each other according to the rules set forth by the KEY clause. The record that should be “next” in sequence
(according to KEY) will be written to the merge file and the USING file from which that record came will be read so
that its next record is available. As end-of-file conditions are reached on USING files, those files will be excluded
from further MERGE processing – processing continues with the remaining USING files. This process will continue
until all USING files have been completely processed.

25
 See section 4.2.2

MERGE sort-file

ON KEY identifier-1 ...
ASCENDING
DESCENDING

...

[WITH DUPLICATES IN ORDER]

USING file-name-1 file-name-2 ...

OUTPUT PROCEDURE IS procedure-name-1

GIVING file-name-3 ...

THROUGH
THRU

procedure-name-2

[COLLATING SEQUENCE IS alphabet-name-1]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-64

9. Once the merge file has been populated, the merged data will be written to file-name-3 if the GIVING clause was
specified, or will be processed by utilizing an OUTPUT PROCEDURE defined as procedure-name 1 or procedure-
name-1 THRU procedure-name-2.

10. When GIVING is specified, file-name-3 … must not be OPEN at the time the MERGE is executed.

11. When an OUTPUT PROCEDURE is used, merged records are manually read from the merge file – one at a time –
using the RETURN statement (section 6.35).

12. A STOP RUN, EXIT PROGRAM or GOBACK executed within an OUTPUT PROCEDURE will terminate the currently
executing program as well as the MERGE.

13. A GO TO statement that transfers control out of the OUTPUT PROCEDURE will terminate the MERGE but allows
the program to continue executing from the point where the GO TO transferred control to. Once an OUTPUT
PROCEDURE has been aborted using a GO TO it cannot be resumed. You may, however, re-execute the MERGE
statement itself. Any records not yet RETURNed from the merge file will be lost if a MERGE is restarted in this
manner. USING A “GO TO” TO PREMATURELY TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-CANCELLED
MERGE IS NOT CONSIDERED GOOD PROGRAMMING STYLE AND SHOULD BE AVOIDED.

14. An OUTPUT PROCEDURE is terminated either implicitly by a fall-thru of control past the last statement of
procedure-name-2 (or procedure-name-1 if there is no procedure-name-2) or explicitly via an EXIT SECTION / EXIT
PARAGRAPH executed in procedure-name-2 (or procedure-name-1 if there is no procedure-name-2). Once the
OUTPUT PROCEDURE terminates, the output phase – and the MERGE statement itself - is complete.

15. The scope of the OUTPUT PROCEDURE must not allow a file-based SORT (section 6.40.1), MERGE or RELEASE
(section 6.34) statement to be executed.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-65

6.28. MOVE

6.28.1. MOVE Format 1 – Simple MOVE

Figure 6-69 - Simple MOVE Syntax

This statement moves a specific value to one or more
receiving data items.

1. The MOVE statement will replace the contents of one or more receiving data items (identifier-2 …) with a new
value.

2. The exact manner in which the new value is stored in each receiving data item will depend upon the PICTURE and
USAGE of each identifier-2 item.

6.28.2. MOVE Format 2 – MOVE CORRESPONDING

Figure 6-70 - MOVE CORRESPONDING Syntax

This statement moves similarly-named elementary
items from one group item to another.

1. The word CORRESPONDING may be abbreviated as CORR.

2. Both identifier-1 and identifier-2 must be group items.

3. Two data items subordinate to identifier-1 and identifier-2 are said to correspond if they meet the following
conditions:

a. They both have the same name, but that name is not FILLER

b. If they are not immediately subordinate to identifier-1 and identifier-2, then the items they ARE subordinate
to have the same name, but that name is not FILLER; if those items, in turn, are not identifier-1 and identifier-
2, then this rule continues to apply recursively upward through the structure of identifier-1 and identifier-2

c. They are both elementary items (ADD CORR,SUBTRACT CORR) or at least one of them is an elementary item
(MOVE CORR)

d. Neither potential corresponding candidate is a REDEFINES or RENAMES of another data item

e. Neither potential corresponding candidate has an OCCURS clause (they MAY, however, contain subordinate
data items that contain an OCCURS clause)

4. When corresponding matches are established, the effect of a MOVE CORRESPONDING on those matches will be
as if a series of individual MOVEs were done – one for each match.

MOVE
literal-1
identifier-1

TO identifier-2 ...

MOVE CORRESPONDING identifier-1 TO identifier-2 ...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-66

The previous rules may be best understood with an example. Observe the following code:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. corrdemo.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 X.
 05 A VALUE 'A' PIC X(1).
 05 G1.
 10 G2.
 15 B VALUE 'B' PIC X(1).
 05 C.
 10 FILLER VALUE 'C' PIC X(1).
 05 G3.
 10 G4.
 15 D VALUE 'D' PIC X(1).
 05 V1 VALUE 'E' PIC X(1).
 05 E REDEFINES V1 PIC X(1).
 05 F VALUE 'F' PIC X(1).
 05 G VALUE ALL 'G'.
 10 G2 OCCURS 4 TIMES PIC X(1).
 05 H VALUE ALL 'H' PIC X(4).
 01 Y.
 02 A PIC X(1).
 02 G1.
 03 G2.
 04 B PIC X(1).
 02 C PIC X(1).
 02 G3.
 03 G5.
 04 D PIC X(1).
 02 E PIC X(1).
 02 V2 PIC X(1).
 02 G PIC X(4).
 02 H OCCURS 4 TIMES PIC X(1).
 66 F RENAMES V2.
 PROCEDURE DIVISION.
 100-Main.
 MOVE ALL '-' TO Y.
 DISPLAY ' Names: ' 'ABCDEFGGGGHHHH'.
 DISPLAY 'Before: ' Y.
 MOVE CORR X TO Y.
 DISPLAY ' After: ' Y.
 STOP RUN.

The DISPLAY statements produce the output:

 Names: ABCDEFGGGGHHHH

Before: --------------

 After: ABC---GGGG----

 OpenCOBOL had no problem establishing a “corresponding” relationship between the “A”, “B” and “C” data
items within the “X” and “Y” group items. Note that even though “X” uses a level numbering scheme of 01-
05-10-15 while “Y” uses 01-02-03-04, that fact makes no difference to the establishment of corresponding
matches.

 The “G” items were found to match even though G OF X was the parent of a data item that contains an
OCCURS clause

 No match could be made with the “D” items because they violate rule #3b (look carefully at the four group
item names).

 No match could be made with the “E” items because E OF X violates rule #3d (REDEFINES).

 No match could be made with the “F” items because E OF X violates rule #3d (RENAMES).

 No match could be made with the “H” items because H OF Y contains an OCCURS clause, therefore violating
rule #3e.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-67

6.29. MULTIPLY

6.29.1. MULTIPLY Format 1 – MULTIPLY BY

Figure 6-71 - MULTIPLY BY Syntax

This format of the MULTIPLY
statement generates arithmetic
products.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Literal-1 must be a numeric literal.

3. The value of identifier-1 or integer-1 multiplied by each individual identifier-2 will be computed and each of those
products in turn will be moved to the corresponding identifier-2 data item, replacing the old contents.

4. The ON SIZE ERROR, NOT ON SIZE ERROR and ROUNDED clauses are coded and operate the same as the clauses of
the same name available to the ADD statement (see section 6.5).

6.29.2. MULTIPLY Format 2 – MULTIPLY GIVING

Figure 6-72 - MULTIPLY GIVING Syntax

This format of the MULTIPLY statement generates the
arithmetic product of two values and then replaces the
contents of the identifiers listed after the GIVING
(identifier-3 …) with that product.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Identifier-3 must be a numeric (edited or unedited) data item.

3. Literal-1 and literal-2 must be numeric literals.

4. The values of identifier-1 and identifier-2 are not altered.

5. The ON SIZE ERROR, NOT ON SIZE ERROR and ROUNDED clauses are coded and operate the same as the clauses of
the same name available to the ADD statement (see section 6.5).

MULTIPLY BY { identifier-2 [ROUNDED] } ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

literal-1
identifier-1

MULTIPLY BY

GIVING { identifier-3 [ROUNDED] } ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

literal-1
identifier-1

literal-2
identifier-2

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-68

6.30. NEXT SENTENCE

Figure 6-73 - NEXT SENTENCE Syntax

The NEXT SENTENCE statement is a means of “breaking
out” of a series of nested “IF” statements.

1. The NEXT SENTENCE statement is valid only when used within an “IF” statement.

2. As its name implies, this statement causes control to transfer to the next sentence in the program.

3. See section 6.1.5 for a discussion of why the NEXT SENTENCE statement is needed for COBOL programs that are
coded according to pre-1985 standards. You’ll also see why programs coded for 1985 (and beyond) standards
don’t need it.

4. New OpenCOBOL programs should be coded to use the END-IF scope terminator for IF statements, which
invalidates the use of NEXT SENTENCE in favor of the CONTINUE statement (section 6.12).

NEXT SENTENCE

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-69

6.31. OPEN

Figure 6-74 - OPEN Syntax

The OPEN statement makes one or more files
described in your program available for use.

1. Any file defined in an OpenCOBOL program must be successfully OPENed before it may be referenced on a CLOSE
(section 6.9), DELETE (section 6.13), READ (section 6.33), START (section 6.41) or UNLOCK (section 6.48)
statement. Additionally, a file must be successfully OPENed for any of its record data names (or data elements
subordinate to those records) to be referenced on ANY statement.

2. Any attempt to OPEN a file that is already OPEN will fail with a file status of 41 (“File Already OPEN”). This is a
fatal error that will terminate the program.

3. Any OPEN failure (including “File Already OPEN”) may be trapped using DECLARATIVES (section 6.3) or an error
procedure (section 7.3.2), but when those trap routines exit the OpenCOBOL runtime system will terminate the
program. Ultimately, you cannot recover from an OPEN failure.

4. The INPUT, OUTPUT, I-O and EXTEND options inform OpenCOBOL of the manner in which you wish to use the file,
as follows:

OPEN
Mode

Effect

INPUT You may only read the existing contents of the file - only the CLOSE, READ, START and UNLOCK
statements will be allowed.

OUTPUT You may only write new content (which will completely replace any previous file contents) to the file
- only the CLOSE, UNLOCK and WRITE statements will be allowed.

I-O You may perform any operation you wish against the file - all file I/O statements will be allowed.

EXTEND You may only write new content (which will be appended after any previously existing file content)
to the file - only the CLOSE, UNLOCK and WRITE statements will be allowed.

5. The SHARING clause informs OpenCOBOL how you are willing to co-exist with any other OpenCOBOL programs
that may attempt to OPEN the same file after your program does. Sharing options were discussed in section
6.1.9.1.

6. The WITH NO REWIND and WITH LOCK clauses are non-functional.

Devices that would be capable of supporting a WITH NO REWIND clause (tape drives) are pretty rare in the
environments in which OpenCOBOL is intended to operate. No compiler or runtime message is issued if this
option is used (it just won’t do anything).

The WITH LOCK option is treated a little differently – it’s officially “not implemented”, and will generate a
compilation warning if it is used.

OPEN

INPUT
OUTPUT
I-O
EXTEND

SHARING WITH

ALL OTHER
NO OTHER
READ ONLY

file-name-1 ...

WITH
NO REWIND
LOCK

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-70

6.32. PERFORM

6.32.1. PERFORM Format 1 – Procedural

Figure 6-75 - Procedural PERFORM Syntax

This format of the
PERFORM statement is
used to transfer control to
one or more procedures
and to return control when
execution of the specified
procedure(s) is complete.
This invocation of the
procedure(s) can be done
a single time, multiple
times, repeatedly until a
condition becomes TRUE
or forever (with –
presumably – some way of
breaking out of the control
of the PERFORM within the
procedure(s).

1. The words THROUGH and THRU may be used interchangeably.

2. Both procedure-name-1 and procedure-name-2 must be PROCEDURE DIVISION sections or paragraphs defined in
the same program unit as the PERFORM statement.

3. If procedure-name-2 option is specified, it must follow procedure-name-1 in the program’s source code.

4. The scope of the PERFORM is defined as being the statements within procedure-name-1, the statements within
procedure-name-2 and all statements in all procedures defined between them.

5. Without the FOREVER, TIMES or UNTIL clauses, the code within the scope of the PERFORM will be executed
(once) and control will return to the statement following the PERFORM.

6. The FOREVER option will repeatedly execute the code within the scope of the PERFORM with no conditions
defined on the PERFORM statement itself for termination of the repetition. It will be up to the programmer to
include code within the scope of the PERFORM that will either halt the program (STOP RUN) or break out of the
PERFORM (EXIT PERFORM).

7. The TIMES option will repeat the execution of the instructions within the scope of the PERFORM a fixed number
of times. Once that number of repetitions has concluded, control will fall into the next statement following the
PERFORM.

8. The UNTIL clause will enable the statements within the scope of the PERFORM to be executed repeatedly until
such time as the value of conditional-expression-1 becomes TRUE.

9. The optional WITH TEST clause will control whether the UNTIL test is performed BEFORE the scope of the
PERFORM is executed or AFTER. The default, if no WITH TEST clause is specified, is BEFORE.

10. The optional VARYING clause allows for the definition of a data item (identifier-3) that will have a unique numeric
value for each iteration of the execution of the statements within the scope of the PERFORM. The first time,
identifier-3 will have the value specified by the FROM clause. At the conclusion of each iteration, the value
defined by the BY clause will be added to identifier-3 before conditional-expression-1 is evaluated. The default BY
value, if no BY clause is specified, is 1.

11. If a VARYING clause has been used, you may also use any number of additional AFTER clauses to create a
secondary loop situation where each AFTER will create an additional series of iterations, will define an additional
data item to be incremented during each iteration and will define an additional conditional expression to define
the termination of that series of iterations. Functionally, this is basically a way of nesting a

FOREVER

literal-1
identifier-1

TIMES

WITH TEST
BEFORE
AFTER

PERFORM procedure-name-1 [procedure-name-2]

AFTER identifier-4 FROM
literal-4
identifier-6

BY literal-5
identifier-7 ...

UNTIL conditional-expression -2

UNTIL conditional-expression -1

VARYING identifier-3 FROM
literal-2
identifier-4

BY literal-3
identifier-5

THROUGH
THRU

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-71

PERFORM/VARYING/UNTIL within another PERFORM/VARYING/UNTIL without the need to code multiple
statements. An example will probably help.

Observe the following code which defines a two-
dimensional (3 row by 4 column) table and a pair of
numeric data items to be used to subscript
references to each element of the table:

01 PERFORM-DEMO.
 05 PD-ROW OCCURS 3 TIMES.
 10 PD-COL OCCURS 4 TIMES
 15 PD PIC X(1).
01 PD-Col-No PIC 9 COMP.
01 PD-Row-No PIC 9 COMP.

Let’s say we want to PERFORM a routine (100-Visit-Each-PD) which will – in turn –
access each PD data item in the sequence shown to the right. Here’s the PERFORM
code:

 PERFORM 100-Visit-Each-PD WITH TEST AFTER
 VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3
 AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4.

But, perhaps you needed to “visit” each PD in the
sequence shown to the left. If so, then here’s the PERFORM you need:

 PERFORM 100-Visit-Each-PD WITH TEST AFTER
 VARYING PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4
 VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3.

6.32.2. PERFORM Format 2 – Inline

Figure 6-76 - Inline PERFORM Syntax

This format of the PERFORM
statement is identical in
operation to format 1, except
for the fact that the statements
that comprise the scope of the
PERFORM are now specified in-
line with the PERFORM code
rather than in procedures
located elsewhere within the
program.

1. The FOREVER, TIMES, WITH TEST, VARYING, BY, AFTER and UNTIL clauses have the same use and effect as the
same clauses on format 1 of the PERFORM statement.

2. The distinguishing characteristic of this format versus format 1 is that – with this version of the PERFORM
statement – the code being executed is specified in-line (imperative-statement-1 …) rather than in a procedure.

‘

FOREVER

literal-1
identifier-1

TIMES

WITH TEST
BEFORE
AFTER

PERFORM

AFTER identifier-4 FROM
literal-4
identifier-6

BY literal-5
identifier-7 ...

UNTIL conditional-expression -2

UNTIL conditional-expression -1

VARYING identifier-3 FROM
literal-2
identifier-4

BY literal-3
identifier-5

imperative-statement-1 …

END-PERFORM

PD (1, 1) PD (1, 2) PD (1, 3) PD (1, 4)

PD (2, 1) PD (2, 2) PD (2, 3) PD (2, 4)

PD (3, 1) PD (3, 2) PD (3, 3) PD (3, 4)

1 2 3 4

5 6 7 8

9 10 11 12

1 4 7 10

2 5 8 11

3 6 9 12

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-72

6.33. READ

6.33.1. READ Format 1 – Sequential READ

Figure 6-77 – READ (Sequential) Syntax

This form of the READ statement retrieves the
next (or previous) record from a file.

1. File-name-1 must currently be OPEN (section 6.31) for INPUT or I-O.

2. If the ACCESS MODE of file-name-1 is RANDOM, this format of the READ statement cannot be used.

3. If the ACCESS MODE is SEQUENTIAL, this is the only format of READ that is available. In such cases, the
NEXT/PRIOR clauses are truly optional.

4. If the ACCESS MODE is DYNAMIC, this format of the READ statement may be used as well as format 2. The
following minimalist READ statement…

READ file-name-1

…is perfectly legal according to both READ formats. For that reason, when ACCESS MODE DYNAMIC has been
specified and you want to tell the OpenCOBOL compiler that a statement such as the one above should be
treated as a sequential READ, you must add either NEXT or PRIOR to the statement (otherwise it will be
treated as a random READ).

5. The next available record in file-name-1 is retrieved and the contents of that record stored into the 01-level
record structures subordinate to the file’s FD (section 5.1).

6. The keywords NEXT and PREVIOUS specify in what direction of travel the reading process will take through
the file. If neither NEXT nor PREVIOUS clause is specified, NEXT is assumed.

7. The PREVIOUS option is available only for ORGANIZATION INDEXED files.

8. The optional INTO clause will cause a copy of the just-read record’s contents to be MOVEd to identifier-1,
assuming the READ succeeded.

9. See section 6.1.9.2 for a discussion of the record LOCK options.

10. The optional AT END clause will – if present – cause imperative-statement-1 to be executed if the READ
attempt fails due to a file status of 10 (end-of-file). The AT END clause WILL NOT DETECT OTHER NON-ZERO
FILE-STATUS VALUES. Use a DECLARATIVES routine (section 6.3) or an explicitly-declared file status field
tested after the READ to detect error conditions other than end-of-file.

11. The optional NOT AT END clause will – if present – cause imperative-statement-2 to be executed if the READ
attempt is successful.

READ file-name-1 RECORD

[INTO identifier-1]

NEXT
PREVIOUS

IGNORING LOCK
WITH LOCK
WITH NO LOCK
WITH IGNORE LOCK
WITH WAIT

[AT END imperative-statement-1]
[NOT AT END imperative-statement-2]

[END-READ]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-73

6.33.2. READ Format 2 – Random Read

Figure 6-78 - READ (Random) Syntax

This form of the READ statement retrieves an
arbitrary record from a file.

1. File-name-1 must currently be OPEN (section 6.31) for INPUT or I-O.

2. If the ACCESS MODE of file-name-1 is SEQUENTIAL, this format of the READ statement cannot be used.

3. If the ACCESS MODE is RANDOM, this is the only format of READ that is available.

4. If the ACCESS MODE is DYNAMIC, this format of the READ statement may be used as well as format 1. The
following minimalist READ statement…

READ file-name-1

…is perfectly legal according to both READ formats. For that reason, when ACCESS MODE DYNAMIC has been
specified for a file, a READ statement such as the above will be automatically treated as a random READ.

5. The optional KEY clause tells the compiler how a record is to be located in the file.

If the KEY clause is absent:

 If the file is an ORGANIZATION RELATIVE file, the contents of the field declared as the file’s RELATIVE KEY will
be used to identify a record.

 If the file is an ORGANIZATION RELATIVE file, the contents of the field declared as the file’s RELATIVE KEY will
be used to identify a record.

If the KEY clause is specified:

 If the file is an ORGANIZATION RELATIVE file, the contents of identifier-2 will be used as the relative record
number of the record to be accessed. Identifier-2 does not have to be the RELATIVE KEY field of the file
(although it could be if you wish).

 If the file is an ORGANIZATION INDEXED file, identifier-2 must be the PRIMARY RECORD KEY or one of the
file’s ALTERNATE RECORD KEY fields (if any) – the current contents of that field will identify the record to be
accessed. If an alternate record key is used, and that key allows duplicate values, the record accessed will be
the 1

st
 one having that key value.

6. The record identified by rule #5 will be retrieved from file-name-1 and the contents of that record stored into the
01-level record structures subordinate to the file’s FD (section 5.1).

7. The optional INTO clause will cause a copy of the just-read record’s contents to be MOVEd to identifier-1,
assuming the READ succeeded.

8. See section 6.1.9.2 for a discussion of the record LOCK options.

READ file-name-1 RECORD

[INTO identifier-1]

IGNORING LOCK
WITH LOCK
WITH NO LOCK
WITH IGNORE LOCK
WITH WAIT

[KEY IS identifier-2]

[INVALID KEY imperative-statement-3]
[NOT INVALID KEY imperative-statement-4]

[END-READ]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-74

9. The optional INVALID KEY clause will – if present – cause imperative-statement-1 to be executed if the READ
attempt fails due to a file status of 23 (“Key Not Exists”). The INVALID KEY clause WILL NOT DETECT OTHER NON-
ZERO FILE-STATUS VALUES. Use a DECLARATIVES routine (section 6.3) or an explicitly-declared file status field
tested after the READ to detect error conditions other than “Key Not Exists”.

10. The optional NOT INVALID KEY clause will – if present – cause imperative-statement-2 to be executed if the READ
attempt is successful.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-75

6.34. RELEASE

Figure 6-79 - RELEASE Syntax

The RELEASE statement adds a new record to
a sort file.

1. The RELEASE statement is valid only within the INPUT PROCEDURE of a SORT statement. See section 6.40.1.

2. Record-name-1 must be a record defined to a sort description (SD) entry. See section 5.2.

RELEASE record-name-1 [FROM]literal-1
identifier-1

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-76

6.35. RETURN

Figure 6-80 - RETURN Syntax

The RETURN statement reads a record from a sort- or
merge file.

1. The RETURN statement is valid only within the OUTPUT PROCEDURE of a SORT (section 6.40.1) or MERGE (section
6.27) statement.

2. File-name-1 must be a sort- or merge file defined with a sort description (SD) entry. See section 5.2.

3. The INTO, AT END and NOT AT END clauses are used the same as with their READ statement (section 6.33)
equivalents.

RETURN file-name-1 RECORD

[INTO identifier-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-RETURN]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-77

6.36. REWRITE

Figure 6-81 - REWRITE Syntax

The REWRITE statement replaces a
logical record on a disk file.

1. Record-name-1 must be defined as an 01-level record subordinate to the File Description (FD – see section 5.1) of
a file that is currently OPEN (section 6.31) for I-O.

2. The optional FROM clause will cause literal-1 or identifier-1 to be implicitly MOVEd into record-name-1 prior to
writing record-name-1 to the file.

3. The REWRITE statement may not be used with ORGANIZATION IS LINE SEQUENTIAL files.

4. See section 6.1.9.2 for a discussion of the record LOCK options.

5. Rewriting a record does not cause the record contents of the file to be physically updated until the next block of
the file is read, a COMMIT statement (section 6.10) is issued or that file is closed.

6. If the file has ORGANIZATION RECORD BINARY SEQUENTIAL:

a. The record to be rewritten will be the one retrieved by the most-recently executed READ (section 6.33) of the
file.

b. The size of record-name-1 cannot be altered (see the RECORD CONTAINS / RECORD IS VARYING clauses in
section 5.1).

7. If the file has ORGANIZATION RELATIVE or ORGANIZATION INDEXED:

a. If the file has ACCESS MODE SEQUENTIAL, the record to be rewritten will be the one retrieved by the most-
recently executed READ (section 6.33) of the file. If the file has ACCESS MODE RANDOM or ACCESS MODE
DYNAMIC, no READ is required before a record may be rewritten – the RELATIVE KEY / RECORD KEY definition
for the file will specify the record to be updated.

b. The size of record-name-1 may be updated.

8. The ON INVALID KEY clause will be triggered (thus executing imperative-statement-1) if an error occurred during
the REWRITE. Such errors might be actual I/O errors or “Key Not Exists” errors (file status 23), indicating no
record exists that satisfies the RELATIVE KEY or RECORD KEY clause requirements.

9. The NOT ON INVALID KEY clause will be triggered, thus executing imperative-statement-2, if no error occurred
during the REWRITE.

[INVALID KEY imperative-statement-3]

[NOT INVALID KEY imperative-statement-4]

REWRITE record-name-1

[FROM]

WITH LOCK
WITH NO LOCK

[END-REWRITE]

literal-1
identifier-1

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-78

6.37. ROLLBACK

Figure 6-82 - ROLLBACK Syntax

The ROLLBACK verb reverts changes made to all files
since the start of the program or since the last COMMIT.

1. OpenCOBOL does not (currently, at least) support file rollback. The OpenCOBOL ROLLBACK statement will have
the same effect as the COMMIT verb (section 6.10).

ROLLBACK

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-79

6.38. SEARCH

6.38.1. SEARCH Format 1 –Sequential Search

Figure 6-83 - Sequential SEARCH Syntax

The SEARCH statement is used to
sequentially search a table,
stopping either once a specific
value is located within the table or
when the table has been
completely searched.

1. The index-name-1 identifier specified on the VARYING clause must be USAGE INDEX.

2. If no VARYING clause is specified, then the table being searched must have been created with an INDEXED BY
clause (see section 5.3).

3. At the time the SEARCH statement is executed, the current value of index-name-1 (or the table’s defined INDEXED
BY index) will define the starting position in the table where the searching process will begin. Typically, one
initializes that index to a value of 1 before starting the SEARCH, as follows:

SET index-name-1 TO 1

4. During the searching process, the conditional-expression-1 will be evaluated and – if TRUE – will cause imperative-
statement-2 to be executed, after which control will fall into the next statement after the SEARCH.

5. If multiple WHEN clauses exist, each conditional-expression-n will be evaluated in-turn and the first one that
evaluates to TRUE will cause the corresponding imperative-statement-n to be executed, after which control will
fall into the next statement after the SEARCH.

6. If no conditional-expression-n evaluates to TRUE, the value of index-name-1 will be incremented by 1. If the value
of index-name-1 is still within the OCCURS scope of table-name, the WHEN clause(s) will again be re-evaluated.
This process will continue until a WHEN clause conditional-expression-n evaluates to TRUE or until the value of
index-name-1 is no longer within the OCCURS scope of table-name.

7. If no conditional-expression-n ever evaluates to TRUE and the value of index-name-1 is no longer within the
OCCURS scope of table-name, the imperative-statement-1 which is part of the AT END clause will be executed.
After this, control will fall into the next statement following the SEARCH. If there is no AT END clause, control
simply falls into the next statement following the SEARCH.

SEARCH table-name

[VARYING index-name-1]

[AT END imperative-statement-1]

{ WHEN conditional-expression-1 imperative-statement-2 } …

[END-SEARCH]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-80

6.38.2. SEARCH Format 2 –Binary, or Half-interval Search (SEARCH ALL)

Figure 6-84 - Binary SEARCH (ALL) Syntax

This format of the
SEARCH statement
performs a binary,
or half-interval,
search against a
sorted table.

1. The definition of table-name must include the OCCURS, ASCENDING (and/or DESCENDING) KEY and INDEXED BY
clauses.

2. In order for a table to be searchable via the SEARCH ALL statement, each of the following must be true:

a. The table meets the requirements of rule #1 above.

b. Just because the table has one or more KEY clauses doesn’t mean the data is actually in that sequence in the
table – the actual sequence of the data must agree with the KEY clause(s)!

26

c. No two records in the table may have the same KEY field values. If the table has multiple KEY definitions,
then no two records in the table may have the same combination of KEY field values.

If rule “a” is violated, the compiler will reject the SEARCH ALL. If rules “b” and/or “c” are violated, there will be no
message issued by the compiler, but the run-time results of a SEARCH ALL against the table will probably be
incorrect.

3. Key-data-item-1 and key-data-item-2 … (if any) must be defined as keys of table-name via ASCENDING KEY or
DESCENDING KEY clauses (see rule #1 above).

4. Index-name-1 is the first INDEXED BY data item for table-name.

5. The WHEN clause is mandatory, unlike format 1 of the SEARCH statement.

6. There can only be one WHEN clause specified; there may be any number of AND clauses, but there cannot be
more WHEN & AND clauses than there are KEY fields to the table. Each WHEN/AND clause should reference a
different KEY field.

7. The function of the WHEN, along with any ANDs, is to compare the key field(s) of the table, as indexed by the first
INDEXED BY item, against the specified literal and/or identifier values in order to locate the desired entry in the
table. The table’s index will be automatically varied by the SEARCH ALL statement in a manner designed to
require the minimum number of tests.

26
 Of course, if the data sequence doesn’t agree with the KEY clause, you can easily make it that way using a table

SORT (see section SORT Format 2 – Table Sort)

SEARCH ALL table-name

[AT END imperative-statement-1]

WHEN key-data-item-1 (index-name-1)

AND key-data-item-2 (index-name-1) …

imperative-statement-2

[END-SEARCH]

literal-1
identifier-1

EQUALS
IS EQUAL TO
=

literal-2
identifier-2

EQUALS
IS EQUAL TO
=

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-81

8. The internal processing of the SEARCH ALL statement begins by setting internal “first” and “last” pointers to the
1

st
 and last entry locations of the table. Processing then proceeds as follows

27
:

a. The entry half-way between “first” and “last” is identified. We’ll call this the “current” entry, and will set its
table entry location is saved into index-name-1.

b. The WHEN (along with any ANDs) is evaluated. This comparison of the keys against the target
literal/identifier values will have one of three possible outcomes:

i. If the key(s) and value(s) match, imperative-statement-2 is executed, after which control falls thru into
the next statement following the SEARCH ALL.

ii. If the key(s) are LESS THAN the value(s), then the table entry being searched for can only occur in the
“current” to “last” range of the table, so a new “first” pointer value is set (it will be set to the “current”
pointer).

iii. If the key(s) are GREATER THAN the value(s), then the table entry being searched for can only occur in
the “first” to “current” range of the table, so a new “last” pointer value is set (it will be set to the
“current” pointer).

c. If the new “first” and “last” pointers are different than the old “first” and “last” pointers, there’s more left to
be searched, so return to step “a” and continue.

d. If the new “first” and “last” pointers are the same as the old “first” and “last” pointers, the table has been
exhausted and the entry being searched for cannot be found; imperative-statement-1 is executed, after
which control falls thru into the next statement following the SEARCH ALL.

The net effect of the above algorithm is that only a fraction of the number of elements in the table need ever be
tested in order to decide whether or not a particular entry exists. This is because the SEARCH ALL discards half
the remaining entries in the table each time it checks an entry.

Computer scientists will compare these two search techniques as follows:

 A sequential search (format 1) will need an average of n/2 tests and a worst case of n tests in order to
find an entry and n tests to identify that an entry doesn’t exist (n = the number of entries in the table).

 A binary search (format 2) will need worst case of log2n tests in order to find an entry and log2n tests to
identify that an entry doesn’t exist (n = the number of entries in the table).

Here’s a more practical view of the difference. Let’s say that a table has 1,000 entries in it. With a sequential
(format 1) search, on average, you’ll have to check 500 of them to find an entry and you’ll have to look at all 1,000
of them to find that en entry doesn’t exist. With a binary search, express the number of entries as a binary
number (1,00010 = 11111010002) and count the number of digits in the result (10) -THAT is the worst-case number
of tests required to find an entry or to identify that it doesn’t exist. That’s quite an improvement.

27
 This is a simplified view of the algorithm intended purely as a pedagogical tool – an actual implementation of it

requires a few additional picky little details to make it work (such as what to do when rule “a” identifies a “current”
entry of 12.5!)

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-82

6.39. SET

6.39.1. SET Format 1 – SET ENVIRONMENT

Figure 6-85 - SET ENVIRONMENT Syntax

This format of the SET statement provides
a straight-forward means of setting
environment values from within a program.

1. Environment variables created or changed from within OpenCOBOL programs will be available to any sub-shell
processes spawned by that program (i.e. CALL “SYSTEM”) but will not be known to the shell or console window
that started the OpenCOBOL program.

2. This is a much simpler and more readable means of setting environment variables than by using the DISPLAY
statement (section 6.14.3). For example, these two code sequences produce identical results:

DISPLAY
 “VARNAME” UPON ENVIRONMENT-NAME
END-DISPLAY
DISPLAY
 “VALUE” UPON ENVIRONMENT-VALUE
END-DISPLAY

SET ENVIRONMENT “VARNAME” TO “VALUE”

6.39.2. SET Format 2 – SET Program-Pointer

Figure 6-86 - SET Program Pointer Syntax

This form of SET allows you to retrieve the
address of a PROCEDURE DIVISION code module
– specifically a declared entry-point into the
PROCEDURE DIVISION.

1. If you have used other versions of COBOL before (particularly mainframe implementations), you’ve possibly seen
subroutine CALLs made passing a PROCEDURE DIVISION paragraph or SECTION name as an argument – that is not
possible in OpenCOBOL; instead, you need to know how to use this form of the SET statement.

2. The USAGE of program-pointer-1 must be PROGRAM-POINTER.

3. The literal-1 or identifier-1 value specified must name the PROGRAM-ID of the program or the entry-point named
on an ENTRY statement.

4. Once the address of a PROCEDURE DIVISION code area has been acquired in this way, the address could be passed
to a subroutine (usually written in C) for whatever use it needs it for. For examples of PROGRAM-POINTERS at
work, see sections 7.3.1.21 and 7.3.1.22.

6.39.3. SET Format 3 – SET ADDRESS

Figure 6-87 - SET ADDRESS Syntax

This form of the SET statement can be used to work
with the addresses of data items rather than their
contents.

integer-1
identifier-1SET ENVIRONMENT TO

integer-2
identifier-2

SET program-pointer-1 TO ENTRY
literal-1
identifier-1

SET [ADDRESS OF] …

TO [ADDRESS OF]

pointer-name-1
identifier-1

pointer-name-2
identifier-2

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-83

1. When the ADDRESS OF clause is used before the TO you will be using the SET to alter the address of a LINKAGE
SECTION or BASED data item. Without that clause you will be assigning an address to one or more USAGE
POINTER data items.

2. When the ADDRESS OF clause is used after the TO, SET will be identifying the address of identifier-2 as the address
to be assigned to identifier-1 or stored in pointer-name-1. If the “ADDRESS OF” clause is absent after the TO, the
contents of pointer-name-2 will serve as the address to be assigned.

6.39.4. SET Format 4 – SET Index

Figure 6-88 - SET Index Syntax

This SET statement assigns a value to a USAGE INDEX data
item.

1. The USAGE of index-name-1 should be INDEX, or index-name-1 must be identified in a table INDEXED BY clause.

6.39.5. SET Format 5 – SET UP/DOWN

Figure 6-89 - SET UP/DOWN Syntax

This format of SET is used to increment or
decrement the value of an index or pointer by a
specified amount.

1. The USAGE of index-name-1 must be INDEX. The USAGE of pointer-1 must be POINTER or PROGRAM-POINTER.

2. The typical usage when an index-name-1 is specified is to set the value UP or DOWN by 1, since an index-name-1
is usually being used to sequentially walk through the elements of a table.

6.39.6. SET Format 6 – SET Condition Name

Figure 6-90 - SET Condition Name Syntax

This format provides one method of specifying the TRUE /
FALSE value of a level-88 condition name.

1. By setting the specified condition name(s) to a TRUE or FALSE value, you will actually be assigning a value to the
parent data item(s) to which the condition name data item(s) is subordinate to.

2. When specifying TRUE, the value assigned to each parent data item will be the first VALUE specified on the
condition name’s definition.

3. When specifying FALSE on the SET, the value assigned to each parent data item will be the value specified for the
FALSE clause of the condition name’s definition; if any condition-name-1 occurrence lacks a FALSE clause, the SET
statement will be rejected by the compiler.

literal-1
identifier-1

SET index-name-1 TO

SET UP
DOWN

BY [LENGTH OF]
literal-1
identifier-2
function-reference 1

index-name-1
pointer-1

TRUE
FALSE

SET { condition-name-1 } … TO

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-84

6.39.7. SET Format 7 – SET Switch

Figure 6-91 - SET Switch Syntax

Use this SET statement type to turn a switch ON or OFF.

1. Switches are defined using the SPECIAL-NAMES paragraph. See section 4.1.4 for additional information.

ON
OFF

SET { mnemonic-name-1 } … TO

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-85

6.40. SORT

6.40.1. SORT Format 1 – File-based Sort

Figure 6-92 - File-Based SORT Syntax

This format of the SORT
statement is designed to
sort large volumes of data
according to one or more
key fields.

1. The sort-file named on the SORT statement must be defined using a sort description (SD) in the FILE SECTION of
the DATA DIVISION. See section 5.2. This file is referred to as the “sort file”.

2. If specified, file-name-1 and file-name-2 must reference ORGANIZATION LINE SEQUENTIAL or ORGANIZATION
RECORD BINARY SEQUENTIAL files. These files must be defined using a file description (FD) in the FILE SECTION of
the DATA DIVISION. See section 5.1. The same file may be used for file-name-1 and file-name-2.

3. The identifier-1 … field(s) must be defined as field(s) within a record of sort-file.

4. The WITH DUPLICATES IN ORDER clause is supported for compatibility purposes, but is non-functional.

5. A sort file (see #1) is never OPENed or CLOSEd.

6. The SORT statement works in three stages, as follows:

STAGE I (the input phase):

a. The data to be sorted is loaded into the sort file. This is accomplished either by taking the entire contents of
the file(s) named on the USING clause or by utilizing an INPUT PROCEDURE defined as procedure-name 1 or
procedure-name-1 THRU procedure-name-2.

b. When USING is specified, file-name-1 … must not be OPEN at the time the SORT is executed.

c. When an INPUT PROCEDURE is used, records to be sorted are produced using whatever logic is necessary and
are manually written to the sort file – one at a time – using the RELEASE statement (section 6.34).

d. A STOP RUN, EXIT PROGRAM or GOBACK executed within an INPUT PROCEDURE will terminate the currently
executing program as well as the SORT.

e. A GO TO statement that transfers control out of the INPUT PROCEDURE will terminate the SORT but allows
the program to continue executing from the point where the GO TO transferred control to. Once an INPUT
PROCEDURE has been aborted using a GO TO it cannot be resumed. You may, however, re-execute the SORT

SORT sort-file

ON KEY identifier-1 ...
ASCENDING
DESCENDING

...

[WITH DUPLICATES IN ORDER]

INPUT PROCEDURE IS procedure-name-1

USING file-name-1 ...

THROUGH
THRU procedure-name-2

OUTPUT PROCEDURE IS procedure-name-3

GIVING file-name-2 ...

THROUGH
THRU

procedure-name-4

[COLLATING SEQUENCE IS alphabet-name-1]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-86

statement itself. Any records previously RELEASEd to the sort file will be lost if a SORT is restarted in this
manner. USING A “GO TO” TO PREMATURELY TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-
CANCELLED SORT IS NOT CONSIDERED GOOD PROGRAMMING STYLE AND SHOULD BE AVOIDED.

f. As data is loaded into the sort file, it is actually being buffered in dynamically-allocated memory. Only if the
amount of data to be sorted exceeds the amount of available sort memory (128 MB)

28
 will actual disk files be

allocated and utilized. These “sort work files” will be discussed again shortly.

g. An INPUT PROCEDURE is terminated either implicitly by a fall-thru of control past the last statement of
procedure-name-2 (or procedure-name-1 if there is no procedure-name-2) or explicitly via an EXIT SECTION /
EXIT PARAGRAPH executed in procedure-name-2 (or procedure-name-1 if there is no procedure-name-2).
Once the INPUT PROCEDURE terminates, the input phase is complete.

h. The scope of the INPUT PROCEDURE must not allow a file-based SORT, MERGE (section 6.27) or RETURN
(section 6.35) statement to be executed.

STAGE 2 (the sort phase):

a. The sort will take place by arranging the data records in the sequence defined by the ASCENDING KEY and/or
DESCENDING KEY specification(s) on the SORT statement according to the COLLATING SEQUENCE specified on
the SORT (if any) or – if none was defined – the PROGRAM COLLATING SEQUENCE specified or implied by the
OBJECT-COMPUTER paragraph. Keys may be any supported data type and USAGE except for level-78 or level-
88 data items.

b. For example, let’s assume we’re sorting a series of financial transactions. The SORT statement might look like
this:

SORT Sort-File
 ASCENDING KEY Transaction-Date
 ASCENDING KEY Account-Number
 DESCENDING KEY Transaction-Amount
 .
 .
 .

The effect of this statement will be to sort all transactions into ascending order of the date the transaction
took place (oldest first, newest last). Unless the business running this program is going out of business, there
are most-likely many transactions for any given date – therefore, within each grouping of transactions all with
the same date, transactions will be sub-sorted into ascending sequence of the account number the
transactions apply to. Since it’s quite possible there might be multiple transactions for an account on any
given date, a third level sub-sort will arrange all transactions for the same account on the same date into
descending sequence of the actual amount of the transaction (largest first, smallest last). If two or more
transactions of $100.00 were recorded for account #12345 on the 31

st
 of August 2009, there will be no way of

predicting exactly how those transactions are ordered relative to each other since there’s no additional
“level” specified for sort keys.

c. OpenCOBOL does not utilize a high-capacity, high-performance (and usually high expense) sorting package as
would be the case on a mainframe computer system, but the SORT algorithms used

29
 are more than

adequate for the task.

Stage 3 (the output phase):

a. Once the sort phase is complete, the sorted data will be written to file-name-2 if the GIVING clause was
specified, or by utilizing an OUTPUT PROCEDURE defined as procedure-name 3 or procedure-name-3 THRU
procedure-name-4.

b. When GIVING is specified, file-name-2 … must not be OPEN at the time the SORT is executed.

28
 There is a runtime environment variable (COB_SORT_MEMORY) that you may use to allocate more or less

memory to the sorting process. See section 7.2.4.

29
 The OpenCOBOL sort routines are entirely self-contained in the OpenCOBOL run-time library

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-87

c. When an OUTPUT PROCEDURE is used, sorted records are manually read from the sort file – one at a time –
using the RETURN statement (section 6.35).

d. A STOP RUN, EXIT PROGRAM or GOBACK executed within an OUTPUT PROCEDURE will terminate the
currently executing program as well as the SORT.

e. A GO TO statement that transfers control out of the OUTPUT PROCEDURE will terminate the SORT but allows
the program to continue executing from the point where the GO TO transferred control to. Once an OUTPUT
PROCEDURE has been aborted using a GO TO it cannot be resumed. You may, however, re-execute the SORT
statement itself. Any records not yet RETURNed from the sort file will be lost if a SORT is restarted in this
manner. USING A “GO TO” TO PREMATURELY TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-
CANCELLED SORT IS NOT CONSIDERED GOOD PROGRAMMING STYLE AND SHOULD BE AVOIDED.

f. An OUTPUT PROCEDURE is terminated either implicitly by a fall-thru of control past the last statement of
procedure-name-4 (or procedure-name-3 if there is no procedure-name-4) or explicitly via an EXIT SECTION /
EXIT PARAGRAPH executed in procedure-name-4 (or procedure-name-3 if there is no procedure-name-4).
Once the OUTPUT PROCEDURE terminates, the output phase – and the SORT statement itself - is complete.

g. The scope of the OUTPUT PROCEDURE must not allow a file-based SORT, MERGE (section 6.27) or RELEASE
(section 6.34) statement to be executed.

7. Should disk work files be necessary due to the amount of data being sorted, they will be automatically allocated
to disk in a folder defined by the TMPDIR, TMP or TEMP environment variables (see section 7.2.4). These disk files
WILL NOT be automatically purged upon program execution termination (normal or otherwise). Temporary sort
work files will be named “cobxxxx.tmp”, in case you want to delete them yourself or from within your program
upon sort termination.

6.40.2. SORT Format 2 – Table Sort

Figure 6-93 - Table SORT Syntax

This format of the SORT statement
sorts relatively small quantities of
data – namely data contained in a
DATA DIVISION table – according to
one or more key fields.

1. The table-name data item must have an OCCURS clause.

2. The identifier-1 … field(s), if any, must be defined as data items subordinate to table-name.

3. The WITH DUPLICATES IN ORDER clause is supported for compatibility purposes, but is non-functional.

4. The data within table-name will be sorted in-place (i.e. no sort file is required) according to the KEY
specification(s) made on the SORT statement.

5. Currently, a table SORT with no KEY specification(s) made on the SORT statement is unsupported and will be
rejected by the compiler.

6. The sort will take place by arranging the data records in the sequence defined by the ASCENDING KEY and/or
DESCENDING KEY specification(s) on the SORT statement according to the COLLATING SEQUENCE specified on the
SORT (if any) or – if none was defined – the PROGRAM COLLATING SEQUENCE specified or implied by the OBJECT-
COMPUTER paragraph. Keys may be any supported data type and USAGE except for level-78 or level-88 data
items.

7. The SORT will be performed in-place within table-name – no sort file is required.

SORT table-name

[WITH DUPLICATES IN ORDER]

ON KEY identifier-1 ...
ASCENDING
DESCENDING ...

[COLLATING SEQUENCE IS alphabet-name-1]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-88

6.41. START

Figure 6-94 - START Syntax

 The START statement defines the
logical starting point within a file for
subsequent sequential read
operations.

1. File-name-1 must be an ORGANIZATION RELATIVE or ORGANIZATION INDEXED file.

2. File-name-1 must have been SELECTed with an ACCESS MODE DYNAMIC or ACCESS MODE SEQUENTIAL.

3. File-name-1 must be OPEN (section 6.31) in either INPUT or I-O mode at the time the START is executed.

4. If no KEY clause is specified, “KEY IS EQUAL TO identifier-1” will be assumed.

5. If file-name-1 is an ORGANIZATION RELATIVE file, identifier-1 must be the RELATIVE KEY of the file. See section
4.2.1.2.

6. If file-name-1 is an ORGANIZATION INDEXED file, identifier-1 must be the RECORD KEY or one of the ALTERNATE
RECORD KEY fields for the file. See section 4.2.1.3.

7. After successful execution of a START statement, the internal record pointer into the file-name-1 data will be
positioned such that the next sequential READ statement executed against file-name-1 will read:

a. The FIRST record that satisfies the KEY clause specification if the relation check specified is EQUAL TO,
GREATER THAN or GREATER THAN OR EQUAL TO (or any of their syntactical equivalents).

b. The LAST record that satisfies the KEY clause specification is the relation check specified is LESS THAN or LESS
THAN OR EQUAL TO (or any of their syntactical equivalents).

8. The START statement only positions the file for a subsequent sequential READ – it does not actually populate file-
name-1s 01-level records with new data. You must issue a sequential READ after a successful START to actually
read the record that satisfies the KEY clause.

9. The ON INVALID KEY clause will be triggered (thus executing imperative-statement-1) if an error occurred during
the START. Such errors might be actual I/O errors or “Key Not Exists” errors (file status 23), indicating no record
exists that satisfies the KEY clause requirements.

START file-name-1

identifier-1

IS EQUAL TO
IS =
EQUALS

IS GREATER THAN
IS >

IS GREATER THAN OR EQUAL TO
IS >=
IS NOT LESS THAN

IS LESS THAN
IS <

IS LESS THAN OR EQUAL TO
IS <=
IS NOT GREATER THAN

KEY IS

[INVALID KEY imperative-statement-3]

[NOT INVALID KEY imperative-statement-4]

[END-START]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-89

10. The NOT ON INVALID KEY clause will be triggered, thus executing imperative-statement-2, if no error occurred
during the START.

11. Once the START statement has located the desired record (or not) and executed any specified imperative-
statement-1 or imperative-statement-2 (or not), control transfers to the next statement following the START.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-90

6.42. STOP

Figure 6-95 - STOP Syntax

The STOP statement halts the
program, returning control to the
operating system.

1. The RETURNING and GIVING clauses may be used interchangeably.

2. The literal-2 option is supported syntactically but will be rejected if used (with a WARNING), as it is obsolete.

3. The optional RETURNING/GIVING clause allows the program to return a numeric return code to the operating
system. The return code value can be in the range -2147483648 to +2147483647.

4. The two code snippets below are equivalent. They show two different ways a return code may be passed back to
the operating system:

STOP RUN RETURNING 16 MOVE 16 TO RETURN-CODE
STOP RUN

RUN

literal-2

STOP
RETURNING
GIVING

literal-1
identifier-1

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-91

6.43. STRING

Figure 6-96 - STRING Syntax

The STRING statement is
used to concatenate all or a
part of multiple strings
together, forming a new
string.

1. Literal-1, literal-2, identifier-1, identifier-2 and identifier-3 must be explicitly or implicitly defined as alphanumeric
USAGE DISPLAY data. Any of those identifiers may be group items.

2. Identifier-4 must be a non-edited elementary integer numeric data item with a value greater than zero.

3. Each literal-1 / identifier-1 will be known as the sending item while identifier-3 will be known as the receiving
item.

4. For each sending item, the contents of the sending item will be copied – character-by-character – into the
receiving item; the first sending item will be copied into the receiving item beginning at the character position
specified by the WITH POINTER clause (character positions are numbered upward from 1); if no WITH POINTER
clause is specified, 1 will be assumed; the second sending item will be copied into the receiving item starting at
the next character position after the last character transferred by the first item, and so forth.

5. Once the final character position of the receiving item has been filled, the STRING process will cease, regardless of
whether or not there was more data to copy in the current sending item or even if there were more sending items
to be processed.

6. If the DELIMITED BY SIZE option is specified for a sending item, the entire sending item will be copied. If no
DELIMITED BY clause is specified, DELIMITED BY SIZE is assumed.

7. If a sending item has a DELIMITED BY clause without the SIZE option, the copying of the sending item will be
terminated once the character sequence specified by identifier-2 or ALL literal-2 is found in the sending item.

8. The receiving item (identifier-3) is neither initialized (to SPACES or any other value) at the start of a STRING
statement nor will it be SPACE filled should the total number of sending item characters copied into it be less than
its size. You may explicitly INITIALIZE (section 6.24) the receiving item yourself before executing the STRING if you
wish.

9. If the value of identifier-4 is less than 1 or if the receiving item runs out of space before all sending items have
been fully processed, an overflow condition results. If an ON OVERFLOW clause is present in such a case,
imperative-statement-1 will be executed.

10. If there is no overflow condition and a NOT ON OVERFLOW clause is present, imperative-statement-2 will be
executed.

11. Once a STRING statement finishes and any imperative statements have been executed, control transfers to the
next statement following the STRING.

STRING

SIZE
[ALL] literal-2
identifier-2

DELIMITED BY
literal-1
identifier-1

…

INTO identifier-3

[WITH POINTER identifier-4]

[END-STRING]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-92

6.44. SUBTRACT

6.44.1. SUBTRACT Format 1 – SUBTRACT FROM

Figure 6-97 - SUBTRACT FROM Syntax

This format of the ADD statement generates
the arithmetic sum of all arguments that
appear before the FROM (identifier-1 or
literal-1) and then subtracts that sum from
each of the identifiers listed after the TO
(identifier-2).

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Literal-1 must be a numeric literal.

3. The ROUNDED, ON SIZE ERROR and NOT ON SIZE ERROR clauses are used in the same way as they are on the ADD
statement (see section 6.5.1).

6.44.2. SUBTRACT Format 2 – SUBTRACT GIVING

Figure 6-98 - SUBTRACT GIVING Syntax

This format of the SUBTRACT statement
generates the arithmetic sum of all
arguments that appear before the FROM
(identifier-1 or literal-1), subtracts that sum
from the contents of identifier-2 and then
replaces the contents of the identifiers listed
after the GIVING (identifier-3) with that
result.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Identifier-3 must be a numeric (edited or unedited) data item.

3. Literal-1 must be a numeric literal.

4. The ROUNDED, ON SIZE ERROR and NOT ON SIZE ERROR clauses are used in the same way as they are on the ADD
statement (see section 6.5.1).

SUBTRACT [LENGTH OF]
literal-1
identifier-1

...

FROM { identifier-2 [ROUNDED] } ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]
[END-SUBTRACT]

SUBTRACT [LENGTH OF]
literal-1
identifier-1

...

[FROM identifier-2]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

GIVING { identifier-3 [ROUNDED] } ...

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-93

6.44.3. SUBTRACT Format 3 – SUBTRACT CORRESPONDING

Figure 6-99 - SUBTRACT CORRESPONDING Syntax

This format of the SUBTRACT
statement generates code
equivalent to individual
SUBTRACT FROM statements
for corresponding matches of
data items found subordinate
to the two identifiers.

1. The rules for identifying corresponding matches are as discussed in section 6.28.2 – MOVE CORRESPONDING.

2. The ROUNDED, ON SIZE ERROR and NOT ON SIZE ERROR clauses are used in the same way as they are on the ADD
statement (see section 6.5.1).

SUBTRACT CORRESPONDING identifier-1 FROM identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-94

6.45. SUPPRESS

Figure 6-100 - SUPPRESS Syntax

Although syntactically recognized by the OpenCOBOL compiler, the SUPPRESS
statement is non-functional because the RWCS (COBOL Report Writer) is not
currently supported by OpenCOBOL.

SUPPRESS PRINTING

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-95

6.46. TERMINATE

Figure 6-101 - TERMINATE Syntax

Although syntactically recognized by the OpenCOBOL compiler, the TERMINATE
statement is non-functional because the RWCS (COBOL Report Writer) is not
currently supported by OpenCOBOL.

TERMINATE identifier-1…

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-96

6.47. TRANSFORM

Figure 6-102 - TRANSFORM Syntax

The TRANSFORM statement
scans a data item performing a
series of monoalphabetic
substitutions, defined by the
arguments before and after the
“TO” clause.

1. The literal-1 or identifier-2 specified before the “TO” clause defines those characters in identifier-1 that will be
replaced. This will be referred to as the target string.

2. The literal-2 or identifier-3 specified after the “TO” clause defines those characters in identifier-1 that will be
replacing the characters specified by literal-1 or identifier-2. This will be referred to as the replacement string.

3. The TRANSFORM verb was made obsolete in the 1985 standard of COBOL. Its function has been subsumed by the
INSPECT statement – specifically the CONVERTING clause (section 6.26).

4. The contents of identifier-1 will be
scanned – character by character.
For each character, if that character
appears in the target string, the
corresponding character (by relative
position) in the replacement string
will then replace that character in
identifier-1.

5. If the length of the replacement
string exceeds that of the target
string, the excess will be ignored.

6. If the length of the target string
exceeds that of the replacement
string, the replacement string will be
assumed to be padded to the right
with SPACES to make up the
difference.

Figure 6-103 - The TRANSFORM Statement at Work

TRANSFORM identifier-1 FROM
literal-1
identifier-2

literal-2
identifier-3

TO

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMOTRANSFORM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Sample-Item PIC X(20) VALUE 'THIS IS A TEST'.
PROCEDURE DIVISION.
000-Main.

TRANSFORM Sample-Item
FROM 'ABCDEFGHIJKLMNOPQRSTUVWXYZ„
TO 'ZYXWVUTSRQPONMLKJIHGFEDCBA„

DISPLAY
Sample-Item

END-DISPLAY
STOP RUN
.

GSRH RH Z GVHG
Here’s what the

program DISPLAYs…

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-97

6.48. UNLOCK

Figure 6-104 - UNLOCK Syntax

This statement syncs any as-yet unwritten file I/O buffers
to the specified file (if any) and releases any record locks
held for records belonging to the named file.

1. If file-name-1 is a SORT file, no action will be taken.

2. Not all OpenCOBOL implementations support locking. Whether they do or not depends upon the operating
system they were built for and the build options that were used when OpenCOBOL was generated.

30
 When a

program using one of those OpenCOBOL implementations issues an UNLOCK, it will ignored. There will be no
compiler message issued. Buffer syncing, if needed, will still occur.

30
 The author of this manual – for example – uses an OpenCOBOL build for Windows that utilizes the MinGW

build/runtime environment and uses the Berkeley Database module for advanced file I/O. That OpenCOBOL build
does NOT support LOCKing. Generally speaking, UNIX builds will support record locking.

UNLOCK file-name-1
RECORD
RECORDS

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-98

6.49. UNSTRING

Figure 6-105 - UNSTRING Syntax

The UNSTRING
statement parses
a string, extracting
any number of
substrings from it.

1. Identifier-1 through identifier-5, identifier-7 and identifier-8 must be explicitly or implicitly defined as
alphanumeric USAGE DISPLAY data. Any of those identifiers may be group items.

2. Literal-1 and literal-2 must be alphanumeric literals.

3. Identifier-6 and identifier-9 through identifier-11 must be elementary non-edited integer numeric items.

4. Identifier-10 must have a value greater than 0.

5. Identifier-1 is known as the source string. Identifier-4 and identifier-7 are known as the destination fields.

6. The source string will be broken up into substrings starting from the character position indicated by identifier-10
(or from position 1 if there is no WITH POINTER clause). If the initial value of identifier-10 is less than 1 or greater
than the size of the source string, an “overflow” condition results. Overflow is discussed in item #13.

7. Substrings are identified by using the various delimiter strings specified on the DELIMITED BY clause as inter-
substring separators. Using the “ALL” option allows a delimiter sequence to be an arbitrarily long sequence of
occurrences of the delimiter literal whereas its absence treats each occurrence as a separate delimiter.

8. Two consecutive delimiter sequences will identify a null substring.

9. Here is an example of how a source string will be parsed into substrings:

UNSTRING Input-Address
 DELIMITED BY “,” OR “/”
 INTO
 Street-Address DELIMITER D1 COUNT C1
 Apt-Number DELIMITER D2 COUNT C2
 City DELIMITER D3 COUNT C3
 State DELIMITER D4 COUNT C4
 Zip-Code DELIMITER D5 COUNT C5
END-UNSTRING

Figure 6-106 - An UNSTRING Example

With the sample data shown, the UNSTRING statement will identify a total of five (5) substrings from the data.
The result of this identification will be as if the following MOVE statements were executed:

MOVE “11 Main St” TO Street-Address
MOVE “” TO Apt-Number31
MOVE “Cairo” TO City
MOVE “NY” TO State
MOVE “12413” TO Zip-Code

If not enough substrings can get identified to populate all the destination fields, those for which no data can be
found remain unchanged.

31
 A MOVE of the null string has the same effect as a MOVE of SPACES

UNSTRING identifier-1

DELIMITED BY
[ALL] literal-1
Identifier-2

OR
[ALL] literal-2
Identifier-3

…

INTO identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-6]

[identifier-7 [DELIMITER IN identifier-8] [COUNT IN identifier-9]] …

[WITH POINTER identifier-10]

[TALLYING IN identifier-11]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-UNSTRING]

1 1 M a i n S t , , C a i r o / N Y , 1 2 4 1 3

Input-Address

Substring #1 Substring #3 Substring #4 Substring #5
Substring #2

(null)

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-99

If not enough destination fields are specified to receive all the substrings, the excess substrings are “thrown
away”. An “overflow” condition will exist, however. Overflow is discussed in item #13.

10. Each destination field may have an optional DELIMITER clause. If a DELIMITER clause is specified, identifier-5 (or
identifier-8) will have the delimiter character string used to identify the substring for the destination field MOVEd
to it. Using the example shown earlier, the following implied MOVEs will occur for the DELIMITER identifiers:

MOVE “,” TO D1
MOVE “,” TO D2
MOVE “/” TO D3
MOVE “,” TO D4
MOVE SPACES TO D532

11. Each destination field may have an optional COUNT clause. If a COUNT clause is specified, identifier-6 (or
identifier-9) will have the size of the substring for the destination field MOVEd to it. Using the example shown
earlier, the following implied MOVEs will occur for the COUNT identifiers:

MOVE 10 TO C1
MOVE 0 TO C2
MOVE 5 TO C3
MOVE 2 TO C4
MOVE 5 TO C5

12. The TALLYING clause – if present – will be incremented by 1 each time a parsed substring is MOVEd to a
destination field. This field is NOT initialized to zero by UNSTRING, so you’ll want to do that yourself.

13. The optional ON OVERFLOW clause, if present, will trigger the execution of imperative-statement-1 if an overflow
condition occurs (see item #6 and #7). If the ON OVERFLOW clause triggers, the NOT ON OVERFLOW clause (if
any) will be ignored.

14. The optional NOT ON OVERFLOW clause, if present, will trigger the execution of imperative-statement-2 if no
overflow condition occurred (see item #6 and #7). If the NOT ON OVERFLOW clause triggers, the ON OVERFLOW
clause (if any) will be ignored.

15. Once the source string has been parsed, the appropriate destination fields have been updated (along with any
DELIMITER/COUNT fields), identifier-11 (TALLYING) has been incremented and any ON OVERFLOW or NOT ON
OVERFLOW imperative statement has been executed, control will fall into the next statement following the
UNSTRING.

32
 The last substring always has a delimiter of null which – when MOVEd to the DELIMITER field - becomes SPACES.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-100

6.50. WRITE

Figure 6-107 - WRITE Syntax

The WRITE statement
writes a new record to
an OPEN file.

1. Record-name-1 must be defined as an 01-level record subordinate to the File Description (FD – see section 5.1) of
a file that is currently OPEN (section 6.31) for OUTPUT, I-O or EXTEND.

2. Literal-1 or identifier-1 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data. Identifier-1
may be a group item.

3. The optional FROM clause will cause literal-1 or identifier-1 to be implicitly MOVEd into record-name-1 prior to
writing record-name-1 to the file.

4. See section 6.1.9.2 for a discussion of the record LOCK options.

5. The ADVANCING clause is intended for use with ORGANIZATION LINE SEQUENTIAL files that will have reports
written to them. Using this clause with any other ORGANIZATION will either be rejected outright by the compiler
(ORGANIZATION IS RELATIVE or ORGANIZATION IS INDEXED) or may introduce unwanted characters into the file
(ORGANIZATION IS RECORD BINARY SEQUENTIAL).

6. The ADVANCING n LINES clause will introduce the specified number of line-feed (X”10”) characters into the file
either before the written record (AFTER ADVANCING) or after the written record (BEFORE ADVANCING).

7. If no ADVANCING clause is specified on a WRITE to an ORGANIZATION LINE SEQUENTIAL file, AFTER ADVENCING 1
LINE will be assumed.

8. The ADVANCING PAGE clause will introduce a form-feed (X”0C”) characters into the file either before the written
record (AFTER ADVANCING) or after the written record (BEFORE ADVANCING).

9. If the file being written to contains a LINAGE clause (section 5.1) in its FD, an internal line counter will be
maintained by the runtime library and – when appropriate, the appropriate number of ASCII line-feed characters

[INVALID KEY imperative-statement-3]

[NOT INVALID KEY imperative-statement-4]

WRITE record-name-1

[FROM]

WITH LOCK
WITH NO LOCK

[END-WRITE]

literal-1
identifier-1

ADVANCING

literal-1
identifier-1

LINE
LINES

mnemonic-name-1

PAGE

AFTER
BEFORE

AT
END-OF-PAGE
EOP

Imperative-statement-1

NOT AT Imperative-statement-2
END-OF-PAGE
EOP

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-101

will be automatically written to the file to accommodate the LINES AT TOP and/or LINES AT BOTTOM specification
of the LINAGE definition.

10. The AT END-OF-PAGE and NOT AT END-OF-PAGE clauses are legal only for ORGANIZATION LINE SEQUENTIAL or
ORGANIZATION RECORD BINARY SEQUENTIAL files whose file descriptions contain a LINAGE clause (section 5.1).

11. The AT END-OF-PAGE clause will be triggered (thus executing imperative-statement-1) if an end-of-page condition
occurred during the WRITE. End-of-page conditions occur when a WRITE statement introduces a data line or line-
feed character into the file at a line position that occurs within the Page Footer area (see Figure 5-3).

12. The NOT AT END-OF-PAGE clause will be triggered (thus executing imperative-statement-2) if no end-of-page
condition occurred during the WRITE.

13. The behavior of the combination of ADVANCING and AT END-OF-PAGE clauses needs to be understood in order to
get the desired results. To that end, here is the sequence of events that will occur with a WRITE statement that
involves these clauses:

a. If AFTER ADVANCING is specified:

If AFTER ADVANCING PAGE was specified, a form-feed character is written to the file and the internal
end-of-page switch is set

OTHERWISE the appropriate number of line-feed characters (ADVANCING n LINES) will be written to the
file; if the internal LINAGE counter shows that these line feeds have caused the maximum available
usable lines on a logical page to be exhausted, the internal end-of-page switch is set.

b. The data record is written to the file. If the internal LINAGE counter shows that writing this record has caused
the maximum available usable lines on a logical page to be exhausted, the internal end-of-page switch is set.

c. If BEFORE ADVANCING is specified:

If BEFORE ADVANCING PAGE was specified, a form-feed character is written to the file and the internal
end-of-page switch is set

OTHERWISE the appropriate number of line-feed characters (ADVANCING n LINES) will be written to the
file; if the internal LINAGE counter shows that these line feeds have caused the maximum available
usable lines on a logical page to be exhausted, the internal end-of-page switch is set.

d. If the internal end-of-page switch is not set, imperative-statement-2 (if any) is executed

OTHERWISE (the internal end-of-page switch is set), imperative-statement-1 (if any) is executed

14. With the information from #13 above in mind, here’s a cute trick for letting the AT END-OF-PAGE clause
automatically generate page headings on your reports:

FD Report-File
 LINAGE IS 66 LINES
........WITH FOOTER AT 57
........LINES AT TOP 3
........LINES AT BOTTOM 3
.
.
.
OPEN OUTPUT Report-File
PERFORM Generate-Page-Header
.
.
.
WRITE Report-Rec AFTER ADVANCING 1 LINE
 AT END-OF-PAGE PERFORM Generate-Page-Header
END-WRITE
.
.
.
CLOSE Report-File

15. The INVALID KEY and NOT INVALID KEY clauses are legal only on WRITE statements used against for
ORGANIZATION RELATIVE or ORGANIZATION INDEXED files.

OpenCOBOL 1.1 Programmers Guide PROCEDURE DIVISION

06FEB2009 Version Page 6-102

16. The ON INVALID KEY clause will be triggered (thus executing imperative-statement-3) if an error occurred during
the WRITE. Such errors might be actual I/O errors or “Key Exists” errors (file status 22), indicating you tried to
WRITE a record that already existed.

17. The NOT ON INVALID KEY clause will be triggered (thus executing imperative-statement-4) if no error occurred
during the WRITE.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-1

7. The OpenCOBOL System Interface

7.1. Using the OpenCOBOL Compiler (cobc)

7.1.1. Introduction

Program source files should have extensions of “.cob” or “.cbl”.

Program filenames should match exactly the specification of PROGRAM-ID (including case). The reason for this was
discussed in section 3.

Spaces cannot be included in PROGRAM-IDs and therefore should not be included in program filenames.

The OpenCOBOL compiler will translate your COBOL program into C source code, compile that C source code into
executable binary form using the “C” compiler specified when OpenCOBOL was built and link that executable binary
into either directly executable form, static-linkable form or dynamically-loadable executable form.

The OpenCOBOL compiler is named “cobc” (“cobc.exe” on a Windows system).

7.1.2. Syntax and Options

The following describes the syntax and option switches of the cobc command. This information may be displayed by
entering the command “cobc --help”.

Usage: cobc [options] file...

Options:
 --help Display this message
 --version, -V Display compiler version
 --info, -i Display compiler build information
 -v Display the commands invoked by the compiler
 -x Build an executable program
 -m Build a dynamically loadable module (default)
 -std=<dialect> Warnings/features for a specific dialect :
 cobol2002 Cobol 2002
 cobol85 Cobol 85
 ibm IBM Compatible
 mvs MVS Compatible
 bs2000 BS2000 Compatible
 mf Micro Focus Compatible
 default When not specified
 See config/default.conf and config/*.conf
 -free Use free source format
 -fixed Use fixed source format (default)
 -O, -O2, -Os Enable optimization
 -g Produce debugging information in the output
 -debug Enable all run-time error checking
 -o <file> Place the output into <file>
 -b Combine all input files into a single
 dynamically loadable module
 -E Preprocess only; do not compile, assemble or link
 -C Translation only; convert COBOL to C
 -S Compile only; output assembly file
 -c Compile and assemble, but do not link
 -P Generate preprocessed program listing (.lst)
 -Xref Generate cross reference through 'cobxref'
 (V. Coen's 'cobxref' must be in path)
 -I <directory> Add <directory> to copy/include search path
 -L <directory> Add <directory> to library search path
 -l <lib> Link the library <lib>
 -A <options> Add <options> to the C compile phase
 -Q <options> Add <options> to the C link phase
 -D <define> Pass <define> to the C compiler
 -conf=<file> User defined dialect configuration - See -std=
 --list-reserved Display reserved words
 --list-intrinsics Display intrinsic functions
 --list-mnemonics Display mnemonic names
 -save-temps(=<dir>) Save intermediate files (default current directory)
 -MT <target> Set target file used in dependency list
 -MF <file> Place dependency list into <file>
 -ext <extension> Add default file extension

 -W Enable ALL warnings
 -Wall Enable all warnings except as noted below
 -Wobsolete Warn if obsolete features are used

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-2

 -Warchaic Warn if archaic features are used
 -Wredefinition Warn incompatible redefinition of data items
 -Wconstant Warn inconsistent constant
 -Wparentheses Warn lack of parentheses around AND within OR
 -Wstrict-typing Warn type mismatch strictly
 -Wimplicit-define Warn implicitly defined data items
 -Wcall-params Warn non 01/77 items for CALL params (NOT set with -Wall)
 -Wcolumn-overflow Warn text after column 72, FIXED format (NOT set with -Wall)
 -Wterminator Warn lack of scope terminator END-XXX (NOT set with -Wall)
 -Wtruncate Warn possible field truncation (NOT set with -Wall)
 -Wlinkage Warn dangling LINKAGE items (NOT set with -Wall)
 -Wunreachable Warn unreachable statements (NOT set with -Wall)

 -ftrace Generate trace code (Executed SECTION/PARAGRAPH)
 -ftraceall Generate trace code (Executed SECTION/PARAGRAPH/STATEMENTS)
 -fsyntax-only Syntax error checking only; don't emit any output
 -fdebugging-line Enable debugging lines ('D' in indicator column)
 -fsource-location Generate source location code (Turned on by -debug or -g)
 -fimplicit-init Do automatic initialization of the Cobol runtime system
 -fsign-ascii Numeric display sign ASCII (Default on ASCII machines)
 -fsign-ebcdic Numeric display sign EBCDIC (Default on EBCDIC machines)
 -fstack-check PERFORM stack checking (Turned on by -debug or -g)
 -ffold-copy-lower Fold COPY subject to lower case (Default no transformation)
 -ffold-copy-upper Fold COPY subject to upper case (Default no transformation)
 -fwrite-after Use AFTER 1 for WRITE of LINE SEQUENTIAL (Default BEFORE 1)
 -fnotrunc Do not truncate binary fields according to PICTURE
 -ffunctions-all Allow use of intrinsic functions without FUNCTION keyword
 -fmfcomment '*' or '/' in column 1 treated as comment (FIXED only)
 -fnull-param Pass extra NULL terminating pointers on CALL statements

As discussed in section 2, program compilation units may consist of multiple programs defined sequentially in a single
source file. By specifying multiple source files on the “cobc” command, it is possible for a single execution of the
“cobc” command to process multiple compilation units.

7.1.3. Compiling Executable Programs

The simplest mode of compilation is to generate a single executable file from one or more OpenCOBOL source files:

cobc –x prog1.cbl prog2.cbl prog3.cbl

The main program must be the first program unit found in the “prog1.cbl” file. The remainder of “prog1.cbl” as well
as all of “prog2.cbl” and “prog3.cbl” must be subprograms or nested subprograms.

This will generate a single executable file (UNIX) or exe file (Windows) which has all required COBOL programs
included in the file. The dynamically-loadable runtime libraries for OpenCOBOL, GMP and BDB (or whatever other file
I/O module was built-in to the OpenCOBOL package you are using) are still required to be available at run-time,
however.

7.1.4. Dynamically-Loadable Subprograms

Subprograms that are to be dynamically loaded into memory at execution time must be compiled using the “-m”
option on the cobc command, as follows:

cobc –m sprog1.cbl

- or-

cobc –m sprog1.cbl sprog2.cbl sprog3.cbl

The first command above generates a single dynamically-loadable module while the second example generates three.

The following rules apply to dynamically-loaded modules and the subroutines contained within them:

1. A Dynamically-loadable module generated from a source file named “xxxxxxxx.cbl” or “xxxxxxxx.cob” will be
named “xxxxxxxx.so” on a UNIX system or “xxxxxxxx.dll” on a Windows system.

2. Dynamically-loadable modules containing only a single subprogram are created from OpenCOBOL source files
having only a single program-unit. The PROGRAM-ID of that program unit must match exactly the filename
(minus “.cbl” or “.cob”) of the source code as well the filename (minus the “.so” or “.dll”) of the dynamically-
loadable module.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-3

3. Dynamically-loadable modules containing multiple subprograms are created from a single OpenCOBOL source file
containing multiple program-units. The PROGRAM-ID of one of those program units must match exactly the
filename (minus “.cbl” or “.cob”) of the source code as well the filename (minus the “.so” or .dll”) of the
dynamically-loadable module. This PROGRAM-ID is known as the primary entry-point of the dynamically-loadable
module.

4. When a program CALLs a subprogram that is contained within a dynamically-loadable module

a. The OpenCOBOL runtime library performs a search of all currently-loaded dynamically-loadable modules
for the subprogram entry-point (the entry-point is the literal or identifier coded on the CALL statement
(see section 6.7). That entry-point will have been defined as either a PROGRAM-ID (section 3) or ENTRY
point (section 6.16) within the source file that created the dynamically-loadable module.

b. If the entry-point was found, control is transferred to there and the subprogram begins execution.

c. If the entry-point was not found, the OpenCOBOL runtime library searches for a file named “xxxxxxxx.so”
(UNIX) or “xxxxxxxx.dll” (Windows), where xxxxxxxx is the desired subroutine entry-point.

i. If a file was located, it is loaded and control is transferred to the entry-point within it so the
subprogram may begin execution.

ii. If a file was not located, an error message (“libcob: Cannot find module 'xxxxxxxx'”) is issued
and program execution is aborted.

5. Rule #4 has a profound implication to subprogramming with dynamically-loadable modules containing multiple
entry-points – You must successfully CALL the primary entry-point of the module (see rule #3) before you can
CALL any other entry-points within the module.

It is also possible to generate main programs as dynamically-loadable libraries. Just use the “-m” option (as shown
here) rather than the “-x” option. To execute these main programs, you’ll need to utilize the cobcrun command, as
discussed in section 7.2.2.

7.1.5. Static Subroutines

You may also compile OpenCOBOL subroutines into assembler source code which can then be assembled and linked
with a main program when that main program is compiled. To create such an assembler source file, compile the
subprogram(s) as follows:

cobc –S sprog1.cbl (Note: “-S” is an uppercase-S)

This will create an assembler source file named “sprog1.s”. If you specify multiple input files, they’ll each create their
own “.s” files.

To compile a main program, assemble an assembler source file and static-link it all together:

cobc –x mainprog.cbl sprog1.s

If multiple subprograms are needed, simply add their “.s” files to the command line. Any subprogram entry-points for
which “.s” files were not specified will be CALLed at runtime as dynamically-loadable modules.

7.1.6. Combining COBOL and C Programs

Linkage between OpenCOBOL and C language programs is possible, but may require a little bit of special coding in one
program or the other in order to meaningfully pass data between them. The issues involved deal predominantly with
three topics, as follows. Each issue is discussed, with upcoming coding samples illustrating specifics as to how those
issues are overcome in actual program code.

7.1.6.1. OpenCOBOL Run-Time Library Requirements

Like most other implementations of the COBOL language, OpenCOBOL utilizes a run-time library. When the first
program unit executed in a given execution sequence is an OpenCOBOL program, any run-time library initialization will

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-4

be performed by that COBOL code in a manner that is transparent to the C-language programmer. If, however, a C
program unit is the first to execute, the burden of perform OpenCOBOL run-time library initialization falls upon the C
program.

7.1.6.2. String Allocation Differences Between OpenCOBOL and C

Both languages store strings as a fixed-length continuous sequence of characters.

COBOL stores these character sequences up to a specific quantity limit imposed by the PICTURE cause of the data
item. For example:

01 LastName PIC X(15).

There is never an issue of exactly what the length of a string contained in a USAGE DISPLAY data item is – there are
always exactly how ever many characters as were allowed for by the PICTURE clause. In the example above,
“LastName” will always contain exactly fifteen characters; of course, there may be anywhere from 0 to 15 trailing
SPACES as part of the current LastName value.

C actually has no “string” datatype – rather, it stores strings as an array of “char” datatype items where each element
of the array is a single character. Being an array, there is an upper limit to how many characters may be stored in a
given “string”. For example:

char lastName[15]; /* 15 chars: lastName[0] thru lastName[14] */

C provides a robust set of string-manipulation functions to copy strings from one char array to another, search strings
for certain characters, compare one char array to another, concatenate char arrays and so forth. To make these
functions possible, it was necessary to be able to define the logical end of a string. C accomplishes this via the
expectation that all strings (char arrays) will be terminated by a NULL character (x’00’). Of course, no one forces a
programmer to do this, but if [s]he ever expects to use any of the C standard functions to manipulate that string they
had better be doing it.

So, OpenCOBOL programmers expecting to pass strings to or receive strings from C programs had best be prepared to
deal with the null-termination issue.

7.1.6.3. Matching C Data Types with OpenCOBOL USAGEs

This is pretty simple, the OpenCOBOL and C programmer must just be aware of the following correspondence
between C data types and COBOL USAGE specifications:

Figure 7-1 - C/OpenCOBOL Data Type Matches

This COBOL USAGE…

(no PICTURE allowed)

Occupies this
space…

Holds these numeric values… And corresponds to this C
data type…

BINARY-CHAR

BINARY-CHAR UNSIGNED

1 byte 0 to 255 unsigned char

BINARY-CHAR SIGNED 1 byte -128 to +127 signed char

BINARY-SHORT

BINARY-SHORT UNSIGNED

2 bytes 0 to 65535 unsigned

unsigned int

unsigned short

unsigned short int

BINARY-SHORT SIGNED 2 bytes -32768 to +32767 int

short

short int

signed int

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-5

This COBOL USAGE…

(no PICTURE allowed)

Occupies this
space…

Holds these numeric values… And corresponds to this C
data type…

signed short

signed short int

BINARY-LONG

BINARY-LONG UNSIGNED

4 bytes 0 to 4294967295 unsigned long

unsigned long int

BINARY-LONG SIGNED 4 bytes -2147483648 to +2147483647 long

long int

signed long

signed long int

BINARY-C-LONG SIGNED

4 bytes or 8
bytes

-2147483648 to +2147483647

Or

-9223372036854775808 to
+9223372036854775807

long

(see the description of
USAGE BINARY-C-LONG in
Figure 5-10)

BINARY-DOUBLE

BINARY-DOUBLE UNSIGNED

8 bytes 0 to 18446744073709551615 unsigned long long

unsigned long long int

BINARY-DOUBLE SIGNED 8 bytes -9223372036854775808 to
+9223372036854775807

long long int

signed long long int

COMPUTATIONAL-1 4 bytes -3.4 x 10
38

 to +3.4 x 10
38

(six decimal digits of precision)

float

COMPUTATIONAL-2 8 bytes -1.7 x 10
308

 to +1.7 x 10
308

(15 decimal digits of precision)

double

N/A (no OpenCOBOL
equivalent)

12 bytes -1.19 x 10
4932

 to +1.19 x 10
4932

(18 decimal digits of precision)

long double

There are other OpenCOBOL PICTURE/USAGE combinations that can define the same storage size and value range
combinations, but (with the exception of COMP-1 and COMP-2), these are the ANSI2002 standard specifications for C-
program data compatibility and OpenCOBOL programmers should get used to using them when data is being shared
with C programs (they’re good documentation too, highlighting the fact that the data will be “shared” with a C
program).

The minimum values shown for the various SIGNED integer USAGEs are appropriate for a computer system that uses
2s-complement representation for negative signed binary values (such as those CPUs typically found in Windows PCs).
A computer system using 1s-complement representation for negative signed binary values would have minimum
values that are 1 greater (-127 instead of -128, for example).

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-6

7.1.6.4. OpenCOBOL Main Programs CALLing C Subprograms

Here are samples of an OpenCOBOL program that CALLs a C subprogram.

Figure 7-2 - OpenCOBOL CALLing C

(maincob.cbl)

This OpenCOBOL MAIN PROGRAM…

(subc.c)

…wants to CALL this C SUBPROGRAM

 IDENTIFICATION DIVISION.
 PROGRAM-ID. maincob.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Arg1 PIC X(7).
 01 Arg2 PIC X(7).
 01 Arg3 USAGE BINARY-LONG.
 PROCEDURE DIVISION.
 000-Main.
 DISPLAY 'Starting cobmain'.
 MOVE 123456789 TO Arg3.
 STRING 'Arg1'
 X'00'
 DELIMITED SIZE
 INTO Arg1
 END-STRING.
 STRING 'Arg2'
 X'00'
 DELIMITED SIZE
 INTO Arg2
 END-STRING.
 CALL 'subc' USING BY CONTENT Arg1,
 BY REFERENCE Arg2,
 BY REFERENCE Arg3.
 DISPLAY 'Back'.
 DISPLAY 'Arg1=' Arg1.
 DISPLAY 'Arg2=' Arg2.
 DISPLAY 'Arg3=' Arg3.
 DISPLAY 'Returned value='
 RETURN-CODE.
 STOP RUN.

#include <stdio.h>

int subc(char *arg1,
 char *arg2,
 unsigned long *arg3) {
 char nu1[7]="New1";
 char nu2[7]="New2";
 printf("Starting subc\n");
 printf("Arg1=%s\n",arg1);
 printf("Arg2=%s\n",arg2);
 printf("Arg3=%d\n",*arg3);
 arg1[0]='X';
 arg2[0]='Y';
 *arg3=987654321;
 return 2;
}

The idea is to pass two string and one full-word unsigned arguments to the subprogram, have the subprogram print
them out, change all three and pass a return code of 2 back to the caller . The caller will then re-display the three
arguments (showing changes only to the two BY REFERENCE arguments), display the return code and halt. While
simple, these two programs illustrate the techniques required quite nicely.

Note how the COBOL program ensures that a null end-of-string terminator is present on both string arguments.

Since the C program is planning on making changes to all three arguments, it declares all three as pointers in the
function header and references the third argument as a pointer in the function body.

33

33
 It actually had no choice for the two string (char array) arguments – they must be defined as pointers in the

function even though the function code references them without the leading “*” that normally signifies pointers.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-7

These programs are compiled and executed as follows. The example assumes a UNIX system with an OpenCOBOL
build that uses the native C compiler on that system; the technique works equally well regardless of which C compiler
and which operating system you’re using.

$ cc –c subc.c
$ cobc -x maincob.cbl subc.o
$ maincob
Starting cobmain
Starting subc
Arg1=Arg1
Arg2=Arg2
Arg3=123456789
Back
Arg1=Arg1
Arg2=Yrg2
Arg3=+0987654321
Returned value=+000000002
$

Remember that the null characters are actually in the OpenCOBOL “Arg1” and “Arg2” data items. They don’t appear
in the output, but they ARE there. When passing character strings to C programs, it’s probably a good idea to make a
null-terminated copy of the string items and pass those copies to the C program.

As was discussed in section 6.7, an OpenCOBOL CALL to a subprogram will need to specify the BY CONTENT clause to
make an argument unchangeable by a subprogram if that subprogram is written in a language other than OpenCOBOL.
When the CALLing and CALLed programs are both OpenCOBOL, the BY VALUE will be a faster alternative to BY
CONTENT.

7.1.6.5. C Main Programs CALLing OpenCOBOL Subprograms

Now, the roles of the two languages in the previous section will be reversed, having a C main program execute an
OpenCOBOL subprogram.

Figure 7-3 - C CALLing OpenCOBOL

(mainc.c)
This C MAIN PROGRAM…

(subcob.cbl)
…wants to CALL this OpenCOBOL SUBPROGRAM

#include <libcob.h>
#include <stdio.h>

int main (int argc, char **argv) {
 int returnCode;
 char arg1[7] = "Arg1";
 char arg2[7] = "Arg2";
 unsigned long arg3 = 123456789;
 printf("Starting mainc...\n");
 cob_init (argc, argv);
/* cob_init(0,NULL) if cmdline args not going
to COBOL */
 returnCode = subcob(arg1,arg2,&arg3);
 printf("Back\n");
 printf("Arg1=%s\n",arg1);
 printf("Arg2=%s\n",arg2);
 printf("Arg3=%d\n",arg3);
 printf("Returned value=%d\n",returnCode);
 return returnCode;
}

 IDENTIFICATION DIVISION.
 PROGRAM-ID. subcob.
 DATA DIVISION.
 LINKAGE SECTION.
 01 Arg1 PIC X(7).
 01 Arg2 PIC X(7).
 01 Arg3 USAGE BINARY-LONG.
 PROCEDURE DIVISION USING
 BY VALUE Arg1,
 BY REFERENCE Arg2,
 BY REFERENCE Arg3.
 000-Main.
 DISPLAY 'Starting cobsub.cbl'.
 DISPLAY 'Arg1=' Arg1.
 DISPLAY 'Arg2=' Arg2.
 DISPLAY 'Arg3=' Arg3.
 MOVE 'X' TO Arg1 (1:1).
 MOVE 'X' TO Arg2 (1:1).
 MOVE 987654321 TO Arg3.
 MOVE 2 TO RETURN-CODE.
 GOBACK.

Since the C program is the one that will execute first, before the OpenCOBOL subroutine, the burden of initializing the
OpenCOBOL run-time environment lies with that C program; it will have to invoke the “cob_init” function, which is
part of the “libcob” library. The two required C statements are shown, highlighted in boldface.

The arguments to the “cob_init” routine are the argument count and value parameters passed to the main function
when the program began execution. By passing them into the OpenCOBOL subprogram, it will be possible for that
OpenCOBOL program to retrieve the command line or individual command-line arguments. If that won’t be
necessary, “cob_init(0,NULL);” could be specified instead.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-8

Since the C program wants to allow “arg3” to be changed by the subprogram, it prefixes it with a “&” to force a CALL
BY REFERENCE for that argument. Since “arg1” and “arg2” are strings (char arrays), they are automatically passed by
reference.

Here’s the output of the compilation process as well as the program’s execution. The example assumes a Windows
system with an OpenCOBOL build that uses the GNU C compiler on that system; the technique works equally well
regardless of which C compiler and which operating system you’re using.

C:\Users\Gary\Documents\Programs> cobc -S subcob.cbl
C:\Users\Gary\Documents\Programs> gcc mainc.c subcob.s –o mainc.exe -llibcob
C:\Users\Gary\Documents\Programs> mainc.exe
Starting mainc...
Starting cobsub.cbl
Arg1=Arg1
Arg2=Arg2
Arg3=+0123456789
Back
Arg1=Xrg1
Arg2=Xrg2
Arg3=987654321
Returned value=2
C:\Users\Gary\Documents\Programs>

Note that even though we told OpenCOBOL that the 1
st

 argument was to be BY VALUE, it was treated as if it were BY
REFERENCE anyway. String (char array) arguments passed from C callers to OpenCOBOL subprograms will be
modifiable by the subprogram. It’s best to pass a copy of such data if you want to ensure that the subprogram doesn’t
change it.

The third argument is different, however. Since it’s not an array you have the choice of passing it either BY
REFERENCE

34
 or BY VALUE

35
.

34
 Use “&” with the argument in the C calling program; specify the argument as BY REFERENCE in the COBOL

subprogram

35
 Don’t use “&” with the argument in the C calling program; specify the argument as BY VALUE in the COBOL

subprogram

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-9

7.1.7. Important Environment Variables

The following chart documents the various environment variables that can play a role in the compilation of
OpenCOBOL programs.

Figure 7-4 - Compiler Environment Variables

Environment Variable Use

COB_CC Set to the name of the C compiler you wish OpenCOBOL
to use.

USE THIS FEATURE AT YOUR OWN RISK – YOU SHOULD
ALWAYS USE THE C COMPILER YOUR OPENCOBOL
BUILD WAS GENERATED FOR

COB_CFLAGS
36

 Set to any switches that you’d like to pass on to the C
compiler from the cobc compiler (in addition to any that
cobc will specify). The default is “-Iprefix/include”,
where “prefix” is the path prefix specified when the
OpenCOBOL binaries you are using were created.

COB_CONFIG_DIR Set to the path to the folder where OpenCOBOL
“config” files are kept. See section 7.1.9 for information
on how those config files are used.

COB_COPY_DIR If COPY modules your program needs are NOT stored in
the same directory as your program, set this
environment variable to the folder in which the COPY
modules may be found (IBM mainframe programmers
will recognize this as “SYSLIB”). See section 7.1.8 for
additional information on the use of COPY modules.

COB_LDADD
36

 Set to any additional linker switches (ld) that can specify
where standard libraries that must be linked with the
program can be found. The default is “” (null).

COB_LDFLAGS
36

 Set to any linker/loader (ld) switches that you’d like to
pass on to the C compiler from the cobc compiler (in
addition to any that cobc will specify). The default is
none.

COB_LIBS
36

 Set to any linker switches (ld) that specify where
standard libraries that must be linked with the program
can be found. The default is “-Lprefix/lib -lcob” , where
“prefix” is the path prefix specified when the
OpenCOBOL binaries you are using were created.

COBCPY This environment variable provides an additional means
of specifying where COPY modules may be found by the
compiler (see also COB_COPY_DIR, above). See section
7.1.8 for additional information on the use of COPY
modules.

LD_LIBRARY_PATH If you are planning on using static-linked subroutine
libraries, set this variable to the path to the directory
containing your libraries.

36
 These switches are intended for use only in very special circumstances by very advanced users; their usage is

discouraged. A future release of OpenCOBOL will introduce a better way to pass switched to the C compiler and/or
the loader from the cobc command.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-10

Environment Variable Use

TMPDIR
TMP
(checked in this order)

Set to a directory/folder appropriate to create
temporary files in. The intermediate working files
created by cobc will be created here (and deleted once
they’re no longer needed).

On a Windows system, the TMP environment variable is
normally set for you when you logon. If you wish to use
a different temporary folder, you may set TMPDIR
yourself and have no fear of disrupting other Windows
software that relies on TMP.

7.1.8. Locating Copybooks at Compilation Time

The OpenCOBOL compiler will attempt to locate copybooks (source code modules brought into the compilation
process via the COPY statement) by searching for them in the following folders. The search will occur in the sequence
shown below, and will terminate once a copybook is found.

 The folder in which the program being compiled resides.
 The folder named on the “-I” compiler switch (see section 7.1.2)
 Each of the folders named on the COBCPY environment variable (see section 7.1.7). A single folder may be

named or multiple folders may be specified, separated by a system-appropriate delimiter character.
37

 When
multiple folders are specified, they will be searched in the order they are named on the environment
variable.

 The folder specified on the COB_COPY_DIR environment variable (see section 7.1.7).

As each of the above folders is searched for a copybook - “COPY XXXXXXXX.”, for example – the OpenCOBOL compiler
will attempt to locate the copybook file by any of the following names, in the sequence shown:

 XXXXXXXX.CPY
 XXXXXXXX.CBL
 XXXXXXXX.COB
 XXXXXXXX.cpy
 XXXXXXXX.cbl
 XXXXXXXX.cob
 XXXXXXXX

The COPY command is case-sensitive on UNIX systems; “COPY copybookname” and “COPY COPYBOOKNAME” will both
fail to locate the “CopyBookName” copybook on a UNIX system. Windows implementations of OpenCOBOL may or
may not be similarly case sensitive with regard to copybook names, depending upon the Windows version and
OpenCOBOL build options – it is safest to simply treat the COPY command as case-sensitive in all environments.

7.1.9. Using Compiler Configuration Files

OpenCOBOL uses compiler configuration files to define various options that will control the compilation process.
These configuration files are specified using the “-conf” compilation switch or are found in the folder defined by the
COB_CONFIG_PATH environment variable.

The following is a verbatim listing of the “default” configuration file (the one used if you don’t specify the “-conf”
switch), just to show you the types of settings that may appear:

COBOL compiler configuration -*- sh -*-

Value: any string
name: "OpenCOBOL"

37
 If the OpenCOBOL compiler you are using was built to utilize a native Windows environment, use a semicolon (;).

If, however, the OpenCOBOL compiler was built for a Unix or Linux environment, or was built for a Windows
environment utilizing either the Cygwin or MinGW Unix “emulators”, use a colon character (:) as the separator.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-11

Value: int
tab-width: 8
text-column: 72

Value: 'cobol2002', 'mf', 'ibm'

assign-clause: mf

If yes, file names are resolved at run time using environment variables.
For example, given ASSIGN TO "DATAFILE", the actual file name will be
1. the value of environment variable 'DD_DATAFILE' or
2. the value of environment variable 'dd_DATAFILE' or
3. the value of environment variable 'DATAFILE' or
4. the literal "DATAFILE"
If no, the value of the assign clause is the file name.

Value: 'yes', 'no'
filename-mapping: yes

Value: 'yes', 'no'
pretty-display: yes

Value: 'yes', 'no'
auto-initialize: yes

Value: 'yes', 'no'
complex-odo: no

Value: 'yes', 'no'
indirect-redefines: no

Binary byte size - defines the allocated bytes according to PIC
Value: signed unsigned bytes
------ -------- -----
'2-4-8' 1 - 4 2
5 - 9 4
10 - 18 8

'1-2-4-8' 1 - 2 1
3 - 4 2
5 - 9 4
10 - 18 8

'1--8' 1 - 2 1 - 2 1
3 - 4 3 - 4 2
5 - 6 5 - 7 3
7 - 9 8 - 9 4
10 - 11 10 - 12 5
12 - 14 13 - 14 6
15 - 16 15 - 16 7
17 - 18 17 - 18 8
binary-size: 1-2-4-8

Value: 'yes', 'no'
binary-truncate: yes

Value: 'native', 'big-endian'
binary-byteorder: big-endian

Value: 'yes', 'no'
larger-redefines-ok: no

Value: 'yes', 'no'
relaxed-syntax-check: no

Perform type OSVS - If yes, the exit point of any currently executing perform
is recognized if reached.
Value: 'yes', 'no'
perform-osvs: no

If yes, linkage-section items remain allocated
between invocations.
Value: 'yes', 'no'
sticky-linkage: no

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-12

If yes, allow non-matching level numbers
Value: 'yes', 'no'
relax-level-hierarchy: no

not-reserved:
Value: Word to be taken out of the reserved words list
(case independent)

Dialect features
Value: 'ok', 'archaic', 'obsolete', 'skip', 'ignore', 'unconformable'
author-paragraph: obsolete
memory-size-clause: obsolete
multiple-file-tape-clause: obsolete
label-records-clause: obsolete
value-of-clause: obsolete
data-records-clause: obsolete
top-level-occurs-clause: skip
synchronized-clause: ok
goto-statement-without-name: obsolete
stop-literal-statement: obsolete
debugging-line: obsolete
padding-character-clause: obsolete
next-sentence-phrase: archaic
eject-statement: skip
entry-statement: obsolete
move-noninteger-to-alphanumeric: error
odo-without-to: ok

7.2. Running OpenCOBOL Programs

7.2.1. Executing Programs Directly

OpenCOBOL programs compiled with the “-x” option will be generated as directly-executable programs. For
example, on a Windows system, the “-x” option will be generated as an “.exe” file.

These native executables are appropriate for execution as non-graphical user interface programs.

On a UNIX system this means the programs may be executed from a command shell such as bash, csh, ksh and so
forth. When an OpenCOBOL program runs on a Windows system, it runs within a console window (i.e. “cmd.exe”).

Interactions between the program and the user will take place using the standard input, standard output and standard
error streams. Any SCREEN SECTION I/O performed by the program will take place within the command shell
“window”.

Direct program execution syntax is as follows:

[path]program [arguments]

For example:

/usr/local/printaccount ACCT=6625378

Or…

C:\Users\Me\Documents\Programs\printaccount.exe ACCT=6625378

7.2.2. Using the “cobcrun” Utility

It is possible to generate executable modules for all OpenCOBOL programs, not just subroutines, by choosing to use
the “-m” option to specify the compiler output format even for main programs (as discussed in section 7.1.4, this is the
recommended output format option for subroutines).

Some may prefer to compile their OpenCOBOL main programs into these dynamically-loadable modules in the
interests of using the same general compilation command for all programs without having to think “Is it a main
program or a subroutine?”.

Main programs compiled in this manner should be executed as follows:

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-13

[path]cobcrun program [arguments]

Do not specify the “.so” or “.dll” extension on the program name. The “program” value must exactly match the
PROGRAM-ID of the main program (including upper- and lower-case letters).

For an example of the use of cobcrun:

cd /usr/local
cobcrun printaccount ACCT=6625378

Or…

cd C:\Users\Me\Documents\Programs
cobcrun printaccount.exe ACCT=6625378

Note how the cobcrun command does not allow a path to be specified with the program name –the directory in which
the programs dynamically loadable module exists must either be the current directory or must be defined in the
current PATH.

7.2.3. Program Arguments

Regardless of the manner in which a program is executed, any arguments specified to the program may be retrieved
via either of the following, documented in section 6.4.2:

 ACCEPT … FROM COMMAND-LINE

 ACCEPT … FROM ARGUMENT-VALUE

7.2.4. Important Environment Variables

The following chart documents the various environment variables that can play a role in the execution of OpenCOBOL
programs.

Figure 7-5 - Run-Time Environment Variables

Environment Variable Use

COB_LIBRARY_PATH At runtime, OpenCOBOL will attempt to locate and load
any application dynamically-loadable libraries from the
PATH and the directory in which the program
executable was found. If these library files could be
somewhere else, specify the directory path using this
variable.

COB_PRE_LOAD If set to any non-null value, this variable will cause all
dynamically-loadable libraries to be loaded when the
program begins execution (rather than searching for
and loading the module upon first use).

COB_SCREEN_ESC If set to any non-blank value, this variable allows the
ACCEPT verb to detect the Esc key. See

Figure 4-8 for additional information.

COB_SCREEN_EXCEPTIONS Setting this variable to any non-blank value will allow
the ACCEPT verb to detect the Esc, PgUp and PgDn keys.
See

Figure 4-8 for additional information.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-14

Environment Variable Use

COB_SORT_MEMORY The value of this variable (an integer) will be used to
define how much memory will be allocated for use in
sorting. If the value is 1048576 or greater, that value
will be used “as is” as the amount of memory (in bytes)
to allocate. If the value is less than 1048576. The
default sort memory amount is 128 MB.

COB_SWITCH_n (n=1 to 8); These environment variables correspond to
SWITCH-1 through SWITCH-8. Setting them to “ON” will
activate them; any other value turns them off. See
section 4.1.4 for more information.

COB_SYNC If set to a value of upper- or lowercase “p”, this variable
will force a file commit every time a file is written to
(ensuring that data is immediately written to the file
rather than retained in memory until a future commit
occurs). This will slow-down update access to files, but
will provide for better integrity in the event of a
program failure.

DB_HOME If your OpenCOBOL build uses the Berkeley Database
(BDB) package, use this environment variable to specify
the folder in which the lock management files to be
associated with all non-SORT files opened by the
program will be stored

38
. Having this variable defined

will activate record locking features on the READ
(section 6.33), REWRITE (section 6.36) and WRITE
(section 6.50) statements

39
.

PATH The OpenCOBOL “bin” directory should be defined in
the PATH.

TMPDIR

TMP

TEMP

(checked in this order)

Set to a directory/folder appropriate to create
temporary files in. This will be used by SORT and
MERGE to create temporary work files. You may also
use this folder for any temporary files your application
may require.

Good form dictates that – if your application DOES
create temporary working files – it should clean-up
after itself.

40
.

7.3. Built-In Subroutines

38
 ORGANIZATION INDEXED files will also have their data file allocated in the DB_HOME folder, if DB_HOME exists.

39
 Even with DB_HOME, locking will not work with ORGANIZATION SEQUENTIAL (either type) or ORGANIZAION

RELATIVE files with OpenCOBOL builds created for Windows/MinGW. ORGANIZATION INDEXED locks will work
with Windows/MinGW and all locks will work for all file organizations with UNIX OpenCOBOL builds.

40
 Take a look at the C$DELETE and CBL_DELETE_FILE built-in subroutines.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-15

7.3.1. “Call by Name” Routines

There are a number of built-in subroutines included with OpenCOBOL. Generally, these routines are intended to
match those available in Micro Focus COBOL (CBL_...) or ACUCOBOL (C$...).

These routines, all executed via their UPPERCASE NAMES, are capable of performing the following functions:

 Changing the current directory

 Copying files

 Creating a directory

 Creating, Opening, Closing, Reading and Writing byte-stream files

 Deleting directories (folders)

 Deleting files

 Determining how many arguments were passed to a subroutine

 Getting file information (size and last-modification date/time)

 Getting the length (in bytes) of an argument passed to a subroutine

 Justifying a field left-, right- or center-aligned

 Moving files (a destructive “copy”)

 Putting the program ‘to sleep’, specifying the sleep time in seconds

 Putting the program ‘to sleep’, specifying the sleep time in nanoseconds; CAVEAT: although you’ll
express the time in nanoseconds, Windows systems will only be able to sleep at a millisecond
granularity

 Submitting a command to the shell environment appropriate for the version of OpenCOBOL you are
using for execution

The following table describes the various built-in subroutines. ALL SUBROUTINE ARGUMENTS ARE MANDATORY
EXCEPT WHERE EXPLICITLY NOTED TO THE CONTRARY. Any subroutine returning a value to RETURN-CODE could
utilize the RETURNING/GIVING clause on the CALL to return the result back to the full-word binary COMP-5 data item
of your choice. See section 6.7.

7.3.1.1. CALL “C$CHDIR” USING directory-path, result

This routine makes directory-path (an alphanumeric literal or identifier) the current directory.

The return code of the operation is returned both in the result argument (any non-edited numeric identifier) as well as
in the RETURN-CODE special register. The return code of the operation will be either 0=Success or 128=failure.

The directory change remains in effect until the program terminates (in which the original current directory at the
time the program was restarted will be automatically restored) or until another C$CHDIR is executed.

Also see CBL_CHANGE_DIR – section 7.3.1.13.

7.3.1.2. CALL “C$COPY” USING src-file-path, dest-file-path, 0

Use this subroutine to copy file src-file-path to dest-file-path as if it were done via the “CP” (Unix) or “COPY”
(Windows) command.

Both file path arguments may be alphanumeric literals or identifiers.

The third argument is required, but is unused.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-16

If the attempt to copy the file fails (for example, it or the destination directory doesn't exist), RETURN-CODE will be set
to 128; on successful completion it will be set to 0.

Also see CBL_COPY_FILE – section 7.3.1.16.

7.3.1.3. CALL “C$DELETE” USING file-path, 0

This routine deletes the file specified by the file-path argument (an alphanumeric literal or identifier) just as if that
were done using the “RM” (Unix) or “ERASE” (Windows) command.

The second argument is required, but is unused.

If the attempt to delete the file fails (for example, it doesn't exist), RETURN-CODE will be set to 128; on successful
completion it will be set to 0.

Also see CBL_DELETE_FILE – section 7.3.1.20.

7.3.1.4. CALL “C$FILEINFO” USING file-path, file-info

With this routine you may retrieve the size of the file
41

 specified as the file-path argument (an alphanumeric literal or
identifier) and the date/time that file was last modified. The information is returned to the file-info argument, which
is defined as the following 16-byte area:

 01 File-Info.
 05 File-Size-In-Bytes PIC 9(18) COMP.
 05 Mod-YYYYMMDD PIC 9(8) COMP. *> Modification Date
 05 Mod-HHMMSS00 PIC 9(8) COMP. *> Modification Time

The last two decimal digits in the modification time will always be 0.

If the subroutine is successful, a value of 0 will be returned in RETURN-CODE. Failure to retrieve the needed statistics
on the file will cause a RETURN-CODE value of 35 to be passed back. Supplying less than two arguments will generate
a 128 RETURN-CODE value.

Also see CBL_CHECK_FILE_EXIST – section 7.3.1.14.

7.3.1.5. CALL “C$JUSTIFY” USING data-item, “justification-type”

Use C$JUSTIFY to left, right or center-justify an alphabetic, alphanumeric or numeric edited data-item. The
justification-type argument indicates the type of the justification to be performed. The value of that argument will be
interpreted as follows:

absent Treated the same as if it were "R"
Cxxx... If it begins with a capital "C", the value will be centered
Rxxx... If it begins with a capital "R", the value will be right-justified, space-filled to the left
Lxxx... If it begins with a capital "L", the value will be left-justified, space-filled to the right
anything else Treated as if it were "R"

7.3.1.6. CALL “C$MAKEDIR” USING dir-path

With this routine you may create a new directory – the name of which is supplied as the dir-path argument (an
alphanumeric literal or identifier).

Only the lowest-level directory (last) in the specified path can be created – all others must already exist. This
subroutine will NOT behave as a “mkdir –p” (Unix) or “mkdir /p” (Windows).

41
 File size information may not be available in the particular OpenCOBOL build / Operating System combination you

are using and may therefore always be returned as zero.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-17

RETURN-CODE will be set to the return code of the operation; the value will be either 0=Success or 128=failure.

Also see CBL_CREATE_DIR- section 7.3.1.17.

7.3.1.7. CALL “C$NARG” USING arg-count-result

C$NARG returns the number of arguments passed to the subroutine that calls C$NARG back to the numeric field arg-
count-result.

When CALLed from a main program, the returned value will always be 0.

Also see the NUMBER-OF-CALL-PARAMETERS.register (section 6.1.8).

7.3.1.8. CALL “C$PARAMSIZE” USING argument-number

This subroutine returns the size (in bytes) of the subroutine argument supplied using the argument-number parameter
(a numeric literal or data item).

The size is returned in the RETURN-CODE special register.

If the specified argument does not exist, or an invalid argument number is specified, a value of 0 is returned.

7.3.1.9. CALL “C$SLEEP” USING seconds-to-sleep

C$SLEEP puts the program to sleep for the specified number of seconds. The seconds-to-sleep argument may be a
numeric literal or data item.

Sleep times less than 1 will be interpreted as 0, which immediately returns without any sleep delay.

Also see the CBL_OC_NANOSLEEP subroutine – section 7.3.1.30.

7.3.1.10. CALL “C$TOLOWER” USING data-item, BY VALUE convert-length

This routine will converts convert-length (a numeric literal or data item) leading characters of data-item (an
alphanumeric identifier) to lower-case.

The convert-length argument must be specified BY VALUE. It specifies how many (leading) characters in data-item will
be converted – any characters after that will remain unchanged.

If convert-length is negative or zero, no conversion will be performed.

Also see CBL_TOLOWER – section 7.3.1.35.

7.3.1.11. CALL “C$TOUPPER” USING data-item, BY VALUE convert-length

Use the C$TOUPPER subroutine to change the convert-length (a numeric literal or data item) leading characters of
data-item (an alphanumeric identifier) to upper-case.

The convert-length argument must be specified BY VALUE. It specifies how many (leading) characters in data-item will
be converted – any characters after that will remain unchanged.

If convert-length is negative or zero, no conversion will be performed.

Also see CBL_TOUPPER – section 7.3.1.36.

7.3.1.12. CALL “CBL_AND” USING item-1, item-2, BY VALUE byte-length

This subroutine performs a bit-by-bit logical AND operation between the left-most 8*byte-length corresponding bits of
item-1 and item-2, storing the resulting bit string into item-2.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-18

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “AND” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 0

0 1 0

1 0 0

1 1 1

7.3.1.13. CALL “CBL_CHANGE_DIR” USING directory-path

This routine makes directory-path (an alphanumeric literal or identifier) the current directory.

The directory change remains in effect until the program terminates (in which the original current directory at the
time the program was restarted will be automatically restored) or until another CBL_CHANGE_DIR (or C$CHDIR) is
executed.

The return code of the operation is returned in the RETURN-CODE special register. The return code of the operation
will be either 0=Success or 128=failure.

Also see C$CHDIR – section 7.3.1.1.

7.3.1.14. CALL “CBL_CHECK_FILE_EXIST” USING file-path, file-info

With this routine you may retrieve the size of the file
42

 specified as the file-path argument (an alphanumeric literal or
identifier) and the date/time that file was last modified. The information is returned to the file-info argument, which
is defined as the following 16-byte area:

 01 Argument-2.
 05 File-Size-In-Bytes PIC 9(18) COMP.
 05 Mod-DD PIC 9(2) COMP. *> Modification Time
 05 Mod-MO PIC 9(2) COMP.
 05 Mod-YYYY PIC 9(4) COMP. *> Modification Date
 05 Mod-HH PIC 9(2) COMP.
 05 Mod-MM PIC 9(2) COMP.
 05 Mod-SS PIC 9(2) COMP.
 05 FILLER PIC 9(2) COMP. *> This will always be 00

If the subroutine is successful, a value of 0 will be returned in RETURN-CODE. Failure to retrieve the needed statistics
on the file will cause a RETURN-CODE value of 35 to be passed back. Supplying less than two arguments will generate
a 128 RETURN-CODE value.

Also see C$FILEINFO - section 7.3.1.4.

7.3.1.15. CALL “CBL_CLOSE_FILE” USING file-handle

The CBL_CLOSE_FILE subroutine closes a bytestream file previously opened by either the CBL_OPEN_FILE or
CBL_CREATE_FILE subroutines.

If the file defined by the file-handle argument (a PIC X(4) USAGE COMP-X data item) was opened for output, an implicit
CBL_FLUSH_FILE will be performed before the file is closed.

42
 File size information may not be available in the particular OpenCOBOL build / Operating System combination you

are using and may therefore always be returned as zero.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-19

If the subroutine is successful, a value of 0 will be returned in RETURN-CODE. Failure will cause a RETURN-CODE value
of -1 to be passed back.

7.3.1.16. CALL “CBL_COPY_FILE” USING src-file-path, dest-file-path

Use this subroutine to copy file src-file-path to dest-file-path as if it were done via the “CP” (Unix) or “COPY”
(Windows) command.

Both file path arguments may be alphanumeric literals or identifiers.

If the attempt to copy the file fails (for example, it or the destination directory doesn't exist), RETURN-CODE will be set
to 128; on successful completion it will be set to 0.

Also see C$COPY – section 7.3.1.2.

7.3.1.17. CALL “CBL_CREATE_DIR” USING dir-path

With this routine you may create a new directory – the name of which is supplied as the dir-path argument (an
alphanumeric literal or identifier).

Only the lowest-level directory (last) in the specified path can be created – all others must already exist. This
subroutine will NOT behave as a “mkdir –p” (Unix) or “mkdir /p” (Windows).

RETURN-CODE will be set to the return code of the operation; the value will be either 0=Success or 128=failure.

Also see C$MAKEDIR – section 7.3.1.6.

7.3.1.18. CALL “CBL_CREATE_FILE” USING file-path, 2, 0, 0, file-handle

The CBL_CREATE_FILE subroutine creates the new file specified using the file-path argument and opens it for output
as a byte-stream file usable by CBL_WRITE_FILE..

Arguments 2, 3 and 4 should be coded as the constant values shown.
43

A file handle (PIC X(4) USAGE COMP-X) will be returned, for any subsequent CBL_WRITE_FILE or CBL_CLOSE_FILE calls.

The success or failure of the subroutine will be reported back in the RETURN-CODE register, with a RETURN-CODE
value of -1 indicating an invalid argument and a value of 0 indicating success.

Also see CBL_OPEN_FILE – section 7.3.1.31.

7.3.1.19. CALL “CBL_DELETE_DIR” USING dir-path

Delete an empty directory via CBL_DELETE_DIR.

The only argument – dir-path (an alphanumeric literal or identifier) – is the name of the directory to be deleted.

Only the lowest-level directory (last) in the specified path will be deleted, and that directory must be empty to be
deleted.

RETURN-CODE will be set to the return code of the operation; the value will be either 0=Success or 128=failure.

7.3.1.20. CALL “CBL_DELETE_FILE” USING file-path

This routine deletes the file specified by the file-path argument (an alphanumeric literal or identifier) just as if that
were done using the “RM” (Unix) or “ERASE” (Windows) command.

43
 CBL_CREATE_FILE is actually a special-case of the CBL_OPEN_FILE routine - see that routine for a description of

the meanings of arguments 2, 3 and 4.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-20

If the attempt to delete the file fails (for example, it doesn't exist), RETURN-CODE will be set to 128; on successful
completion it will be set to 0.

Also see C$DELETE – section 7.3.1.3.

7.3.1.21. CALL “CBL_ERROR_PROC” USING function, program-pointer

This routine registers a general error-handling routine.

The function argument must be a numeric literal or a 32-bit binary COMP-5 data item (USAGE BINARY-LONG, for
example) with a value of 0 or 1. A value of 0 means that you will be registering (“installing”) an error procedure while
a value of 1 indicates you’re deregistering (“uninstalling”) a previously-installed error procedure.

The program-pointer must be a USAGE PROGRAM-POINTER data item containing the address of your error procedure.
See section 6.39.2 for instructions on how to populate such a data item.

A success (0) or failure (non-0) result will be passed back in the RETURN-CODE register.

A custom error-handler routine, if any, will trigger when a runtime error condition is encountered. The code within
the handler will be executed and – once the handler issues an EXIT PROGRAM or a GOBACK - the system-standard
error handling routine will be executed.

Only one user-defined error procedure may be in effect at any time.

An error procedure may be defined by a main program or a subprogram, but regardless of from where it was
registered, it applies to the overall program compilation unit and will trigger when a runtime error occurs anywhere in
the executable program. If the error procedure was defined by a subprogram, that program must be loaded at the
time the error procedure is executed.

An error procedure should terminate using EXIT PROGRAM or GOBACK.

The following is a sample OpenCOBOL program that registers an error procedure. The output of that program is
shown as well - as you can see, the error handler’s messages appear followed by the standard OpenCOBOL message.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. demoerrproc.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 78 Err-Proc-Install VALUE 0.
 01 Current-Date PIC X(8).
 01 Current-Time PIC X(8).
 01 Err-Proc-Address USAGE PROCEDURE-POINTER.
 01 Formatted-Date PIC X(4)/X(2)/X(2).
 01 Formatted-Time PIC X(2)/X(2)/X(2).
 PROCEDURE DIVISION.
 000-Register-Err-Proc.
 SET Err-Proc-Address TO ENTRY "999-Err"
 CALL "CBL_ERROR_PROC"
 USING Err-Proc-Install, Err-Proc-Address
 END-CALL
 IF RETURN-CODE NOT = 0
 DISPLAY 'Error: Could not‟ &
 „register Error Procedure'
 END-IF
 .
 099-Now-Test-Err-Proc.
 CALL "Tilt" END-CALL
 GOBACK
 .
 999-Err-Proc.
 ENTRY "999-Err"
 DISPLAY
 '** A Runtime Error Has Occurred **'
 END-DISPLAY
 ACCEPT
 Current-Date FROM DATE YYYYMMDD
 END-ACCEPT
 ACCEPT
 Current-Time FROM TIME

** A Runtime Error Has Occurred **
*** 2009/08/28 10:35:10 ***
libcob: Cannot find module 'Tilt'

Program output…

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-21

 END-ACCEPT
 MOVE Current-Date TO Formatted-Date
 MOVE Current-Time TO Formatted-Time
 INSPECT Formatted-Time REPLACING ALL '/' BY ':'
 DISPLAY
 '*** ' Formatted-Date ' ' Formatted-Time ' ***'
 END-DISPLAY
 GOBACK
 .

7.3.1.22. CALL “CBL_EXIT_PROC” USING function, program-pointer

This routine registers a general exit-handling routine.

The function argument must be a numeric literal or a 32-bit binary COMP-5 data item (USAGE BINARY-LONG, for
example) with a value of 0 or 1. A value of 0 means that you will be registering (“installing”) an exit procedure while a
value of 1 indicates you’re deregistering (“uninstalling”) a previously-installed exit procedure.

The program-pointer must be a USAGE PROGRAM-POINTER data item containing the address of your exit procedure.
See section 6.39.2 for instructions on how to populate such a data item.

A success (0) or failure (non-0) result will be passed back in the RETURN-CODE register.

An exit procedure will trigger when a “STOP RUN” or its equivalent (i.e. “GOBACK” executed in a main program) is
executed. The exit procedure code will be executed and – once it issues an EXIT PROGRAM or a GOBACK, the system-
standard program termination routine will be executed.

Only one user-defined exit procedure may be in effect at any time.

An exit procedure may be defined by a main program or a subprogram, but regardless of from where it was registered,
it applies to the overall program compilation unit and will trigger when a STOP RUN is executed anywhere in the
executable program. If the exit procedure was defined by a subprogram, that program must be loaded at the time the
exit procedure is executed.

An exit procedure should terminate using EXIT PROGRAM or a GOBACK.

The following is a sample OpenCOBOL program that registers an exit procedure. The output of that program is shown
as well.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. demoexitproc.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 78 Exit-Proc-Install VALUE 0.
 01 Current-Date PIC X(8).
 01 Current-Time PIC X(8).
 01 Exit-Proc-Address USAGE PROCEDURE-POINTER.
 01 Formatted-Date PIC XXXX/XX/XX.
 01 Formatted-Time PIC XX/XX/XX.
 PROCEDURE DIVISION.
 000-Register-Exit-Proc.
 SET Exit-Proc-Address TO ENTRY "999-Exit"
 CALL "CBL_EXIT_PROC"
 USING Exit-Proc-Install, Exit-Proc-Address
 END-CALL
 IF RETURN-CODE NOT = 0
 DISPLAY 'Error: Could not register Exit Procedure'
 END-IF
 .
 099-Now-Test-Exit-Proc.
 DISPLAY
 'Executing a STOP RUN...'
 END-DISPLAY
 GOBACK
 .
 999-Exit-Proc.
 ENTRY "999-Exit"
 DISPLAY
 '*** STOP RUN has been executed ***'
 END-DISPLAY

Executing a STOP RUN...
*** STOP RUN has been executed ***
*** 2009/08/28 10:01:29 ***

Program output…

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-22

 ACCEPT
 Current-Date FROM DATE YYYYMMDD
 END-ACCEPT
 ACCEPT
 Current-Time FROM TIME
 END-ACCEPT
 MOVE Current-Date TO Formatted-Date
 MOVE Current-Time TO Formatted-Time
 INSPECT Formatted-Time REPLACING ALL '/' BY ':'
 DISPLAY
 '*** ' Formatted-Date ' ' Formatted-Time ' ***'
 END-DISPLAY
 GOBACK
 .

7.3.1.23. CALL “CBL_EQ” USING item-1, item-2, BY VALUE byte-length

This subroutine performs a bit-by-bit test for equality between the left-most 8*byte-length corresponding bits of item-
1 and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “EQ” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 1

0 1 0

1 0 0

1 1 1

7.3.1.24. CALL “CBL_FLUSH_FILE” USING file-handle

In Micro Focus COBOL, CALLing this subroutine flushes any as-yet unwritten memory buffers for the (output) file
whose file-handle is specified as the argument to disk.

This routine is non-functional in OpenCOBOL. It exists only to provide compatibility for applications that may have
been developed for Micro Focus COBOL.

7.3.1.25. CALL “CBL_GET_CURRENT_DIR” USING BY VALUE 0, BY VALUE
length, BY REFERENCE buffer

This retrieves the fully-qualified pathname of the current directory, saving up to length characters of that name into
the specified buffer.

The first argument is unused, but must be specified. It must be specified BY VALUE.

The length argument must be specified BY VALUE.

The buffer argument must be specified BY REFERENCE.

The value specified for the length argument (a numeric literal or data item) should not exceed the actual length of the
buffer argument.

If the value specified for the length argument is LESS THAN the actual length of the buffer argument, the current
directory path will be left-justified and space filled within the first length bytes of buffer – any bytes in buffer after
that point will be unchanged.

If the routine is successful, a value of 0 will be returned to the RETURN-CODE register. If the routine failed because of
a problem with an argument (such as a negative or 0 length), a RETURN-CODE value of 128 will result. Finally, if the 1

st

argument value is anything but zero, the routine will fail with a 129 RETURN-CODE.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-23

7.3.1.26. CALL “CBL_IMP” USING item-1, item-2, BY VALUE byte-length

This subroutine performs a bit-by-bit “implies” test between the left-most 8*byte-length corresponding bits of item-1
and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “IMP” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 1

0 1 1

1 0 0

1 1 1

7.3.1.27. CALL “CBL_NIMP” USING item-1, item-2, BY VALUE byte-length

This subroutine performs the negation of a bit-by-bit “implies” test between the left-most 8*byte-length
corresponding bits of item-1 and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “NIMP” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 0

0 1 0

1 0 1

1 1 0

7.3.1.28. CALL “CBL_NOR” USING item-1, item-2, BY VALUE byte-length

This subroutine performs the negation of a bit-by-bit “OR” test between the left-most 8*byte-length corresponding
bits of item-1 and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “NOR” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 1

0 1 0

1 0 0

1 1 0

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-24

7.3.1.29. CALL “CBL_NOT” USING item-1, BY VALUE byte-length

This subroutine “flips” the left-most 8*byte-length bits of item-2, storing the resulting bit string into item-2.

Item-2 must be a data item. The length of item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “NOT” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Old
Arg #2

bit

New
Arg #2

bit

0 1

1 0

7.3.1.30. CALL “CBL_OC_NANOSLEEP” USING nanoseconds-to-sleep

CB_OC_NANOSLEEP puts the program to sleep for the specified number of nanoseconds.

The nanoseconds-to-sleep argument is a numeric literal or data item.

There are one BILLION nanoseconds in a second, so if you wanted to put the program to sleep for 1/4 second you'd
use a nanoseconds-to-sleep value of 250000000.

Also see C$SLEEP – section 7.3.1.9.

7.3.1.31. CALL “CBL_OPEN_FILE” file-path, access-mode, 0, 0, handle

.This routine opens an existing file for use as a byte-stream file usable by CBL_WRITE_FILE or CBL_READ_FILE.

The file-path argument is an alphanumeric literal or data-item.

The access-mode argument is a numeric literal or data item with a PIC X USAGE COMP-X (or USAGE BINARY-CHAR)
definition; it specifies how you wish to use the file, as follows:

1 = input (read-only)

2 = output (write-only)

3 = input and/or output

The third and fourth arguments would specify a locking mode and device specification, respectively, but they’re not
implemented in OpenCOBOL (currently, at least) – just specify each as 0.

The final argument – handle - is a PIC X(4) USAGE COMP-X item that will receive the handle to the file. That handle is
used on all other byte-stream functions to reference this specific file.

A RETURN-CODE value of -1 indicates an invalid argument, while a value of 0 indicates success. A value of 35 means
the file does not exist.

Also see CBL_CREATE_FILE – section 7.3.1.18.

7.3.1.32. CALL “CBL_OR” USING item-1, item-2, BY VALUE byte-length

This subroutine performs a bit-by-bit “OR” test between the left-most 8*byte-length corresponding bits of item-1 and
item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.
Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown below documents the “OR” process.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-25

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 0

0 1 1

1 0 1

1 1 1

7.3.1.33. CALL “CBL_READ_FILE” USING handle, offset, nbytes, flag, buffer

This routine reads nbytes of data starting at byte number offset from the byte-stream file defined by handle into the
specified buffer.

The handle argument (PIC X(4) USAGE COMP-X) must have been populated by a prior call to CBL_OPEN_FILE.

The offset argument (PIC X(8) USAGE COMP-X) defines the location in the file of the first byte to be read. The first
byte of a file is byte offset 0.

The nbytes argument (PIC X(4) USAGE COMP-X) specifies how many bytes (maximum) will be read.

If the flags argument is specified as 128, the size of the file (in bytes) will be returned into the file offset argument
(argument 2) upon completion.

44
 The only other valid value for flags is 0. This argument may be specified either as a

numeric literal or as a PIC X USAGE COMP-X data item.

Upon completion, RETURN-CODE will be set to 0 if the read was successful or to 10 if an “end-of-file” condition
occurred. If RETURN-CODE has a value of -1, a problem was identified with the subroutine arguments.

7.3.1.34. CALL “CBL_RENAME_FILE” USING old-file-path, new-file-path

You may use this subroutine to rename a file.

The file specified by old-file-path will be “renamed” to the name specified as new-file-path. Each argument may be an
alphanumeric literal or data item.

Despite what the name of this routine might make you believe, this routine is more than just a simple “rename” – it
will actually move the file supplied as the 1

st
 argument to the file specified as the 2

nd
 argument. Think of it as a two-

step sequence, first copying the old-file-path to the new-file-path and then a second step where the old-file-path is
deleted.

If the attempt to move the file fails (for example, it doesn't exist), RETURN-CODE will be set to 128; on successful
completion it will be set to 0.

7.3.1.35. CALL “CBL_TOLOWER” USING data-item, BY VALUE convert-length

This routine will converts convert-length (a numeric literal or data item) leading characters of data-item (an
alphanumeric identifier) to lower-case.

The convert-length argument must be specified BY VALUE. It specifies how many (leading) characters in data-item will
be converted – any characters after that will remain unchanged.

If convert-length is negative or zero, no conversion will be performed.

Also see C$TOLOWER – section 7.3.1.10.

44
 Not all operating system/OpenCOBOL environments may be able to retrieve file sizes – in such cases, a value of

zero will be returned.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-26

7.3.1.36. CALL “CBL_TOUPPER” USING data-item, BY VALUE convert-length

Use C$TOUPPER to change the convert-length (a numeric literal or data item) leading characters of data-item (an
alphanumeric identifier) to upper-case.

The convert-length argument must be specified BY VALUE. It specifies how many (leading) characters in data-item will
be converted – any characters after that will remain unchanged.

If convert-length is negative or zero, no conversion will be performed.

Also see C$TOUPPER – section 7.3.1.11.

7.3.1.37. CALL “CBL_WRITE_FILE” USING handle, offset, nbytes, 0, buffer

This routine writes nbytes of data from the specified buffer to the byte-stream file defined by handle starting at byte
number offset.

The handle argument (PIC X(4) USAGE COMP-X) must have been populated by a prior call to CBL_OPEN_FILE.

The offset argument (PIC X(8) USAGE COMP-X) defines the location in the file of the first byte to be written to. The
first byte of a file is byte offset 0.

The nbytes argument (PIC X(4) USAGE COMP-X) specifies how many bytes (maximum) will be written.

The only allowable value or the flags argument is 0. This argument may be specified either as a numeric literal or as a
PIC X USAGE COMP-X data item.

Upon completion, RETURN-CODE will be set to 0 if the write was successful or to 30 if an I/O error condition occurred.
If RETURN-CODE has a value of -1, a problem was identified with the subroutine arguments.

7.3.1.38. CALL “CBL_XOR” USING item-1, item-2, BY VALUE byte-length

This subroutine performs a bit-by-bit exclusive “OR” test between the left-most 8*byte-length corresponding bits of
item-1 and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “XOR” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 0

0 1 1

1 0 1

1 1 0

7.3.1.39. CALL “SYSTEM” USING command

This subroutine submits the specified command (an alphanumeric literal or data item) to a command shell.

A shell will be opened subordinate to the OpenCOBOL program issuing the CALL to SYSTEM.

Output from the command (if any) will appear in the command window in which the OpenCOBOL program was
executed.

On a Unix system, the shell environment will be established using the default shell program. This is also true when
using an OpenCOBOL build created with and for the Cygwin Unix emulator.

With native Windows Windows/MinGW builds, the shell environment will be the Windows console window command
processor (usually “cmd.exe”) appropriate for the version of Windows you’re using.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-27

To trap output from the executed command and process it within the OpenCOBOL program, use a pipe (>) to send the
command output to a temporary file which you then READ from within the program once control returns.

7.3.2. “Call by Number” Subroutines

Early versions of Micro Focus COBOL allowed programmers to access various runtime library routines by using a single
two-digit hexadecimal number as the entry=point name. These were known as call-by-number routines. Over time,
Micro Focus COBOL evolved, replacing most of the call-by-number routines with ones accessible using a more
conventional call-by-name technique.

Most of the call-by-number routines have evolved into even more powerful call-by-name routines, many of which are
supported by OpenCOBOL and were already presented in section 7.3

Three of the original call-by-number routines never evolved call-by-name equivalents; OpenCOBOL supports these
routines.

7.3.2.1. CALL X”91” USING return-code, function-code, binary-variable-arg

The original Micro Focus version of this routine is capable of providing a wide variety of functions – OpenCOBOL
supports just three of those functions:

 Turning runtime switches (SWITCH-1, … , SWITCH-8) on
 Turning runtime switches (SWITCH-1, … , SWITCH-8) off
 Retrieving the number of arguments passed to a subroutine

45

The return-code argument must be a binary numeric data item (USAGE BINARY-CHAR is recommended). It will receive
a value of 0 if the operation was successful, 1 otherwise.

The function code argument must be either a numeric literal or a binary numeric data item (USAGE BINARY-CHAR is
recommended).

The third argument – variable-arg – is defined differently depending upon the function-code value, as follows:

Value of
function-code

Action To Be Performed Definition and usage of variable-arg

11

Sets and/or clears all eight of the
COBOL switches (SWITCH-1 through
SWITCH-8) that are available for
definition within SPECIAL-NAMES
(see section 4.1.4)

46

Variable-arg should be an OCCURS 8 TIMES array of USAGE
BINARY-CHAR.

Each occurrence that is set to a value of zero prior to the
CALL will cause the corresponding switch to be cleared.
Each occurrence set to 1 prior to the CALL will cause the
corresponding switch to be set.

Values other than 0 or 1 will be ignored.

12

Reads all eight of the COBOL
switches (SWITCH-1 through
SWITCH-8) that are available for
definition within SPECIAL-NAMES
(see section 4.1.4)

This argument should be an OCCURS 8 TIMES array of
USAGE BINARY-CHAR.

Each of the 1
st

 eight occurrences of the array will be set to
either 0 or 1 – 1 if the corresponding switch is set, 0
otherwise.

16

Retrieves the number of arguments
passed to the program executing
the CALL X”91”

This argument should be a binary numeric data item (USAGE
BINARY-CHAR is recommended).

The number of arguments passed to the subroutine
executing the CALL X”91” will be stored here.

45
 OpenCOBOL actually has two other ways to accomplish this task – the C$NARG subroutine (section 7.3.1.7) and the

NUMBER-OF-CALL-PARAMETERS special register (section 6.1.8); I recommend you use one of these methods
instead of the X”91” routine when coding new programs

46
 If you only wish to set and/or clear some of the switches, it is recommended that you first use function 12 to read

the current values of the switches and then change the variable-arg occurrences for the switch(es) you wish to
change before using function 11 to actually make the changes.

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-28

7.3.2.2. CALL X”F4” USING byte, table

Routine X”F4” packs an 8-byte area containing 8 1-byte binary values of 0 or 1 into the corresponding bit positions of a
1-byte data item.

The byte data item need be only a single byte in size. If it is longer, the excess will be unaffected by this subroutine.

Table must be a data item at least 8 bytes long. If it is longer, the excess will be ignored by this subroutine. Typically,
table is defined similarly to the following:

01 table.
 05 each-byte OCCURS 8 TIMES USAGE BINARY-CHAR.

The following diagram illustrates how this subroutine works.

The colored squares represent the bits in the 1
st

 8 bytes of array that will be packed into byte. The white squares
represent the bits in each each-byte that will be ignored.

7.3.2.3. CALL X”F5” USING byte, table

This routine unpacks each bit of a byte into an 8-byte area so they may be individually accessed and manipulated.

The byte data item need be only a single byte in size. If it is longer, the excess will be ignored by this subroutine.

Table must be a data item at least 8 bytes long. If it is longer, the excess will be unaffected by this subroutine.
Typically, table is defined similarly to the following:

01 table.
 05 each-byte OCCURS 8 TIMES USAGE BINARY-CHAR.

The following diagram illustrates how this subroutine works.

The colored squares represent each of the 8 bits in byte. The diagram shows how those bits will be “unpacked” into
the rightmost bit of each of the 1

st
 8 consecutive bytes of array. The white squares represent the remaining bits in

each of the 1
st

 8 each-byte occurrences – all of which will be set to 0.

each-byte (1) each-byte (2) each-byte (3) each-byte (4) each-byte (5) each-byte (6) each-byte (7) each-byte (8)

byte

each-byte (1) each-byte (2) each-byte (3) each-byte (4) each-byte (5) each-byte (6) each-byte (7) each-byte (8)

byte

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-29

7.3.2.4. Binary Truncation

By default, the OpenCOBOL compiler will
truncate binary data items to the precision
indicated by their PICTURE clause. For
example, the following data item will have 2
bytes of storage allocated for it:

01 Comp-5-Item PIC 9(3) COMP-5.

Because of truncation, even though this field
has enough bits allocated (16) to store values
from 0 to 65535, it will be limited to values of 0
to 999 because of its PICTURE.

Or is it?

Take a look at the small demo program shown
here. This program will perform three different
types of operations against a binary field,
displaying the results of each.

Here are the results when the program is
compiled (with truncation in-effect by default)
and executed:

You can see that truncation affected the
DISPLAY statements but appears to have had
no impact whatsoever on the MOVE and ADD
statements. This is the hidden secret about
truncation in OpenCOBOL: it doesn’t really
truncate the internally-stored values – it just
truncates the DISPLAY of them!

Figure 7-6 - A Binary Truncation Demo Program

If that same program is recompiled without truncation (by adding the “-fnotrunc” switch to the ‘cobc’ command),
the results are as follows:

If this was all there was to the binary truncation issue it
wouldn’t be worth a section in this document. The fact is,
however, that binary truncation has a significant effect on the
performance of OpenCOBOL programs. When binary
truncation is in effect, arithmetic operations performed

against all types of numeric data items (even USAGE DISPLAY) are slowed down.

Before continuing, it’s worth making the point that we’re NOT talking about astronomical performance degradations
here. Today’s computers are FAST, and a user sitting at the keyboard, running an OpenCOBOL program is unlikely to
notice. BUT … if you have an OpenCOBOL program that has to process large amounts of data, performing some
significant “number crunching” against that data as it goes, the impact of truncation could become noticeable.

Bin-Item-1=760 Disp-Item-1=032760

Bin-Item-1=765 Disp-Item-1=032765
Bin-Item-1=767 Disp-Item-1=032767

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMOTRUNC.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Bin-Item-1 PIC 9(3)

COMP-5
VALUE 32760.

01 Disp-Item-1 PIC 9(6).
PROCEDURE DIVISION.
000-Main.

MOVE Bin-Item-1 TO Disp-Item-1
DISPLAY

'Bin-Item-1=' Bin-Item-1
' Disp-Item-1=' Disp-Item-1

END-DISPLAY
ADD 5 TO Bin-Item-1
MOVE Bin-Item-1 TO Disp-Item-1
DISPLAY

'Bin-Item-1=' Bin-Item-1
' Disp-Item-1=' Disp-Item-1

END-DISPLAY
MOVE 32767 TO Bin-Item-1
MOVE Bin-Item-1 TO Disp-Item-1
DISPLAY

'Bin-Item-1=' Bin-Item-1
' Disp-Item-1=' Disp-Item-1

END-DISPLAY
STOP RUN.

Bin-Item-1=32760 Disp-Item-1=032760

Bin-Item-1=32765 Disp-Item-1=032765
Bin-Item-1=32767 Disp-Item-1=032767

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-30

The demo program shown in Figure 7-7 compares the performance of performing arithmetic operations (in a totally
non-scientific, non-rigorous way) against USAGE DISPLAY, COMP, COMP-5 and BINARY-xxx

47
 numeric data. It was

actually my intent when I first wrote the program to merely demonstrate the relative performance differences
between the first three types of numeric data storage, and it certainly met that objective.

Imagine my surprise, however, when I discovered that the use of “-fnotrunc” also made a significant difference!

Here’s what the program does:

 There are four numeric data items in the program – one USAGE DISPLAY, one USAGE COMP, one USAGE
COMP-5 and one USAGE BINARY-LONG. Since the program was run on a computer with an Intel-architecture
processor (actually it’s an AMD, but results are identical with Intel) I wanted to see just how much more
efficient COMP-5 was over COMP.

 Each data item will have 7 added to it ten million times. You’ll see why shortly.

 The time (to one-one-hundredth of a second) will be retrieved before and after each test and the difference
between the two will be DISPLAYed. This is why the computations were done so many times – it was to make
sure the timing was “measurable” with only a 1/100 second “stopwatch”.

OpenCOBOL is retrieving wall-clock time, not actual CPU-used time, so other activities taking place on the computer
had to be kept to a minimum while the tests were running. I also ran the tests multiple times, just to make sure I had
consistent results (I did). Like I mentioned earlier – this is not a rigorous, scientific benchmark of numeric
performance; it’s just a quick-and-dirty comparison.

Figure 7-7 shows the program and the test results received when executing both with and without the “-fnotrunc”
switch.

Here are the conclusions I drew from running these tests many times (30). The timings shown are average times from
all tests:

With truncation ON:

 USAGE COMP has a significant performance advantage over USAGE DISPLAY

 USAGE COMP-5 has an even greater performance advantage over USAGE COMP, than COMP did over
DISPLAY

 USAGE BINARY-LONG (and presumably the other BINARY-xxx USAGEs as well) perform identically (within the
measurement tolerances of the test) with COMP-5; this should be no surprise since COMP-5 and BINARY-xxx
both allocate data the same way

With truncation OFF:

 There was a huge drop in both USAGE DISPLAY and USAGE COMP timings.

 The relative performance advantage of USAGE COMP over USAGE DISPLAY is even larger with truncation off
than it was with it on.

 USAGE COMP-5 and USAGE BINARY-xxx appear to be virtually unaffected by the truncation on/off status,
although there was a .01 second increase in average execution time of those tests without truncation over
those with truncation. Given the number of times I ran the tests, it’s obvious that something makes COMP-
5/BINARY-xxx run slower without truncation than with it; that difference, however, is so miniscule that I
discount it as being statistically irrelevant

48
.

My final observation is that I see absolutely no reason whatsoever why the “-fnotrunc” option shouldn’t be used on
all OpenCOBOL compilations.

If you want to squeeze every last bit of performance out of your OpenCOBOL programs, don’t forget to investigate the
various “–O” (optimization) switches. Actually run programs using various optimization switches (or not) and compare

47
 USAGE BINARY-xxx is supposed to store numeric data identically to USAGE COMP-5, but I felt it couldn’t hurt to

check.

48
 Remember – that’s a .01 second difference over TEN MILLION iterations!

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-31

execution times, don’t just compare the generated C code because sometimes the differences can’t be “seen” at the C
source-code level.

Figure 7-7 - A Non-Scientific Comparison of Numeric Data Item USAGE Performance

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMOMATH.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Begin-Time.

05 BT-HH PIC 9(2).
05 BT-MM PIC 9(2).
05 BT-SS PIC 9(2).
05 BT-HU PIC 9(2).

01 Binary-Item BINARY-LONG SIGNED VALUE 0.
01 Comp-Item COMP PIC S9(9) VALUE 0.
01 Comp-5-Item COMP-5 PIC S9(9) VALUE 0.
01 Display-Item DISPLAY PIC S9(9) VALUE 0.
01 End-Time.

05 ET-HH PIC 9(2).
05 ET-MM PIC 9(2).
05 ET-SS PIC 9(2).
05 ET-HU PIC 9(2).

78 Repeat-Count VALUE 10000000.
01 Time-Diff PIC ZZ9.99.
PROCEDURE DIVISION.
010-Test-Usage-DISPLAY.

ACCEPT Begin-Time FROM TIME END-ACCEPT
PERFORM Repeat-Count TIMES ADD 7 TO Display-Item END-PERFORM
PERFORM 100-Determine-Time-Diff
DISPLAY 'USAGE DISPLAY: ' Time-Diff ' SECONDS' END-DISPLAY.

020-Test-Usage-COMP.
ACCEPT Begin-Time FROM TIME END-ACCEPT
PERFORM Repeat-Count TIMES ADD 7 TO Comp-Item END-PERFORM
PERFORM 100-Determine-Time-Diff
DISPLAY 'USAGE COMP: ' Time-Diff ' SECONDS' END-DISPLAY.

030-Test-Usage-COMP-5.
ACCEPT Begin-Time FROM TIME END-ACCEPT
PERFORM Repeat-Count TIMES ADD 7 TO Comp-5-Item END-PERFORM
PERFORM 100-Determine-Time-Diff
DISPLAY 'USAGE COMP-5: ' Time-Diff ' SECONDS' END-DISPLAY.

040-Test-Usage-BINARY.
ACCEPT Begin-Time FROM TIME END-ACCEPT
PERFORM Repeat-Count TIMES ADD 7 TO Binary-Item END-PERFORM
PERFORM 100-Determine-Time-Diff
DISPLAY 'USAGE BINARY: ' Time-Diff ' SECONDS' END-DISPLAY.

099-Done.
STOP RUN.

100-Determine-Time-Diff.
ACCEPT End-Time FROM TIME END-ACCEPT
COMPUTE Time-Diff =
((ET-HH * 360000 + ET-MM * 6000 + ET-SS * 100 + ET-HU)
- (BT-HH * 360000 + BT-MM * 6000 + BT-SS * 100 + BT-HU))
/ 100.

USAGE DISPLAY: 0.69 SECONDS
USAGE COMP: 0.06 SECONDS
USAGE COMP-5: 0.05 SECONDS
USAGE BINARY: 0.05 SECONDS

Results with truncation
turned off (“-fnotrunc”
used on ‘cobc’)

USAGE DISPLAY: 6.49 SECONDS
USAGE COMP: 2.81 SECONDS
USAGE COMP-5: 0.04 SECONDS
USAGE BINARY: 0.04 SECONDS

Results with truncation
turned on (the default)

OpenCOBOL 1.1 Programmers Guide The OpenCOBOL System Interface

06FEB2009 Version Page 7-32

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-1

8. Sample Programs

8.1. FileStat-Msgs.cpy – File Status Values

This copybook contains an EVALUATE statement to translate the two-digit file status codes that may be generated by
file I/O statements.

The copybook assumes that the file status data item name is “STATUS” and the error message data item is named
“MSG”. By using the COPY statement’s REPLACING clause, however, you may use the data names you wish, as
follows:
 COPY FileStat-Msgs
 REPLACING STATUS BY Input-File-Status
 MSG BY Error-Message.

Here’s the FileStat-Msgs.cpy copybook:

 EVALUATE STATUS
 WHEN 00 MOVE 'SUCCESS ' TO MSG
 WHEN 02 MOVE 'SUCCESS DUPLICATE ' TO MSG
 WHEN 04 MOVE 'SUCCESS INCOMPLETE ' TO MSG
 WHEN 05 MOVE 'SUCCESS OPTIONAL ' TO MSG
 WHEN 07 MOVE 'SUCCESS NO UNIT ' TO MSG
 WHEN 10 MOVE 'END OF FILE ' TO MSG
 WHEN 14 MOVE 'OUT OF KEY RANGE ' TO MSG
 WHEN 21 MOVE 'KEY INVALID ' TO MSG
 WHEN 22 MOVE 'KEY EXISTS ' TO MSG
 WHEN 23 MOVE 'KEY NOT EXISTS ' TO MSG
 WHEN 30 MOVE 'PERMANENT ERROR ' TO MSG
 WHEN 31 MOVE 'INCONSISTENT FILENAME ' TO MSG
 WHEN 34 MOVE 'BOUNDARY VIOLATION ' TO MSG
 WHEN 35 MOVE 'FILE NOT FOUND ' TO MSG
 WHEN 37 MOVE 'PERMISSION DENIED ' TO MSG
 WHEN 38 MOVE 'CLOSED WITH LOCK ' TO MSG
 WHEN 39 MOVE 'CONFLICT ATTRIBUTE ' TO MSG
 WHEN 41 MOVE 'ALREADY OPEN ' TO MSG
 WHEN 42 MOVE 'NOT OPEN ' TO MSG
 WHEN 43 MOVE 'READ NOT DONE ' TO MSG
 WHEN 44 MOVE 'RECORD OVERFLOW ' TO MSG
 WHEN 46 MOVE 'READ ERROR ' TO MSG
 WHEN 47 MOVE 'INPUT DENIED ' TO MSG
 WHEN 48 MOVE 'OUTPUT DENIED ' TO MSG
 WHEN 49 MOVE 'I/O DENIED ' TO MSG
 WHEN 51 MOVE 'RECORD LOCKED ' TO MSG
 WHEN 52 MOVE 'END-OF-PAGE ' TO MSG
 WHEN 57 MOVE 'I/O LINAGE ' TO MSG
 WHEN 61 MOVE 'FILE SHARING FAILURE ' TO MSG
 WHEN 91 MOVE 'FILE NOT AVAILABLE ' TO MSG
 END-EVALUATE.

8.2. COBDUMP – A Hex/Char Data Dump Subroutine

This next sample program is a useful little utility subroutine to produce a formatted hexadecimal and character dump
of the data area passed to it.

If you follow the OpenCOBOL forums, you’ve undoubtedly heard about the CBL_OC_DUMP subroutine that was the
winning entry in an OpenCOBOL programming contest. It’s a great tool for producing data dumps, and it’ll probably
be in the official OpenCOBOL distribution one of these days.

For now though, I’ll keep using my good ol’ “COBDUMP” routine. It’s been my travelling companion from COBOL job
to COBOL job since 1971. Here it is, all tuned up for OpenCOBOL, with new tires and a fresh coat of paint:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBDUMP.

 ** This is an OpenCOBOL subroutine that will generate a **
 ** formatted Hex/Char dump of a storage area. To use this **
 ** subroutine, simply CALL it as follows: **
 ** **
 ** CALL "COBDUMP" USING <data-item> **
 ** [<length>] **
 ** **
 ** If specified, the <length> argument specifies how many **
 ** bytes of <data-item> are to be dumped. If absent, all of **
 ** <data-item> will be dumped (i.e. LENGTH(<data-item>) will **

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-2

 ** be assumed for <length>). **
 ** **
 ** >>> Note that the subroutine name MUST be specified in <<< **
 ** >>> UPPERCASE <<< **
 ** **
 ** The dump is generated to STDERR, so you may pipe it to a **
 ** file when you execute your program using "2> file". **
 ** **
 ** AUTHOR: GARY L. CUTLER **
 ** CutlerGL@gmail.com **
 ** **
 ** NOTE: The author has a sentimental attachment to **
 ** this subroutine - it's been around since 1971 **
 ** and it's been converted to and run on 10 dif- **
 ** ferent operating system/compiler environments **
 ** **
 ** DATE-WRITTEN: October 14, 1971 **
 ** **

 ** DATE CHANGE DESCRIPTION **
 ** ====== == **
 ** GC1071 Initial coding - Univac Dept. of Defense COBOL '68 **
 ** GC0577 Converted to Univac ASCII COBOL (ACOB) - COBOL '74 **
 ** GC1182 Converted to Univac UTS4000 COBOL - COBOL '74 w/ **
 ** SCREEN SECTION enhancements **
 ** GC0883 Converted to Honeywell/Bull COBOL - COBOL '74 **
 ** GC0983 Converted to IBM VS COBOL - COBOL '74 **
 ** GC0887 Converted to IBM VS COBOL II - COBOL '85 **
 ** GC1294 Converted to Micro Focus COBOL V3.0 - COBOL '85 w/ **
 ** extensions **
 ** GC0703 Converted to Unisys Universal Compiling System (UCS) **
 ** COBOL (UCOB) - COBOL '85 **
 ** GC1204 Converted to Unisys Object COBOL (OCOB) - COBOL 2002 **
 ** GC0609 Converted to OpenCOBOL 1.1 - COBOL '85 w/ some COBOL **
 ** 2002 features **
 ** GC0410 Enhanced to make 2nd argument (buffer length) **
 ** optional **

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.
 FUNCTION ALL INTRINSIC.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 78 Undisplayable-Char-Symbol VALUE X'F9'.
 01 Addr-Pointer USAGE POINTER.
 01 Addr-Number REDEFINES Addr-Pointer
 USAGE BINARY-LONG.

 01 Addr-Sub USAGE BINARY-CHAR.

 01 Addr-Value USAGE BINARY-LONG.

 01 Buffer-Length USAGE BINARY-LONG.

 01 Buffer-Sub COMP-5 PIC 9(4).

 01 Hex-Digits VALUE '0123456789ABCDEF'.
 05 Hex-Digit OCCURS 16 TIMES PIC X(1).

 01 Left-Nibble COMP-5 PIC 9(1).
 01 Nibble REDEFINES Left-Nibble
 BINARY-CHAR.

 01 Output-Detail.
 05 OD-Addr.
 10 OD-Addr-Hex OCCURS 8 TIMES PIC X.
 05 FILLER PIC X(1).
 05 OD-Byte PIC Z(3)9.
 05 FILLER PIC X(1).
 05 OD-Hex OCCURS 16 TIMES.
 10 OD-Hex-1 PIC X.
 10 OD-Hex-2 PIC X.
 10 FILLER PIC X.
 05 OD-ASCII OCCURS 16 TIMES
 PIC X.

 01 Output-Sub COMP-5 PIC 9(2).

 01 Output-Header-1.
 05 FILLER PIC X(80) VALUE
 '<-Addr-> Byte ' &
 '<---------------- Hexadecimal ----------------> ' &
 '<---- Char ---->'.

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-3

 01 Output-Header-2.
 05 FILLER PIC X(80) VALUE
 '======== ==== ' &
 '=== ' &
 '================'.

 01 PIC-XX.
 05 FILLER PIC X VALUE LOW-VALUES.
 05 PIC-X PIC X.
 01 PIC-Halfword REDEFINES PIC-XX
 PIC 9(4) COMP-X.

 01 PIC-X10.
 05 FILLER PIC X(2).
 05 PIC-X8 PIC X(8).

 01 Right-Nibble COMP-5 PIC 9(1).

 LINKAGE SECTION.
 01 Buffer PIC X ANY LENGTH.

 01 Buffer-Len USAGE BINARY-LONG.

 PROCEDURE DIVISION USING Buffer, OPTIONAL Buffer-Len.
 000-COBDUMP.
 IF NUMBER-OF-CALL-PARAMETERS = 1
 MOVE LENGTH(Buffer) TO Buffer-Length
 ELSE
 MOVE Buffer-Len TO Buffer-Length
 END-IF
 MOVE SPACES TO Output-Detail
 SET Addr-Pointer TO ADDRESS OF Buffer
 PERFORM 100-Generate-Address
 MOVE 0 TO Output-Sub
 DISPLAY
 Output-Header-1 UPON SYSERR
 END-DISPLAY
 DISPLAY
 Output-Header-2 UPON SYSERR
 END-DISPLAY
 PERFORM VARYING Buffer-Sub FROM 1 BY 1
 UNTIL Buffer-Sub > Buffer-Length
 ADD 1
 TO Output-Sub
 END-ADD
 IF Output-Sub = 1
 MOVE Buffer-Sub TO OD-Byte
 END-IF
 MOVE Buffer (Buffer-Sub : 1) TO PIC-X
 IF (PIC-X < ' ')
 OR (PIC-X > '~')
 MOVE Undisplayable-Char-Symbol
 TO OD-ASCII (Output-Sub)
 ELSE
 MOVE PIC-X
 TO OD-ASCII (Output-Sub)
 END-IF
 DIVIDE PIC-Halfword BY 16
 GIVING Left-Nibble
 REMAINDER Right-Nibble
 END-DIVIDE
 ADD 1 TO Left-Nibble
 Right-Nibble
 END-ADD
 MOVE Hex-Digit (Left-Nibble)
 TO OD-Hex-1 (Output-Sub)
 MOVE Hex-Digit (Right-Nibble)
 TO OD-Hex-2 (Output-Sub)
 IF Output-Sub = 16
 DISPLAY
 Output-Detail UPON SYSERR
 END-DISPLAY
 MOVE SPACES TO Output-Detail
 MOVE 0 TO Output-Sub
 SET Addr-Pointer UP BY 16
 PERFORM 100-Generate-Address
 END-IF
 END-PERFORM
 IF Output-Sub > 0
 DISPLAY
 Output-Detail UPON SYSERR
 END-DISPLAY
 END-IF

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-4

 EXIT PROGRAM
 .
 100-Generate-Address.
 MOVE 8 TO Addr-Sub
 MOVE Addr-Number TO Addr-Value
 MOVE ALL '0' TO OD-Addr
 PERFORM WITH TEST BEFORE UNTIL Addr-Value = 0
 DIVIDE Addr-Value BY 16
 GIVING Addr-Value
 REMAINDER Nibble
 END-DIVIDE
 ADD 1 TO Nibble
 MOVE Hex-Digit (Nibble)
 TO OD-Addr-Hex (Addr-Sub)
 SUBTRACT 1 FROM Addr-Sub
 END-PERFORM
 .

8.3. OCic – an OpenCOBOL Full-Screen Compiler Front-End

This is more than a mere demonstration program – it’s also a very practical utility! The “OCic” (OpenCOBOL
Interactive Compiler) is a TUI program that may be used to connect the “cobc” compiler into a text editing framework
so that – by simply pressing a keystroke sequence while editing an OpenCOBOL program – you may trigger a
compilation of that program. The program is well documented (IMHO) and you should find it fairly easy to follow.
The OCic.cbl was written to work with a native Windows or Windows/MinGW build of OpenCOBOL as well as a
Windows/Cygwin or UNIX build – I suspect it’ll work for MacOS, since that OS is actually a derivative of Linux, but such
compatibility is untested.

An advantage to using OCic to compile your programs is its ability to generate source and/or cross-reference listings of
your programs.

Source listings generated by OCic will show the original source code of your programs, with all indentation and
comments preserved. Additionally, any COPYed code will be included in the listing immediately following the COPY
statement that triggered its inclusion into your program.

Cross-reference listings will show all user-defined data items and procedures as well as intrinsic function and special
register references. In addition to showing the line numbers at which items were defined and referenced, those
references that MODIFY the contents of the data item will have an asterisk appended to them.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. OCic.

 ** This program provides a Textual User Interface (TUI) to the **
 ** process of compiling and (optionally) executing an OpenCOBOL**
 ** program. **
 ** **
 ** This programs execution syntax is as follows: **
 ** **
 ** ocic <program-path-and-filename> [<switch>...] **
 ** **
 ** Once executed, a display screen will be presented showing **
 ** the compilation options that will be used. The user will **
 ** have the opportunity to change options, specify new ones **
 ** and specify any program execution arguments to be used if **
 ** you select the "Execute" option. When you press the Enter **
 ** key the program will be compiled. **
 ** **
 ** The SCREEN SECTION contains an image of the screen. **
 ** **
 ** The "010-Parse-Args" section in the PROCEDURE DIVISION has **
 ** documentation on switches and their function. **

 ** **
 ** AUTHOR: GARY L. CUTLER **
 ** CutlerGL@gmail.com **
 ** Copyright (C) 2009-2010, Gary L. Cutler, GPL **
 ** **
 ** DATE-WRITTEN: June 14, 2009 **
 ** **

 ** Note: Depending on which extended DISPLAY handler you're **
 ** using (PDCurses, Curses, ...), you may need to un- **
 ** comment any source lines tagged with "SCROLL" in cols **
 ** 1-6 in order to have error messages scroll properly **
 ** in the OCic shell window. **

 ** DATE CHANGE DESCRIPTION **

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-5

 ** ====== == **
 ** GC0609 Don't display compiler messages file if compilation **
 ** Is successful. Also don't display messages if the **
 ** output file is busy (just put a message on the **
 ** screen, leave the OC screen up & let the user fix **
 ** the problem & resubmit. **
 ** GC0709 When 'EXECUTE' is selected, a 'FILE BUSY' error will **
 ** still cause the (old) executable to be launched. **
 ** Also, the 'EXTRA SWITCHES' field is being ignored. **
 ** Changed the title bar to lowlighted reverse video & **
 ** the message area to highlighted reverse-video. **
 ** GC0809 Add a SPACE in from of command-line args when **
 ** executing users program. Add a SPACE after the **
 ** -ftraceall switch when building cobc command. **
 ** GC0909 Convert to work on Cygwin/Linux as well as MinGW **
 ** GC0310 Virtualized the key codes for S-F1 thru S-F7 as they **
 ** differ depending upon whether PDCurses or NCurses is **
 ** being used. **
 ** GC0410 Introduced the cross-reference and source listing **
 ** features. Also fixed a bug in @EXTRA switch proces- **
 ** sing where garbage will result if more than the **
 ** @EXTRA switch is specified. **

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.
 FUNCTION ALL INTRINSIC.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT Bat-File ASSIGN TO Bat-File-Name
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT Cobc-Output ASSIGN TO Cobc-Output-File
 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT Source-Code ASSIGN TO File-Name
 ORGANIZATION IS LINE SEQUENTIAL
 FILE STATUS IS FSM-Status.
 DATA DIVISION.
 FILE SECTION.
 FD Bat-File.
 01 Bat-File-Rec PIC X(2048).

 FD Cobc-Output.
 01 Cobc-Output-Rec PIC X(256).

 FD Source-Code.
 01 Source-Code-Record PIC X(80).

 WORKING-STORAGE SECTION.
 COPY screenio.

 01 Bat-File-Name PIC X(256).

GC0909 01 Cmd PIC X(512).

 01 Cobc-Cmd PIC X(256).

 01 Cobc-Output-File PIC X(256).

 01 Command-Line-Args PIC X(256).

 01 Config-File PIC X(12).

GC0310 01 Config-Keys.
GC0310 05 CK-S-F1 PIC 9(4).
GC0310 05 CK-S-F2 PIC 9(4).
GC0310 05 CK-S-F3 PIC 9(4).
GC0310 05 CK-S-F4 PIC 9(4).
GC0310 05 CK-S-F5 PIC 9(4).
GC0310 05 CK-S-F6 PIC 9(4).
GC0310 05 CK-S-F7 PIC 9(4).

GC0909 01 Dir-Char PIC X(1).

 01 Dummy PIC X(1).

 01 Env-TEMP PIC X(256).

 01 File-Name.
 05 FN-Char OCCURS 256 TIMES PIC X(1).

 01 File-Status-Message.
 05 FILLER PIC X(13) VALUE 'Status Code: '.

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-6

 05 FSM-Status PIC 9(2).
 05 FILLER PIC X(11) VALUE ', Meaning: '.
 05 FSM-Msg PIC X(25).

 01 Flags.
 05 F-Compilation-Succeeded PIC X(1).
 88 88-Compile-OK VALUE 'Y'.
GC0909 88 88-Compile-OK-Warn VALUE 'W'.
 88 88-Compile-Failed VALUE 'N'.
GC0609 05 F-Complete PIC X(1).
GC0609 88 88-Complete VALUE 'Y'.
GC0609 88 88-Not-Complete VALUE 'N'.
GC0809 05 F-IDENT-DIVISION PIC X(1).
GC0809 88 88-1st-Prog-Complete VALUE 'Y'.
GC0809 88 88-More-To-1st-Prog VALUE 'N'.
 05 F-LINKAGE-SECTION PIC X(1).
 88 88-Compile-As-Subpgm VALUE 'Y'.
 88 88-Compile-As-Mainpgm VALUE 'N'.
 05 F-No-Switch-Changes PIC X(1).
 88 88-No-Switch-Changes VALUE 'Y'.
 88 88-Switch-Changes VALUE 'N'.
GC0709 05 F-Output-File-Busy PIC X(1).
GC0709 88 88-Output-File-Busy VALUE 'Y'.
GC0709 88 88-Output-File-Avail VALUE 'N'.
GC0809 05 F-Source-Record-Type PIC X(1).
GC0809 88 88-Source-Rec-Linkage VALUE 'L'.
GC0809 88 88-Source-Rec-Ident VALUE 'I'.
GC0809 88 88-Source-Rec-IgnoCOB-COLOR-RED VALUE ' '.
 05 F-Switch-Error PIC X(1).
 88 88-Switch-Is-Bad VALUE 'Y'.
 88 88-Switch-Is-Good VALUE 'N'.

GC0909 01 Horizontal-Line PIC X(80).
GC0909
 01 I USAGE BINARY-LONG.

 01 J USAGE BINARY-LONG.

GC0909 01 MS USAGE BINARY-LONG.

GC0909 01 ML USAGE BINARY-LONG.

 01 OC-Compiled PIC XXXX/XX/XXBXX/XX.

GC0909 01 OS-Type USAGE BINARY-LONG.
GC0909 88 OS-Unknown VALUE 0.
GC0909 88 OS-Windows VALUE 1.
GC0909 88 OS-Cygwin VALUE 2.
GC0909 88 OS-UNIX VALUE 3.

GC0909 01 OS-Type-Literal PIC X(7).

 01 Output-Message PIC X(80).

 01 Path-Delimiter PIC X(1).

 01 Prog-Folder PIC X(256).

 01 Prog-Extension PIC X(30).

 01 Prog-File-Name PIC X(40).

 01 Prog-Name PIC X(31).

 78 Selection-Char VALUE '>'.

 01 Switch-Display.
 05 SD-Switch-And-Value PIC X(19).
 05 FILLER PIC X(1).
 05 SD-Description PIC X(60).

 01 Switch-Keyword PIC X(12).
GC0410 88 Switch-Is-CONFIG VALUE '@CONFIG', '@C'.
GC0410 88 Switch-Is-DEBUG VALUE '@DEBUG', '@D'.
GC0410 88 Switch-Is-DLL VALUE '@DLL'.
GC0410 88 Switch-Is-EXECUTE VALUE '@EXECUTE', '@E'.
GC0410 88 Switch-Is-EXTRA VALUE '@EXTRA', '@EX'.
GC0410 88 Switch-Is-NOTRUNC VALUE '@NOTRUNC', '@N'.
GC0410 88 Switch-Is-TRACE VALUE '@TRACE', '@T'.
GC0410 88 Switch-Is-SOURCE VALUE '@SOURCE', '@S'.
GC0410 88 Switch-Is-XREF VALUE '@XREF', '@X'.

 01 Switch-Keyword-And-Value PIC X(256).

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-7

 01 Switch-Value.
 05 SV-1 PIC X(1).
 05 FILLER PIC X(255).
 01 Switch-Value-Alt REDEFINES Switch-Value
 PIC X(256).
 88 Valid-Config-Filename
 VALUE 'BS2000', 'COBOL85', 'COBOL2002', 'DEFAULT',
 'IBM', 'MF', 'MVS'.

 01 Switches.
 05 S-ARGS PIC X(75) VALUE SPACES.
 05 S-CfgS.
 10 S-Cfg-BS2000 PIC X(1) VALUE ' '.
 10 S-Cfg-COBOL85 PIC X(1) VALUE ' '.
 10 S-Cfg-COBOL2002 PIC X(1) VALUE ' '.
 10 S-Cfg-DEFAULT PIC X(1) VALUE Selection-Char.
 10 S-Cfg-IBM PIC X(1) VALUE ' '.
 10 S-Cfg-MF PIC X(1) VALUE ' '.
 10 S-Cfg-MVS PIC X(1) VALUE ' '.
 05 S-EXTRA PIC X(75) VALUE SPACES.
 05 S-Yes-No-Switches.
 10 S-DEBUG PIC X(1) VALUE 'N'.
 10 S-DLL PIC X(1) VALUE 'N'.
GC0410 10 S-XREF PIC X(1) VALUE 'N'.
GC0410 10 S-SOURCE PIC X(1) VALUE 'N'.
 10 S-EXECUTE PIC X(1) VALUE 'N'.
 10 S-NOTRUNC PIC X(1) VALUE 'Y'.
 10 S-SUBROUTINE PIC X(1) VALUE 'A'.
 10 S-TRACE PIC X(1) VALUE 'N'.
 10 S-TRACEALL PIC X(1) VALUE 'N'.

 01 Tally USAGE BINARY-LONG.

 SCREEN SECTION.
 *>
 *> Here is the layout of the OCic screen.
 *>
 *> Note that this program can utilize the traditional PC line-drawing characters,
 *> if they are available.
 *>
 *> If this program is run on Windows, it must run with codepage 437 activated to
 *> display the line-drawing characters. With a native Windows build or a
 *> Windows/MinGW build, one could use the command "chcp 437" to set that codepage
 *> for display within a Windows console window (that should be the default, though).
 *> With a Windows/Cygwin build, set the environment variable CYGWIN to a value of
 *> "codepage:oem" (this cannot be done from within the program though - you will
 *> have to use the "Computer/Advanced System Settings/Environment Variables" (Vista or
 *> Windows 7) function to define the variable. XP Users: use "My Computer/Properties/
 *> Advanced/Environment Variables".
 *>
 *> To use OCic without the line-drawing characters, comment-out the first set of
 *> 78 "LD" items and uncomment the second.
 *>
 *> The following sample screen layout shows how the screen looks with line-drawing
 *> characters disabled.
 *>
 *>===
 *> OCic (2010/04/02 11:36) - OpenCOBOL V1.1 Interactive Compilation Windows 01
 *> +---+ 02
 *> | Program: OCic F-Key: Select Opt | 03
 *> | Folder: E:\OpenCOBOL\Samples Enter: Compile | 04
 *> | Filename: OCic.cbl Esc: Quit | 05
 *> +---+ 06
 *> On/Off Switches: Configuration: 07
 *> +---+-------------------+ 08
 *> | F1 Compile debug lines F8 Produce source listing | S-F1 BS2000 | 09
 *> | F2 Always make DLLs F9 Produce xref listing | S-F2 COBOL85 | 10
 *> | F3 Pgm is a SUBROUTINE | S-F3 COBOL2002 | 11
 *> | F4 Execute if compile OK | S-F4 > Default | 12
 *> | F5 > No COMP/BINARY trunc | S-F5 IBM | 13
 *> | F6 Trace procedures | S-F6 MicroFocus | 14
 *> | F7 Trace proc + stmnts | S-F7 MVS | 15
 *> +---+-------------------+ 16
 *> Additional "cobc" Switches (if any): 17
 *> +---+ 18
 *> | -O2__ | 19
 *> +---+ 20
 *> Program Execution Arguments (if any): 21
 *> +---+ 22
 *> | ___ | 23
 *> +---+ 24
 *> OCic Copyright (C) 2009-2010, Gary L. Cutler, GPL 25
 *>===
 *>12345678901234567890123456789012345678901234567890123456789012345678901234567890

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-8

 *> 1 2 3 4 5 6 7 8
 *>
 *> USE THESE CHARS FOR LINE-DRAWING IF YOU HAVE ACCESS TO PC-DOS CODEPAGE 437:
 *>
 78 LD-UL-Corner VALUE X"DA".
 78 LD-LL-Corner VALUE X"C0".
 78 LD-UR-Corner VALUE X"BF".
 78 LD-LR-Corner VALUE X"D9".
 78 LD-Upper-T VALUE X"C2".
 78 LD-Lower-T VALUE X"C1".
 78 LD-Horiz-Line VALUE X"C4".
 78 LD-Vert-Line VALUE X"B3".
 *>
 *> USE THESE CHARS FOR LINE-DRAWING IF YOU DO NOT HAVE ACCESS TO PC-DOS CODEPAGE 437:
 *>
 *> 78 LD-UL-Corner VALUE '+'.
 *> 78 LD-LL-Corner VALUE '+'.
 *> 78 LD-UR-Corner VALUE '+'.
 *> 78 LD-LR-Corner VALUE '+'.
 *> 78 LD-Upper-T VALUE '+'.
 *> 78 LD-Lower-T VALUE '+'.
 *> 78 LD-Horiz-Line VALUE '-'.
 *> 78 LD-Vert-Line VALUE '|'.
 *>
 01 Blank-Screen LINE 1 COLUMN 1 BLANK SCREEN.

 01 Switches-Screen BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-WHITE AUTO.
 *>
 *> GENERAL SCREEN FRAMEWORK
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-BLUE HIGHLIGHT.
 05 LINE 02 COL 02 VALUE LD-UL-Corner.
 05 PIC X(77) FROM Horizontal-Line.
 05 COL 80 VALUE LD-UR-Corner.

 05 LINE 03 COL 02 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 04 COL 02 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 05 COL 02 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 06 COL 02 VALUE LD-LL-Corner.
 05 PIC X(77) FROM Horizontal-Line.
 05 COL 80 VALUE LD-LR-Corner.

 05 LINE 08 COL 02 VALUE LD-UL-Corner.
 05 PIC X(57) FROM Horizontal-Line.
 05 COL 60 VALUE LD-Upper-T.
 05 PIC X(19) FROM Horizontal-Line.
 05 COL 80 VALUE LD-UR-Corner.

 05 LINE 09 COL 02 VALUE LD-Vert-Line.
 05 COL 60 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 10 COL 02 VALUE LD-Vert-Line.
 05 COL 60 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 11 COL 02 VALUE LD-Vert-Line.
 05 COL 60 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 12 COL 02 VALUE LD-Vert-Line.
 05 COL 60 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 13 COL 02 VALUE LD-Vert-Line.
 05 COL 60 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 14 COL 02 VALUE LD-Vert-Line.
 05 COL 60 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 15 COL 02 VALUE LD-Vert-Line.
 05 COL 60 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-9

 05 LINE 16 COL 02 VALUE LD-LL-Corner.
 05 PIC X(57) FROM Horizontal-Line.
 05 COL 60 VALUE LD-Lower-T.
 05 PIC X(19) FROM Horizontal-Line.
 05 COL 80 VALUE LD-LR-Corner.

 05 LINE 18 COL 02 VALUE LD-UL-Corner.
 05 PIC X(77) FROM Horizontal-Line.
 05 COL 80 VALUE LD-UR-Corner.

 05 LINE 19 COL 02 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 20 COL 02 VALUE LD-LL-Corner.
 05 PIC X(77) FROM Horizontal-Line.
 05 COL 80 VALUE LD-LR-Corner.

 05 LINE 22 COL 02 VALUE LD-UL-Corner.
 05 PIC X(77) FROM Horizontal-Line.
 05 COL 80 VALUE LD-UR-Corner.

 05 LINE 23 COL 02 VALUE LD-Vert-Line.
 05 COL 80 VALUE LD-Vert-Line.

 05 LINE 24 COL 02 VALUE LD-LL-Corner.
 05 PIC X(77) FROM Horizontal-Line.
 05 COL 80 VALUE LD-LR-Corner.
 *>
 *> TOP AND BOTTOM LINES
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLUE BLINK
 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
GC0410 05 LINE 01 COL 01 VALUE ' OCic ('.
GC0410 05 PIC X(16) FROM OC-Compiled.
GC0410 05 VALUE ') OpenCOBOL 1.1 06FEB2009 ' &
GC0410 'Interactive Compilation '.
GC0410 05 LINE 25 COL 01 PIC X(81) FROM Output-Message.
 *>
 *> LABELS
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-CYAN HIGHLIGHT.
 05 LINE 07 COL 04 VALUE 'On/Off Switches:'.
 05 COL 62 VALUE 'Configuration:'.
 05 LINE 17 COL 04 VALUE 'Additional "cobc" Switches (if any
 - '):'.
 05 LINE 21 COL 04 VALUE 'Program Execution Arguments (if an
 - 'y):'.
 *>
 *> TOP SECTION BACKGROUND
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-CYAN LOWLIGHT.
 05 LINE 03 COL 04 VALUE 'Program: '.
 05 LINE 04 COL 04 VALUE 'Folder: '.
 05 LINE 05 COL 04 VALUE 'Filename: '.

 05 LINE 03 COL 62 VALUE 'F-Key: Select Opt'.
 05 LINE 04 COL 62 VALUE 'Enter: Compile '.
 05 LINE 05 COL 62 VALUE 'Esc: Quit '.
 *>
 *> TOP SECTION PROGRAM INFO
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 05 LINE 03 COL 14 PIC X(47) FROM Prog-Name.
 05 LINE 04 COL 14 PIC X(47) FROM Prog-Folder.
 05 LINE 05 COL 14 PIC X(47) FROM Prog-File-Name.
 *>
 *> MIDDLE LEFT SECTION F-KEYS
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 05 LINE 09 COL 04 VALUE 'F1'.
 05 LINE 10 COL 04 VALUE 'F2'.
 05 LINE 11 COL 04 VALUE 'F3'.
 05 LINE 12 COL 04 VALUE 'F4'.
 05 LINE 13 COL 04 VALUE 'F5'.
 05 LINE 14 COL 04 VALUE 'F6'.
 05 LINE 15 COL 04 VALUE 'F7'.
 05 LINE 09 COL 32 VALUE 'F8'.
 05 LINE 10 COL 32 VALUE 'F9'.
 *>
 *> MIDDLE LEFT SECTION SWITCHES

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-10

 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-RED HIGHLIGHT.
 05 LINE 09 COL 07 PIC X(1) FROM S-DEBUG.
 05 LINE 10 COL 07 PIC X(1) FROM S-DLL.
 05 LINE 11 COL 07 PIC X(1) FROM S-SUBROUTINE.
 05 LINE 12 COL 07 PIC X(1) FROM S-EXECUTE.
 05 LINE 13 COL 07 PIC X(1) FROM S-NOTRUNC.
 05 LINE 14 COL 07 PIC X(1) FROM S-TRACE.
 05 LINE 15 COL 07 PIC X(1) FROM S-TRACEALL.
 05 LINE 09 COL 35 PIC X(1) FROM S-SOURCE.
 05 LINE 10 COL 35 PIC X(1) FROM S-XREF.
 *>
 *> MIDDLE LEFT SECTION BACKGROUND
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-CYAN LOWLIGHT.
 05 LINE 09 COL 09 VALUE 'Compile debug lines '.
 05 LINE 10 COL 09 VALUE 'Always make DLLs '.
 05 LINE 11 COL 09 VALUE 'Pgm is a SUBROUTINE '.
 05 LINE 12 COL 09 VALUE 'Execute if compile OK '.
 05 LINE 13 COL 09 VALUE 'No COMP/BINARY trunc '.
 05 LINE 14 COL 09 VALUE 'Trace procedures '.
 05 LINE 15 COL 09 VALUE 'Trace proc + stmnts '.
 05 LINE 09 COL 37 VALUE 'Produce source listing'.
 05 LINE 10 COL 37 VALUE 'Produce xref listing '.
 *>
 *> MIDDLE RIGHT SECTION F-KEYS
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 05 LINE 09 COL 62 VALUE 'S-F1'.
 05 LINE 10 COL 62 VALUE 'S-F2'.
 05 LINE 11 COL 62 VALUE 'S-F3'.
 05 LINE 12 COL 62 VALUE 'S-F4'.
 05 LINE 13 COL 62 VALUE 'S-F5'.
 05 LINE 14 COL 62 VALUE 'S-F6'.
 05 LINE 15 COL 62 VALUE 'S-F7'.
 *>
 *> MIDDLE RIGHT SECTION SWITCHES
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-RED HIGHLIGHT.
 05 LINE 09 COL 67 PIC X(1) FROM S-Cfg-BS2000.
 05 LINE 10 COL 67 PIC X(1) FROM S-Cfg-COBOL85.
 05 LINE 11 COL 67 PIC X(1) FROM S-Cfg-COBOL2002.
 05 LINE 12 COL 67 PIC X(1) FROM S-Cfg-DEFAULT.
 05 LINE 13 COL 67 PIC X(1) FROM S-Cfg-IBM.
 05 LINE 14 COL 67 PIC X(1) FROM S-Cfg-MF.
 05 LINE 15 COL 67 PIC X(1) FROM S-Cfg-MVS.
 *>
 *> MIDDLE RIGHT SECTION BACKGROUND
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-CYAN LOWLIGHT.
 05 LINE 09 COL 69 VALUE 'BS2000 '.
 05 LINE 10 COL 69 VALUE 'COBOL85 '.
 05 LINE 11 COL 69 VALUE 'COBOL2002 '.
 05 LINE 12 COL 69 VALUE 'Default '.
 05 LINE 13 COL 69 VALUE 'IBM '.
 05 LINE 14 COL 69 VALUE 'MicroFocus'.
 05 LINE 15 COL 69 VALUE 'MVS '.
 *>
 *> FREE-FORM OPTIONS FIELDS
 *>
 03 BACKGROUND-COLOR COB-COLOR-BLACK
 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 05 LINE 19 COL 04 PIC X(75) USING S-EXTRA.
 05 LINE 23 COL 04 PIC X(75) USING S-ARGS.
 /
 PROCEDURE DIVISION.

 ** Legend to procedure names: **
 ** **
 ** 00x-xxx All MAIN driver procedures **
 ** 0xx-xxx All GLOBAL UTILITY procedures **
 ** 1xx-xxx All INITIALIZATION procedures **
 ** 2xx-xxx All CORE PROCESSING procedures **
 ** 9xx-xxx All TERMINATION procedures **

 DECLARATIVES.
 000-File-Error SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON Source-Code.
 000-Handle-Error.

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-11

 COPY FileStat-Msgs
 REPLACING STATUS BY FSM-Status
 MSG BY FSM-Msg.
 MOVE SPACES TO Output-Message
 IF FSM-Status = 35
 DISPLAY
 'File not found: "'
 TRIM(File-Name,TRAILING)
 '"'
 END-DISPLAY
 ELSE
 DISPLAY
 'Error accessing file: "'
 TRIM(File-Name,TRAILING)
 '"'
 END-DISPLAY
 END-IF
 GOBACK
 .
 END DECLARATIVES.
 /
 000-Main SECTION.

 PERFORM 100-Initialization
GC0609 SET 88-Not-Complete TO TRUE
GC0609 PERFORM UNTIL 88-Complete
GC0609 PERFORM 200-Let-User-Set-Switches
GC0609 PERFORM 210-Run-Compiler
GC0410 IF (88-Compile-OK OR 88-Compile-OK-Warn)
GC0410 AND (S-XREF NOT = SPACE OR S-SOURCE NOT = SPACE)
GC0410 PERFORM 220-Make-Listing
GC0410 END-IF
GC0709 IF (S-EXECUTE NOT = SPACES)
GC0709 AND (88-Output-File-Avail)
GC0609 PERFORM 230-Run-Program
GC0609 END-IF
GC0609 END-PERFORM
 .

 009-Done.
 PERFORM 900-Terminate
 .
 * -- Control will NOT return
 /
 010-Parse-Args SECTION.

 ** Process a sequence of KEYWORD=VALUE items. These are items **
 ** specified on the command-line to provide the initial **
 ** options shown selected on the screen. When integrating **
 ** OCic into an edirot or framework, include these switches on **
 ** the ocic.exe command the editor/framework executes. Any **
 ** underlined choice is the default value for that switch. **
 ** **
 ** @CONFIG=BS2000|COBOL85|COBOL2002|DEFAULT|IBM|MF|MVS **
 ** ======= **
 ** This switch specifies the default cobc compiler configura- **
 ** tion file to be used **
 ** **
 ** @DEBUG=YES|NO **
 ** == **
 ** This switch specifies whether (YES) or not (NO) debugging **
 ** lines (those with a "D" in column 7) will be compiled. **
 ** **
 ** @DLL=YES|NO **
 ** == **
 ** Use this switch to force ALL compiled programs to be built **
 ** as DLLs ("@DLL=YES"). When main programs are built as DLLs **
 ** they must be executed using the cobcrun utility. When **
 ** "@DLL=NO" is in effect, main programs are generated as **
 ** actual "exe" files and only subprograms will be generated **
 ** as DLLs. **
 ** **
 ** @EXECUTE=YES|NO **
 ** == **
 ** This switch specifies whether ("@EXECUTE=YES") or not **
 ** ("@EXECUTE=NO") the program will be executed after it is **
 ** successfully compiled. **
 ** **
 ** @EXTRA=extra cobc argument(s) **
 ** **
 ** This switch allows you to specify additional cobc arguments **
 ** that aren't managed by the other OC switches. If used, **
 ** this must be the last switch specified on the command line, **
 ** as everything that follows the "=" will be placed on the **

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-12

 ** cobc command generated by OC. **
 ** **
 ** @NOTRUNC=YES|NO **
 ** === **
 ** This switch specifies whether (YES) or not (NO) the sup- **
 ** pression of binary field truncation will occur. If a PIC **
 ** 99 COMP field (one byte of storage), for example, is given **
 ** the value 123, it may have its value truncated to 23 when **
 ** DISPLAYed. Regardless of the NOTRUNC setting, internally **
 ** the full precision of the field (allowing a maximum value **
 ** of 255) will be preserved. Even though truncation - if it **
 ** does occur - would appear to have a minimal disruption on **
 ** program operation, it has a significant effect on program **
 ** run-time speed. **
 ** **
 ** @TRACE=YES|NO|ALL **
 ** == **
 ** This switch controls whether or not code will be added to **
 ** the object program to produce execution-time logic traces. **
 ** A specification of "@TRACE=NO" means no such code will be **
 ** produced. By specifying "@TRACE=YES", code will be genera- **
 ** ted to display procedure names as they are entered. A **
 ** "@TRACE=ALL" specification will generate not only procedure **
 ** traces (as "@TRACE=YES" would) but also statement-level **
 ** traces too! All trace output is written to STDERR, so **
 ** adding a "2>file" to the execution of the program will pipe **
 ** the trace output to a file. You may find it valuable to **
 ** add your own DISPLAY statements to the debugging output via **
 ** "DISPLAY xx UPON SYSERR" The SYSERR device corresponds to **
 ** the Windows or UNIX STDERR device and will therefore honor **
 ** any "2>file" placed at the end of your program's execution. **
 ** Add a "D" in column 7 and you can control the generation or **
 ** ignoring of these DISPLAY statements via the "@DEBUG" **
 ** switch. **
 ** **
GC0410** @SOURCE=YES|NO **
GC0410** == **
GC0410** Use this switch to produce a source listing of the program, **
GC0410** PROVIDED it compiles without errors. **
 ** **
GC0410** @XREF=YES|NO **
GC0410** == **
GC0410** Use this switch to produce a cross-reference listing of the **
GC0410** program, PROVIDED it compiles without errors. **

 011-Init.
 MOVE 1 TO I
 .

 012-Extract-Kwd-And-Value.
 PERFORM UNTIL I NOT < LENGTH(Command-Line-Args)
 MOVE I TO J
 UNSTRING Command-Line-Args
 DELIMITED BY ALL SPACES
 INTO Switch-Keyword-And-Value
 WITH POINTER I
 END-UNSTRING
 IF Switch-Keyword-And-Value NOT = SPACES
 UNSTRING Switch-Keyword-And-Value
 DELIMITED BY '='
 INTO Switch-Keyword, Switch-Value
 END-UNSTRING
 PERFORM 030-Process-Keyword
 END-IF
 END-PERFORM
 .

 019-Done.
 EXIT.

 ** Since this program uses the SCREEN SECTION, it cannot do **
 ** conventional console DISPLAY operations. This routine **
 ** (which, I admit, is like using an H-bomb to hunt rabbits) **
 ** will submit an "ECHO" command to the system to simulate a **
 ** DISPLAY. **

 021-Build-And-Issue-Command.
 DISPLAY
 Output-Message
 END-DISPLAY
 .

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-13

 029-Done.
 EXIT.
 /
 030-Process-Keyword SECTION.

 ** Process a single KEYWORD=VALUE item. **

 031-Init.
 MOVE UPPER-CASE(Switch-Keyword) TO Switch-Keyword
 SET 88-Switch-Is-Good TO TRUE
 .

 032-Process.
 EVALUATE TRUE
 WHEN Switch-Is-EXTRA
GC0410 MOVE J TO I
 UNSTRING Command-Line-Args DELIMITED BY '='
 INTO Dummy, S-EXTRA
GC0410 WITH POINTER I
GC0410 END-UNSTRING
 MOVE LENGTH(Command-Line-Args) TO I
 WHEN Switch-Is-CONFIG
 MOVE 'CONFIG' TO Switch-Keyword
 MOVE UPPER-CASE(Switch-Value)
 TO Switch-Value
 EVALUATE Switch-Value
 WHEN 'BS2000'
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-BS2000
 WHEN 'COBOL85'
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-COBOL85
 WHEN 'COBOL2002'
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-COBOL2002
 WHEN 'DEFAULT'
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-DEFAULT
 WHEN 'IBM'
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-IBM
 WHEN 'MF'
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-MF
 WHEN 'MVS'
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-MVS
 WHEN OTHER
 MOVE 'An invalid /CONFIG switch value ' &
 'was specified on the command line ' &
 '- ignored'
 TO Output-Message
 END-EVALUATE
 WHEN Switch-Is-DEBUG
 MOVE 'DEBUG' TO Switch-Keyword
 MOVE UPPER-CASE(Switch-Value)
 TO Switch-Value
 PERFORM 040-Process-Yes-No-Value
 IF 88-Switch-Is-Good
 MOVE SV-1 TO S-DEBUG
 END-IF
GC0410 WHEN Switch-Is-DLL
GC0410 MOVE 'DLL' TO Switch-Keyword
GC0410 MOVE UPPER-CASE(Switch-Value)
GC0410 TO Switch-Value
GC0410 PERFORM 040-Process-Yes-No-Value
GC0410 IF 88-Switch-Is-Good
GC0410 MOVE SV-1 TO S-DLL
GC0410 END-IF
 WHEN Switch-Is-EXECUTE
 MOVE 'EXECUTE' TO Switch-Keyword
 MOVE UPPER-CASE(Switch-Value)
 TO Switch-Value
 PERFORM 040-Process-Yes-No-Value
 IF 88-Switch-Is-Good
 MOVE SV-1 TO S-EXECUTE
 END-IF
 WHEN Switch-Is-NOTRUNC
 MOVE 'NOTRUNC' TO Switch-Keyword
 MOVE UPPER-CASE(Switch-Value)
 TO Switch-Value
 PERFORM 040-Process-Yes-No-Value
 IF 88-Switch-Is-Good

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-14

 MOVE SV-1 TO S-NOTRUNC
 END-IF
GC0410 WHEN Switch-Is-SOURCE
GC0410 MOVE 'SOURCE' TO Switch-Keyword
GC0410 MOVE UPPER-CASE(Switch-Value)
GC0410 TO Switch-Value
GC0410 PERFORM 050-Process-Yes-No-All
GC0410 IF 88-Switch-Is-Good
GC0410 MOVE SV-1 TO S-SOURCE
GC0410 END-IF
 WHEN Switch-Is-TRACE
 MOVE 'TRACE' TO Switch-Keyword
 MOVE UPPER-CASE(Switch-Value)
 TO Switch-Value
 PERFORM 050-Process-Yes-No-All
 IF 88-Switch-Is-Good
 MOVE SV-1 TO S-TRACE
 END-IF
GC0410 WHEN Switch-Is-XREF
GC0410 MOVE 'XREF' TO Switch-Keyword
GC0410 MOVE UPPER-CASE(Switch-Value)
GC0410 TO Switch-Value
GC0410 PERFORM 050-Process-Yes-No-All
GC0410 IF 88-Switch-Is-Good
GC0410 MOVE SV-1 TO S-XREF
GC0410 END-IF
 WHEN OTHER
 MOVE SPACES TO Output-Message
 STRING '"'
 TRIM(Switch-Keyword)
 '" is not a valid switch ' &
 '- ignored'
 DELIMITED SIZE
 INTO Output-Message
 END-STRING
 SET 88-Switch-Is-Bad TO TRUE
 END-EVALUATE
 .

 039-Done.
 EXIT.
 /
 040-Process-Yes-No-Value SECTION.

 ** Process a switch value of YES or NO **

 042-Process.
 EVALUATE SV-1
 WHEN 'Y'
 MOVE 'YES' TO Switch-Value
 WHEN 'N'
 MOVE 'NO' To Switch-Value
 WHEN OTHER
 MOVE SPACES TO Output-Message
 STRING '*ERROR: "' TRIM(Switch-Value)
 '" is not a valid value for the "'
 TRIM(Switch-Keyword) '" switch'
 DELIMITED SPACES
 INTO Output-Message
 END-STRING
 SET 88-Switch-Is-Bad TO TRUE
 END-EVALUATE
 .

 049-Done.
 EXIT.
 /
 050-Process-Yes-No-All SECTION.

 ** Process a switch value of YES, NO or ALL **

 052-Process.
 IF SV-1 = 'A'
 MOVE 'ALL' TO Switch-Value
 ELSE
 PERFORM 040-Process-Yes-No-Value
 END-IF
 .

 059-Done.
 EXIT.
 /

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-15

 060-Process-Yes-No-Auto SECTION.

 ** Process a switch value of YES, NO or AUTO **

 061-Init.
 IF SV-1 = 'A'
 PERFORM 070-Find-LINKAGE-SECTION
 IF 88-Compile-As-Subpgm
 MOVE 'Y' TO Switch-Value
 ELSE
 MOVE 'N' TO Switch-Value
 END-IF
 ELSE
 PERFORM 040-Process-Yes-No-Value
 END-IF
 .
 /
 070-Find-LINKAGE-SECTION SECTION.

 ** Determine if the program being compiled is a MAIN program **

 071-Init.
 OPEN INPUT Source-Code
 SET 88-Compile-As-Mainpgm TO TRUE
 SET 88-More-To-1st-Prog TO TRUE
 PERFORM UNTIL 88-1st-Prog-Complete
 READ Source-Code AT END
 CLOSE Source-Code
 EXIT SECTION
 END-READ
 CALL 'CHECKSOURCE' USING Source-Code-Record
 F-Source-Record-Type
 END-CALL
 IF 88-Source-Rec-Ident
 SET 88-1st-Prog-Complete TO TRUE
 END-IF
 END-PERFORM
 .

 072-Process-Source.
 SET 88-Source-Rec-IgnoCOB-COLOR-RED TO TRUE
 PERFORM UNTIL 88-Source-Rec-Linkage
 OR 88-Source-Rec-Ident
 READ Source-Code AT END
 CLOSE Source-Code
 EXIT SECTION
 END-READ
 CALL 'CHECKSOURCE' USING Source-Code-Record
 F-Source-Record-Type
 END-CALL
 END-PERFORM
 CLOSE Source-Code
 IF 88-Source-Rec-Linkage
 SET 88-Compile-As-Subpgm TO TRUE
 END-IF
 .

 079-Done.
 EXIT.
 /
 100-Initialization SECTION.

 ** Perform all program-wide initialization operations **

GC0909 101-Determine-OS-Type.
GC0909 CALL 'GETOSTYPE'
GC0909 END-CALL
GC0909 MOVE RETURN-CODE TO OS-Type
GC0909 EVALUATE TRUE
GC0909 WHEN OS-Unknown
GC0909 MOVE '\' TO Dir-Char
GC0909 MOVE 'Unknown' TO OS-Type-Literal
GC0310 MOVE COB-SCR-F11 TO CK-S-F1
GC0310 MOVE COB-SCR-F12 TO CK-S-F2
GC0310 MOVE COB-SCR-F13 TO CK-S-F3
GC0310 MOVE COB-SCR-F14 TO CK-S-F4
GC0310 MOVE COB-SCR-F15 TO CK-S-F5
GC0310 MOVE COB-SCR-F16 TO CK-S-F6
GC0310 MOVE COB-SCR-F17 TO CK-S-F7
GC0909 WHEN OS-Windows

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-16

GC0909 MOVE '\' TO Dir-Char
GC0909 MOVE 'Windows' TO OS-Type-Literal
GC0310 MOVE COB-SCR-F13 TO CK-S-F1
GC0310 MOVE COB-SCR-F14 TO CK-S-F2
GC0310 MOVE COB-SCR-F15 TO CK-S-F3
GC0310 MOVE COB-SCR-F16 TO CK-S-F4
GC0310 MOVE COB-SCR-F17 TO CK-S-F5
GC0310 MOVE COB-SCR-F18 TO CK-S-F6
GC0310 MOVE COB-SCR-F19 TO CK-S-F7
GC0909 WHEN OS-Cygwin
GC0909 MOVE '/' TO Dir-Char
GC0410 MOVE 'Cygwin' TO OS-Type-Literal
GC0310 MOVE COB-SCR-F11 TO CK-S-F1
GC0310 MOVE COB-SCR-F12 TO CK-S-F2
GC0310 MOVE COB-SCR-F13 TO CK-S-F3
GC0310 MOVE COB-SCR-F14 TO CK-S-F4
GC0310 MOVE COB-SCR-F15 TO CK-S-F5
GC0310 MOVE COB-SCR-F16 TO CK-S-F6
GC0310 MOVE COB-SCR-F17 TO CK-S-F7
GC0909 WHEN OS-UNIX
GC0909 MOVE '/' TO Dir-Char
GC0410 MOVE 'UNIX ' TO OS-Type-Literal
GC0310 MOVE COB-SCR-F11 TO CK-S-F1
GC0310 MOVE COB-SCR-F12 TO CK-S-F2
GC0310 MOVE COB-SCR-F13 TO CK-S-F3
GC0310 MOVE COB-SCR-F14 TO CK-S-F4
GC0310 MOVE COB-SCR-F15 TO CK-S-F5
GC0310 MOVE COB-SCR-F16 TO CK-S-F6
GC0310 MOVE COB-SCR-F17 TO CK-S-F7
GC0909 END-EVALUATE
GC0909 .

 102-Set-Environment-Vars.
 SET ENVIRONMENT 'COB_SCREEN_EXCEPTIONS' TO 'Y'
 SET ENVIRONMENT 'COB_SCREEN_ESC' TO 'Y'
 .

 103-Generate-Cobc-Output-Fn.
 ACCEPT Env-TEMP
 FROM ENVIRONMENT "TEMP"
 END-ACCEPT
 MOVE SPACES TO Cobc-Output-File
 STRING TRIM(Env-TEMP,TRAILING)
GC0909 Dir-Char
GC0909 'OC-Messages.TXT'
 DELIMITED SIZE
 INTO Cobc-Output-File
 END-STRING
 .

 104-Generate-Banner-Line-Info.
 MOVE WHEN-COMPILED (1:12) TO OC-Compiled
 INSPECT OC-Compiled
 REPLACING ALL '/' BY ':'
 AFTER INITIAL SPACE
 .

 105-Establish-Switch-Settings.
 ACCEPT Command-Line-Args
 FROM COMMAND-LINE
 END-ACCEPT
 MOVE TRIM(Command-Line-Args, Leading)
 TO Command-Line-Args
 MOVE 0 TO Tally
GC0410 INSPECT Command-Line-Args TALLYING Tally FOR ALL '@'
 IF Tally = 0
 MOVE Command-Line-Args TO File-Name
 MOVE SPACES TO Command-Line-Args
 ELSE
GC0410 UNSTRING Command-Line-Args DELIMITED BY '@'
 INTO File-Name, Dummy
 END-UNSTRING
 INSPECT Command-Line-Args
GC0410 REPLACING FIRST '@' BY LOW-VALUES
 UNSTRING Command-Line-Args
 DELIMITED BY LOW-VALUES
 INTO Dummy, Cmd
 END-UNSTRING
 MOVE SPACES TO Command-Line-Args
GC0410 STRING '@' Cmd DELIMITED SIZE
 INTO Command-Line-Args
 END-STRING
 END-IF
 IF File-Name = SPACES

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-17

 DISPLAY
 'No program filename was specified'
 END-DISPLAY
 PERFORM 900-Terminate
 END-IF
 PERFORM 010-Parse-Args
 IF S-SUBROUTINE = 'A'
 MOVE 'S' TO Switch-Keyword
 MOVE 'A' TO Switch-Value
 PERFORM 070-Find-LINKAGE-SECTION
 IF 88-Compile-As-Subpgm
 MOVE 'Y' TO S-SUBROUTINE
 ELSE
 MOVE 'N' TO S-SUBROUTINE
 END-IF
 END-IF
 INSPECT S-Yes-No-Switches REPLACING ALL 'Y' BY Selection-Char
 INSPECT S-Yes-No-Switches REPLACING ALL 'N' BY ' '
 .

 106-Determine-Folder-Path.
 Move 256 TO I
GC0909 IF OS-Cygwin AND File-Name (2:1) = ':'
GC0909 MOVE '\' TO Dir-Char
GC0909 END-IF
 PERFORM UNTIL I = 0 OR FN-Char (I) = Dir-Char
 SUBTRACT 1 FROM I
 END-PERFORM
 IF I = 0
 MOVE SPACES TO Prog-Folder
 MOVE File-Name TO Prog-File-Name
 ELSE
 MOVE '*' TO FN-Char (I)
 UNSTRING File-Name DELIMITED BY '*'
 INTO Prog-Folder
 Prog-File-Name
 END-UNSTRING
 MOVE Dir-Char TO FN-Char (I)
 END-IF
 UNSTRING Prog-File-Name DELIMITED BY '.'
 INTO Prog-Name, Prog-Extension
 END-UNSTRING
 IF Prog-Folder = SPACES
 ACCEPT Prog-Folder
 FROM ENVIRONMENT 'CD'
 END-ACCEPT
GC0909 ELSE
GC0909 CALL "CBL_CHANGE_DIR"
GC0909 USING TRIM(Prog-Folder,TRAILING)
GC0909 END-CALL
 END-IF
GC0909 IF OS-Cygwin AND File-Name (2:1) = ':'
GC0909 MOVE '/' TO Dir-Char
GC0909 END-IF
 .

GC0909 107-Other.
GC0909 MOVE ALL LD-Horiz-Line TO Horizontal-Line.
GC0410 MOVE CONCATENATE(' OCic for ',
GC0410 TRIM(OS-Type-Literal,Trailing),
GC0410 ' Copyright (C) 2009-2010, Gary L. Cutler,',
GC0410 ' GPL')
GC0410 TO Output-Message.
GC0909 .
GC0909
 109-Done.
 EXIT.
 /
 200-Let-User-Set-Switches SECTION.

 ** Show the user the current switch settings and allow them to **
 ** be changed. **

 201-Init.
 SET 88-Switch-Changes TO TRUE
 .

 202-Show-And-Change-Switches.
 PERFORM UNTIL 88-No-Switch-Changes
 ACCEPT
 Switches-Screen
 END-ACCEPT
 IF COB-CRT-STATUS > 0

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-18

 EVALUATE COB-CRT-STATUS
 WHEN COB-SCR-F1
 IF S-DEBUG = SPACE
 MOVE Selection-Char TO S-DEBUG
 ELSE
 MOVE ' ' TO S-DEBUG
 END-IF
 WHEN COB-SCR-F2
 IF S-DLL = SPACE
 MOVE Selection-Char TO S-DLL
 ELSE
 MOVE ' ' TO S-DLL
 END-IF
 WHEN COB-SCR-F3
 IF S-SUBROUTINE = SPACE
 MOVE Selection-Char TO S-SUBROUTINE
 MOVE ' ' TO S-EXECUTE
 ELSE
 MOVE ' ' TO S-SUBROUTINE
 END-IF
 WHEN COB-SCR-F4
 IF S-EXECUTE = SPACE
 AND S-SUBROUTINE = SPACE
 MOVE Selection-Char TO S-EXECUTE
 ELSE
 MOVE ' ' TO S-EXECUTE
 END-IF
 WHEN COB-SCR-F5
 IF S-NOTRUNC = SPACE
 MOVE Selection-Char TO S-NOTRUNC
 ELSE
 MOVE ' ' TO S-NOTRUNC
 END-IF
 WHEN COB-SCR-F6
 IF S-TRACE = SPACE
 MOVE Selection-Char TO S-TRACE
 MOVE ' ' TO S-TRACEALL
 ELSE
 MOVE ' ' TO S-TRACE
 END-IF
 WHEN COB-SCR-F7
 IF S-TRACEALL = SPACE
 MOVE Selection-Char TO S-TRACEALL
 MOVE ' ' TO S-TRACE
 ELSE
 MOVE ' ' TO S-TRACEALL
 END-IF
GC0410 WHEN COB-SCR-F8
GC0410 IF S-SOURCE = SPACE
GC0410 MOVE Selection-Char TO S-SOURCE
GC0410 ELSE
GC0410 MOVE ' ' TO S-SOURCE
GC0410 END-IF
GC0410 WHEN COB-SCR-F9
GC0410 IF S-XREF = SPACE
GC0410 MOVE Selection-Char TO S-XREF
GC0410 ELSE
GC0410 MOVE ' ' TO S-XREF
GC0410 END-IF
 WHEN COB-SCR-ESC
 PERFORM 900-Terminate
GC0310 WHEN CK-S-F1
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-BS2000
GC0310 WHEN CK-S-F2
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-COBOL85
GC0310 WHEN CK-S-F3
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-COBOL2002
GC0310 WHEN CK-S-F4
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-DEFAULT
GC0310 WHEN CK-S-F5
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-IBM
GC0310 WHEN CK-S-F6
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-MF
GC0310 WHEN CK-S-F7
 MOVE SPACES TO S-CfgS
 MOVE Selection-Char TO S-Cfg-MVS
 WHEN OTHER
 MOVE 'An unsupported key was pressed'

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-19

 TO Output-Message
 END-EVALUATE
 ELSE
 SET 88-No-Switch-Changes TO TRUE
 END-IF
 END-PERFORM
 .

 209-Done.
 EXIT.
 /
 210-Run-Compiler SECTION.

 ** Run the compiler using the switch settings we've prepared. **

 211-Init.
 MOVE SPACES TO Cmd
 Cobc-Cmd
 Output-Message
 DISPLAY
 Switches-Screen
 END-DISPLAY
 MOVE 1 TO I
 EVALUATE TRUE
 WHEN S-Cfg-BS2000 NOT = SPACES
 MOVE 'bs2000' TO Config-File
 WHEN S-Cfg-COBOL85 NOT = SPACES
 MOVE 'cobol85' TO Config-File
 WHEN S-Cfg-COBOL2002 NOT = SPACES
 MOVE 'cobol2002' TO Config-File
 WHEN S-Cfg-IBM NOT = SPACES
 MOVE 'ibm' TO Config-File
 WHEN S-Cfg-MF NOT = SPACES
 MOVE 'mf' TO Config-File
 WHEN S-Cfg-MVS NOT = SPACES
 MOVE 'mvs' TO Config-File
 WHEN OTHER
 MOVE 'default' TO Config-File
 END-EVALUATE
 .

 212-Build-Compile-Command.
GC0909 MOVE SPACES TO Cobc-Cmd
GC0909 STRING 'cobc -std='
GC0909 TRIM(Config-File,TRAILING)
GC0909 ' '
GC0909 INTO Cobc-Cmd
GC0909 WITH POINTER I
GC0909 END-STRING
 IF S-SUBROUTINE NOT = ' '
 STRING '-m '
 DELIMITED SIZE INTO Cobc-Cmd
 WITH POINTER I
 END-STRING
 ELSE
 STRING '-x '
 DELIMITED SIZE INTO Cobc-Cmd
 WITH POINTER I
 END-STRING
 END-IF
 IF S-DEBUG NOT = ' '
 STRING '-fdebugging-line '
 DELIMITED SIZE INTO Cobc-Cmd
 WITH POINTER I
 END-STRING
 END-IF
 IF S-NOTRUNC NOT = ' '
 STRING '-fnotrunc '
 DELIMITED SIZE INTO Cobc-Cmd
 WITH POINTER I
 END-STRING
 END-IF
 IF S-TRACEALL NOT = ' '
GC0809 STRING '-ftraceall '
 DELIMITED SIZE INTO Cobc-Cmd
 WITH POINTER I
 END-STRING
 END-IF
 IF S-TRACE NOT = ' '
 STRING '-ftrace '
 DELIMITED SIZE INTO Cobc-Cmd
 WITH POINTER I
 END-STRING

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-20

 END-IF

GC0709 IF S-EXTRA > SPACES
GC0709 STRING ' '
GC0709 TRIM(S-Extra,TRAILING)
GC0709 ' '
GC0709 DELIMITED SIZE INTO Cobc-Cmd
GC0709 WITH POINTER I
GC0709 END-STRING
GC0709 END-IF
GC0909 STRING TRIM(Prog-File-Name,TRAILING)
GC0909 DELIMITED SIZE INTO Cobc-Cmd
GC0909 WITH POINTER I
GC0909 END-STRING
 .

 213-Run-Compiler.
GC0410 MOVE ' Compiling...' TO Output-Message
GC0410 DISPLAY
GC0410 Switches-Screen
GC0410 END-DISPLAY
GC0609 SET 88-Output-File-Avail TO TRUE
 MOVE SPACES TO Cmd
 STRING TRIM(Cobc-Cmd,TRAILING)
 ' 2>'
 TRIM(Cobc-Output-File,TRAILING)
 DELIMITED SIZE
 INTO Cmd
 END-STRING
 CALL 'SYSTEM'
 USING TRIM(Cmd,TRAILING)
 END-CALL
GC0909 IF RETURN-CODE = 0
GC0909 SET 88-Compile-OK TO TRUE
GC0909 ELSE
GC0909 SET 88-Compile-Failed TO TRUE
GC0909 END-IF
GC0909 IF 88-Compile-OK
GC0909 OPEN INPUT Cobc-Output
GC0909 READ Cobc-Output
GC0909 AT END
GC0909 CONTINUE
GC0909 NOT AT END
GC0909 SET 88-Compile-OK-Warn TO TRUE
GC0909 END-READ
GC0909 CLOSE Cobc-Output
GC0909 END-IF
GC0909 MOVE SPACES TO Output-Message
 IF 88-Compile-OK
GC0909 MOVE ' Compilation Was Successful' TO Output-Message
GC0909 DISPLAY
GC0909 Switches-Screen
GC0909 END-DISPLAY
GC0909 CALL 'C$SLEEP'
GC0909 USING 2
GC0909 END-CALL
GC0909 MOVE SPACES TO Output-Message
GC0609 SET 88-Complete TO TRUE
 ELSE
GC0909 DISPLAY
GC0909 Blank-Screen
GC0909 END-DISPLAY
GC0909 IF 88-Compile-OK-Warn
GC0909 DISPLAY ' Compilation was successful, but ' &
GC0909 'warnings were generated:'
SCROLL* AT LINE 24 COLUMN 1
SCROLL* WITH SCROLL UP 1 LINE
GC0909 END-DISPLAY
GC0909 ELSE
GC0909 DISPLAY 'Compilation Failed:'
SCROLL* AT LINE 24 COLUMN 1
SCROLL* WITH SCROLL UP 1 LINE
GC0909 END-DISPLAY
GC0909 END-IF
GC0609 SET 88-Compile-Failed TO TRUE
GC0609 SET 88-Complete TO TRUE
GC0909 DISPLAY ' '
SCROLL* AT LINE 24 COLUMN 1
SCROLL* WITH SCROLL UP 1 LINE
GC0909 END-DISPLAY
GC0909 OPEN INPUT Cobc-Output
GC0909 PERFORM FOREVER
GC0909 READ Cobc-Output AT END
GC0909 EXIT PERFORM

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-21

GC0909 END-READ
GC0909 DISPLAY TRIM(Cobc-Output-Rec,TRAILING)
SCROLL* AT LINE 24 COLUMN 1
SCROLL* WITH SCROLL UP 1 LINE
GC0909 END-DISPLAY
GC0909 END-PERFORM
GC0909 CLOSE Cobc-Output
GC0909 DISPLAY ' '
SCROLL* AT LINE 24 COLUMN 1
SCROLL* WITH SCROLL UP 2 LINES
GC0909 END-DISPLAY
GC0909 DISPLAY 'Press ENTER to close:'
SCROLL* AT LINE 24 COLUMN 1
SCROLL* WITH SCROLL UP 1 LINE
GC0909 END-DISPLAY
GC0909 ACCEPT Dummy
GC0909 FROM CONSOLE
GC0909 END-ACCEPT
GC0909 DISPLAY
GC0909 Blank-Screen
GC0909 END-DISPLAY
 END-IF
 .

 219-Done.
 IF 88-Compile-Failed
 PERFORM 900-Terminate
 END-IF
 .
 /
GC0410 220-Make-Listing SECTION.
GC0410***
GC0410** Generate a source and/or xref listing using XREF **
GC0410***
GC0410
GC0410 221-Init.
GC0410 MOVE ' Generating cross-reference listing...'
GC0410 TO Output-Message
GC0410 DISPLAY
GC0410 Switches-Screen
GC0410 END-DISPLAY
GC0410 CALL "CBL_DELETE_FILE"
GC0410 USING CONCATENATE(TRIM(Prog-Name,Trailing),".lst")
GC0410 END-CALL
GC0410 MOVE 0 TO RETURN-CODE
GC0410 .
GC0410
GC0410 213-Run-OCXref.
GC0410 MOVE SPACES TO Output-Message
GC0410 CALL 'LISTING'
GC0410 USING S-SOURCE
GC0410 S-XREF
GC0410 File-Name
GC0410 ON EXCEPTION
GC0410 MOVE ' LISTING module is not available'
GC0410 TO Output-Message
GC0410 MOVE 1 TO RETURN-CODE
GC0410 END-CALL
GC0410 IF RETURN-CODE = 0
GC0410 MOVE ' Listing generated'
GC0410 TO Output-Message
GC0410 IF OS-Windows OR OS-Cygwin
GC0410 MOVE SPACES TO Cmd
GC0410 STRING
GC0410 'cmd /c '
GC0410 TRIM(Prog-Name,TRAILING)
GC0410 '.lst'
GC0410 DELIMITED SIZE INTO Cmd
GC0410 END-STRING
GC0410 CALL 'SYSTEM'
GC0410 USING TRIM(Cmd,TRAILING)
GC0410 END-CALL
GC0410 END-IF
GC0410 ELSE
GC0410 IF Output-Message = SPACES
GC0410 MOVE ' Listing generation failed'
GC0410 TO Output-Message
GC0410 END-IF
GC0410 END-IF
GC0410 DISPLAY
GC0410 Switches-Screen
GC0410 END-DISPLAY
GC0410 CALL 'C$SLEEP'
GC0410 USING 2

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-22

GC0410 END-CALL
GC0410 .
 /
 230-Run-Program SECTION.

 ** Run the compiled program **

 232-Build-Command.
GC0909 MOVE SPACES TO Cmd
GC0909 MOVE 1 TO I
 IF S-SUBROUTINE NOT = ' '
 OR S-DLL NOT = ' '
 STRING 'cobcrun ' DELIMITED SIZE
 INTO Cmd
 WITH POINTER I
 END-STRING
 END-IF
 IF Prog-Folder NOT = SPACES
GC0909 IF OS-Cygwin AND Prog-Folder (2:1) = ':'
GC0909 STRING '/cygdrive/'
GC0909 INTO Cmd
GC0909 WITH POINTER I
GC0909 END-STRING
GC0909 STRING LOWER-CASE(Prog-Folder (1:1))
GC0909 INTO Cmd
GC0909 WITH POINTER I
GC0909 END-STRING
GC0909 PERFORM VARYING J FROM 3 BY 1
GC0909 UNTIL J > LENGTH(TRIM(Prog-Folder))
GC0909 IF Prog-Folder (J:1) = '\'
GC0909 STRING '/'
GC0909 INTO Cmd
GC0909 WITH POINTER I
GC0909 END-STRING
GC0909 ELSE
GC0909 STRING Prog-Folder (J:1)
GC0909 INTO Cmd
GC0909 WITH POINTER I
GC0909 END-STRING
GC0909 END-IF
GC0909 END-PERFORM
GC0909 ELSE
GC0410 STRING '"' TRIM(Prog-Folder,TRAILING)
GC0909 INTO Cmd
GC0909 WITH POINTER I
GC0909 END-STRING
GC0909 END-IF
GC0909 STRING Dir-Char
GC0909 INTO Cmd
GC0909 WITH POINTER I
GC0909 END-STRING
GC0909 ELSE
GC0909 IF OS-Cygwin OR OS-UNIX
GC0909 STRING './'
GC0909 INTO Cmd
GC0909 WITH POINTER I
GC0909 END-STRING
GC0909 END-IF
 END-IF
GC0909 STRING TRIM(Prog-Name,TRAILING)
GC0909 INTO Cmd
GC0909 WITH POINTER I
GC0909 END-STRING
GC0909 IF S-SUBROUTINE = ' '
GC0909 AND S-DLL NOT = ' '
GC0909 STRING '.exe' DELIMITED SIZE
 INTO Cmd
 WITH POINTER I
 END-STRING
 END-IF
 IF S-ARGS NOT = SPACES
GC0809 STRING ' ' TRIM(S-ARGS,TRAILING)
 INTO Cmd
 WITH POINTER I
 END-STRING
 END-IF
 IF OS-Unknown OR OS-Windows
GC0410 STRING '"&&pause'
 INTO Cmd
 WITH POINTER I
 END-STRING
 ELSE
 STRING ';echo "Press ENTER to close...";read'

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-23

 INTO Cmd
 WITH POINTER I
 END-STRING
 END-IF
 .

 233-Run-Program.
GC0909 DISPLAY
GC0909 Blank-Screen
GC0909 END-DISPLAY

 CALL 'SYSTEM'
 USING TRIM(Cmd,TRAILING)
 END-CALL
 PERFORM 900-Terminate
 .

 239-Done.
 EXIT.
 /
 900-Terminate SECTION.

 ** Display a message and halt the program **

 901-Display-Message.
GC0909 IF Output-Message > SPACES
GC0909 DISPLAY
GC0909 Switches-Screen
GC0909 END-DISPLAY
GC0909 CALL 'C$SLEEP'
GC0909 USING 2
GC0909 END-CALL
GC0909 END-IF
 DISPLAY
 Blank-Screen
 END-DISPLAY
 .

 909-Done.
 GOBACK
 .

 END PROGRAM OCic.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. GETOSTYPE.

 ** This subprogram determine the OS type the program is run- **
 ** ning under, passing that result back in RETURN-CODE as fol- **
 ** lows: **
 ** **
 ** 0: Cannot be determined **
 ** 1: Native Windows or Windows/MinGW **
 ** 2: Cygwin **
 ** 3: UNIX/Linux/MacOS **

 ** DATE CHANGE DESCRIPTION **
 ** ====== == **
 ** GC0909 Initial coding. **

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.
 FUNCTION ALL INTRINSIC.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Env-Path PIC X(1024).
 01 Tally USAGE BINARY-LONG.
 PROCEDURE DIVISION.
 000-Main SECTION.
 010-Get-TEMP-Var.
 MOVE SPACES TO Env-Path
 ACCEPT Env-Path
 FROM ENVIRONMENT "PATH"
 ON EXCEPTION
 MOVE 0 TO RETURN-CODE
 GOBACK
 END-ACCEPT
 IF Env-Path = SPACES
 MOVE 0 TO RETURN-CODE
 ELSE
 MOVE 0 TO Tally
 INSPECT Env-Path

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-24

 TALLYING Tally FOR ALL ";"
 IF Tally = 0 *> Must be some form of UNIX
 MOVE 0 TO Tally
 INSPECT Env-Path
 TALLYING TALLY FOR ALL "/cygdrive/"
 IF Tally = 0 *> UNIX/MacOS
 MOVE 3 TO RETURN-CODE
 ELSE *> Cygwin
 MOVE 2 TO RETURN-CODE
 END-IF
 ELSE *> Assume Windows[/MinGW]
 MOVE 1 TO RETURN-CODE
 END-IF
 END-IF
 GOBACK
 .
 END PROGRAM GETOSTYPE.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CHECKSOURCE.

 ** This subprogram will scan a line of source code it is given **
 ** looking for "LINKAGE SECTION" or "IDENTIFICATION DIVISION". **
 ** **
 ** ****NOTE**** ****NOTE**** ****NOTE**** ****NOTE*** **
 ** **
 ** These two strings must be found IN THEIR ENTIRETY within **
 ** the 1st 80 columns of program source records, and cannot **
 ** follow either a "*>" sequence OR a "*" in col 7. **

 ** DATE CHANGE DESCRIPTION **
 ** ====== == **
 ** GC0809 Initial coding. **

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.
 FUNCTION ALL INTRINSIC.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Compressed-Src.
 05 CS-Char OCCURS 80 TIMES PIC X(1).

 01 Flags.
 05 F-Found-SPACE PIC X(1).
 88 88-Skipping-SPACE VALUE 'Y'.
 88 88-Not-Skipping-SPACE VALUE 'N'.

 01 I USAGE BINARY-CHAR.

 01 J USAGE BINARY-CHAR.
 LINKAGE SECTION.
 01 Argument-1.
 02 A1-Char OCCURS 80 TIMES PIC X(1).

 01 Argument-2 PIC X(1).
 88 88-A2-LINKAGE-SECTION VALUE 'L'.
 88 88-A2-IDENTIFICATION-DIVISION VALUE 'I'.
 88 88-A2-Nothing-Special VALUE ' '.
 PROCEDURE DIVISION USING Argument-1, Argument-2.
 000-Main SECTION.

 010-Initialize.
 SET 88-A2-Nothing-Special TO TRUE
 IF A1-Char (7) = '*'
 GOBACK
 END-IF
 .

 020-Compress-Multiple-SPACES.
 SET 88-Not-Skipping-SPACE TO TRUE
 MOVE 0 TO J
 MOVE SPACES TO Compressed-Src
 PERFORM VARYING I FROM 1 BY 1
 UNTIL I > 80
 IF A1-Char (I) = SPACE
 IF 88-Not-Skipping-SPACE
 ADD 1 TO J
 MOVE UPPER-CASE(A1-Char (I)) TO CS-Char (J)
 SET 88-Skipping-SPACE TO TRUE
 END-IF
 ELSE
 SET 88-Not-Skipping-SPACE TO TRUE
 ADD 1 TO J

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-25

 MOVE A1-Char (I) TO CS-Char (J)
 END-IF
 END-PERFORM
 .

 030-Scan-Compressed-Src.
 PERFORM VARYING I FROM 1 BY 1
 UNTIL I > 66
 EVALUATE TRUE
 WHEN CS-Char (I) = '*'
 IF Compressed-Src (I : 2) = '*>'
 GOBACK
 END-IF
 WHEN (CS-Char (I) = 'L') AND (I < 66)
 IF Compressed-Src (I : 15) = 'LINKAGE SECTION'
 SET 88-A2-LINKAGE-SECTION TO TRUE
 GOBACK
 END-IF
 WHEN (CS-Char (I) = 'I') AND (I < 58)
 IF Compressed-Src (I : 23) = 'IDENTIFICATION ' &
 'DIVISION'
 SET 88-A2-IDENTIFICATION-DIVISION TO TRUE
 GOBACK
 END-IF
 END-EVALUATE
 END-PERFORM
 .

 099-Never-Found-Either-One.
 GOBACK
 .
 END PROGRAM CHECKSOURCE.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. LISTING.

 ** This subprogram generates a cross-reference listing of an **
 ** OpenCOBOL program. **
 ** **
 ** Linkage: CALL "LISTING" USING <source> **
 ** <xref> **
 ** <filename> **
 ** **
 ** Where: **
 ** <source> is a PIC X(1) flag indicating **
 ** whether or not a source listing **
 ** should be produced (space=NO, **
 ** non-space=yes) **
 ** <xref> is a PIC X(1) flag indicating **
 ** whether or not an xref listing **
 ** should be produced (space=NO, **
 ** non-space=yes) **
 ** <filename> is the [path]filename of the **
 ** program being listed and/or **
 ** xreffed in a PIC X(256) form. **

 ** **
 ** AUTHOR: GARY L. CUTLER **
 ** CutlerGL@gmail.com **
 ** Copyright (C) 2010, Gary L. Cutler, GPL **
 ** **
 ** DATE-WRITTEN: April 1, 2010 **
 ** **

 ** DATE CHANGE DESCRIPTION **
 ** ====== == **
 ** GC0410 Initial coding **

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.
 FUNCTION ALL INTRINSIC.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT Expand-Code ASSIGN TO Expanded-Src-Filename
 ORGANIZATION IS LINE SEQUENTIAL.
 SELECT Report-File ASSIGN TO Report-Filename
 ORGANIZATION IS LINE SEQUENTIAL.
 SELECT Sort-File ASSIGN TO DISK.
 SELECT Source-Code ASSIGN TO Src-Filename
 ORGANIZATION IS LINE SEQUENTIAL.
 DATA DIVISION.
 FILE SECTION.
 FD Expand-Code.

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-26

 01 Expand-Code-Rec.
 05 ECR-1 PIC X.
 05 ECR-2-256 PIC X(256).
 01 Expand-Code-Rec-Alt.
 05 ECR-1-128 PIC X(128).
 05 ECR-129-256 PIC X(128).

 FD Report-File.
 01 Report-Rec PIC X(135).

 SD Sort-File.
 01 Sort-Rec.
 05 SR-Prog-ID PIC X(15).
 05 SR-Token-UC PIC X(32).
 05 SR-Token PIC X(32).
 05 SR-Section PIC X(15).
 05 SR-Line-No-Def PIC 9(6).
 05 SR-Reference.
 10 SR-Line-No-Ref PIC 9(6).
 10 SR-Ref-Flag PIC X(1).

 FD Source-Code.
 01 Source-Code-Rec.
GC0410 05 SCR-1-128.
GC0410 10 FILLER PIC X(6).
GC0410 10 SCR-7 PIC X(1).
GC0410 10 FILLER PIC X(121).
 05 SCR-129-256 PIC X(128).

 WORKING-STORAGE SECTION.
 78 Line-Nos-Per-Rec VALUE 8.

 01 Cmd PIC X(256).

 01 Delim PIC X(2).

 01 Detail-Line-S.
 05 DLS-Line-No PIC ZZZZZ9.
 05 FILLER PIC X(1).
 05 DLS-Statement PIC X(128).

 01 Detail-Line-X.
 05 DLX-Prog-ID PIC X(15).
 05 FILLER PIC X(1).
 05 DLX-Token PIC X(32).
 05 FILLER PIC X(1).
 05 DLX-Line-No-Def PIC ZZZZZ9.
 05 FILLER PIC X(1).
 05 DLX-Section PIC X(15).
 05 FILLER PIC X(1).
 05 DLX-Reference OCCURS Line-Nos-Per-Rec TIMES.
 10 DLX-Line-No-Ref PIC ZZZZZ9.
 10 DLX-Ref-Flag PIC X(1).
 10 FILLER PIC X(1).

 01 Dummy PIC X(1).

 01 Env-TEMP PIC X(256).

 01 Expanded-Src-Filename PIC X(256).

 01 Filename PIC X(256).

 01 Flags.
 05 F-First-Record PIC X(1).
 05 F-In-Which-Pgm PIC X(1).
 88 In-Main-Module VALUE 'M'.
 88 In-Copybook VALUE 'C'.
 05 F-Last-Token-Ended-Sent PIC X(1).
 05 F-Processing-PICTURE PIC X(1).
 05 F-Token-Ended-Sentence PIC X(1).

 01 Group-Indicators.
 05 GI-Prog-ID PIC X(15).
 05 GI-Token PIC X(32).

 01 Heading-1S.
 05 FILLER PIC X(125) VALUE
 "OpenCOBOL 1.1 06FEB2009 Source Listing - " &
 "OCic Copyright (C) 2009-2010, Gary L. Cutler, GPL".
 05 H1S-Date PIC 9999/99/99.

 01 Heading-1X.
 05 FILLER PIC X(125) VALUE

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-27

 "OpenCOBOL 1.1 06FEB2009 Cross-Reference Listing - " &
 "OCic Copyright (C) 2009-2010, Gary L. Cutler, GPL".
 05 H1X-Date PIC 9999/99/99.

 01 Heading-2 PIC X(135).

 01 Heading-4S PIC X(16) VALUE
 "Line Statement".

 01 Heading-4X PIC X(96) VALUE
 "PROGRAM-ID Identifier/Register/Function Defn Wher
 - "e Defined References (* = Updated)".

 01 Heading-5S PIC X(135) VALUE
 "====== ===
 - "==
 - "===============".

 01 Heading-5X PIC X(135) VALUE
 "=============== ================================ ====== ====
 - "=========== ==
 - "===============".

 01 Held-Reference PIC X(100).

 01 I USAGE BINARY-LONG.

 01 J USAGE BINARY-LONG.

 01 Lines-Left USAGE BINARY-LONG.

 01 Lines-Per-Page USAGE BINARY-LONG.

 01 Lines-Per-Page-ENV PIC X(256).

 01 Num-UserNames USAGE BINARY-LONG.

 01 PIC-X10 PIC X(10).

 01 PIC-X32 PIC X(32).

 01 PIC-X256 PIC X(256).

 01 Program-Path PIC X(256).

 01 Report-Filename PIC X(256).

 01 Reserved-Words.
 05 FILLER PIC X(33) VALUE "IABS".
 05 FILLER PIC X(33) VALUE "VACCEPT".
 05 FILLER PIC X(33) VALUE " ACCESS".
 05 FILLER PIC X(33) VALUE "IACOS".
 05 FILLER PIC X(33) VALUE " ACTIVE-CLASS".
 05 FILLER PIC X(33) VALUE "VADD".
 05 FILLER PIC X(33) VALUE " ADDRESS".
 05 FILLER PIC X(33) VALUE " ADVANCING".
 05 FILLER PIC X(33) VALUE "KAFTER".
 05 FILLER PIC X(33) VALUE " ALIGNED".
 05 FILLER PIC X(33) VALUE " ALL".
 05 FILLER PIC X(33) VALUE "VALLOCATE".
 05 FILLER PIC X(33) VALUE " ALPHABET".
 05 FILLER PIC X(33) VALUE " ALPHABETIC".
 05 FILLER PIC X(33) VALUE " ALPHABETIC-LOWER".
 05 FILLER PIC X(33) VALUE " ALPHABETIC-UPPER".
 05 FILLER PIC X(33) VALUE " ALPHANUMERIC".
 05 FILLER PIC X(33) VALUE " ALPHANUMERIC-EDITED".
 05 FILLER PIC X(33) VALUE " ALSO".
 05 FILLER PIC X(33) VALUE "VALTER".
 05 FILLER PIC X(33) VALUE " ALTERNATE".
 05 FILLER PIC X(33) VALUE " AND".
 05 FILLER PIC X(33) VALUE "IANNUITY".
 05 FILLER PIC X(33) VALUE " ANY".
 05 FILLER PIC X(33) VALUE " ANYCASE".
 05 FILLER PIC X(33) VALUE " ARE".
 05 FILLER PIC X(33) VALUE " AREA".
 05 FILLER PIC X(33) VALUE " AREAS".
 05 FILLER PIC X(33) VALUE " ARGUMENT-NUMBER".
 05 FILLER PIC X(33) VALUE " ARGUMENT-VALUE".
 05 FILLER PIC X(33) VALUE " AS".
 05 FILLER PIC X(33) VALUE " ASCENDING".
 05 FILLER PIC X(33) VALUE "IASIN".
 05 FILLER PIC X(33) VALUE " ASSIGN".
 05 FILLER PIC X(33) VALUE " AT".
 05 FILLER PIC X(33) VALUE "IATAN".

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-28

 05 FILLER PIC X(33) VALUE " AUTHOR".
 05 FILLER PIC X(33) VALUE " AUTO".
 05 FILLER PIC X(33) VALUE " AUTO-SKIP".
 05 FILLER PIC X(33) VALUE " AUTOMATIC".
 05 FILLER PIC X(33) VALUE " AUTOTERMINATE".
 05 FILLER PIC X(33) VALUE " BACKGROUND-COLOR".
 05 FILLER PIC X(33) VALUE " BASED".
 05 FILLER PIC X(33) VALUE " BEEP".
 05 FILLER PIC X(33) VALUE " BEFORE".
 05 FILLER PIC X(33) VALUE " BELL".
 05 FILLER PIC X(33) VALUE " BINARY".
 05 FILLER PIC X(33) VALUE " BINARY-C-LONG".
 05 FILLER PIC X(33) VALUE " BINARY-CHAR".
 05 FILLER PIC X(33) VALUE " BINARY-DOUBLE".
 05 FILLER PIC X(33) VALUE " BINARY-LONG".
 05 FILLER PIC X(33) VALUE " BINARY-SHORT".
 05 FILLER PIC X(33) VALUE " BIT".
 05 FILLER PIC X(33) VALUE " BLANK".
 05 FILLER PIC X(33) VALUE " BLINK".
 05 FILLER PIC X(33) VALUE " BLOCK".
 05 FILLER PIC X(33) VALUE " BOOLEAN".
 05 FILLER PIC X(33) VALUE " BOTTOM".
 05 FILLER PIC X(33) VALUE "YBY".
 05 FILLER PIC X(33) VALUE "IBYTE-LENGTH".
 05 FILLER PIC X(33) VALUE "MC01".
 05 FILLER PIC X(33) VALUE "MC02".
 05 FILLER PIC X(33) VALUE "MC03".
 05 FILLER PIC X(33) VALUE "MC04".
 05 FILLER PIC X(33) VALUE "MC05".
 05 FILLER PIC X(33) VALUE "MC06".
 05 FILLER PIC X(33) VALUE "MC07".
 05 FILLER PIC X(33) VALUE "MC08".
 05 FILLER PIC X(33) VALUE "MC09".
 05 FILLER PIC X(33) VALUE "MC10".
 05 FILLER PIC X(33) VALUE "MC11".
 05 FILLER PIC X(33) VALUE "MC12".
 05 FILLER PIC X(33) VALUE "VCALL".
 05 FILLER PIC X(33) VALUE "VCANCEL".
 05 FILLER PIC X(33) VALUE " CF".
 05 FILLER PIC X(33) VALUE " CH".
 05 FILLER PIC X(33) VALUE " CHAINING".
 05 FILLER PIC X(33) VALUE "ICHAR".
 05 FILLER PIC X(33) VALUE " CHARACTER".
 05 FILLER PIC X(33) VALUE " CHARACTERS".
 05 FILLER PIC X(33) VALUE " CLASS".
 05 FILLER PIC X(33) VALUE " CLASS-ID".
 05 FILLER PIC X(33) VALUE "VCLOSE".
 05 FILLER PIC X(33) VALUE "ICOB-CRT-STATUS".
 05 FILLER PIC X(33) VALUE " CODE".
 05 FILLER PIC X(33) VALUE " CODE-SET".
 05 FILLER PIC X(33) VALUE " COL".
 05 FILLER PIC X(33) VALUE " COLLATING".
 05 FILLER PIC X(33) VALUE " COLS".
 05 FILLER PIC X(33) VALUE " COLUMN".
 05 FILLER PIC X(33) VALUE " COLUMNS".
 05 FILLER PIC X(33) VALUE "ICOMBINED-DATETIME".
 05 FILLER PIC X(33) VALUE " COMMA".
 05 FILLER PIC X(33) VALUE " COMMAND-LINE".
 05 FILLER PIC X(33) VALUE "VCOMMIT".
 05 FILLER PIC X(33) VALUE " COMMON".
 05 FILLER PIC X(33) VALUE " COMP".
 05 FILLER PIC X(33) VALUE " COMP-1".
 05 FILLER PIC X(33) VALUE " COMP-2".
 05 FILLER PIC X(33) VALUE " COMP-3".
 05 FILLER PIC X(33) VALUE " COMP-4".
 05 FILLER PIC X(33) VALUE " COMP-5".
 05 FILLER PIC X(33) VALUE " COMP-X".
 05 FILLER PIC X(33) VALUE " COMPUTATIONAL".
 05 FILLER PIC X(33) VALUE " COMPUTATIONAL-1".
 05 FILLER PIC X(33) VALUE " COMPUTATIONAL-2".
 05 FILLER PIC X(33) VALUE " COMPUTATIONAL-3".
 05 FILLER PIC X(33) VALUE " COMPUTATIONAL-4".
 05 FILLER PIC X(33) VALUE " COMPUTATIONAL-5".
 05 FILLER PIC X(33) VALUE " COMPUTATIONAL-X".
 05 FILLER PIC X(33) VALUE "VCOMPUTE".
 05 FILLER PIC X(33) VALUE "ICONCATENATE".
 05 FILLER PIC X(33) VALUE " CONDITION".
 05 FILLER PIC X(33) VALUE "KCONFIGURATION".
 05 FILLER PIC X(33) VALUE "MCONSOLE".
 05 FILLER PIC X(33) VALUE " CONSTANT".
 05 FILLER PIC X(33) VALUE " CONTAINS".
 05 FILLER PIC X(33) VALUE " CONTENT".
 05 FILLER PIC X(33) VALUE "VCONTINUE".
 05 FILLER PIC X(33) VALUE " CONTROL".

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-29

 05 FILLER PIC X(33) VALUE " CONTROLS".
 05 FILLER PIC X(33) VALUE "KCONVERTING".
 05 FILLER PIC X(33) VALUE " COPY".
 05 FILLER PIC X(33) VALUE " CORR".
 05 FILLER PIC X(33) VALUE " CORRESPONDING".
 05 FILLER PIC X(33) VALUE "ICOS".
 05 FILLER PIC X(33) VALUE "KCOUNT".
 05 FILLER PIC X(33) VALUE " CRT".
 05 FILLER PIC X(33) VALUE " CURRENCY".
 05 FILLER PIC X(33) VALUE "ICURRENT-DATE".
 05 FILLER PIC X(33) VALUE " CURSOR".
 05 FILLER PIC X(33) VALUE " CYCLE".
 05 FILLER PIC X(33) VALUE "KDATA".
 05 FILLER PIC X(33) VALUE " DATA-POINTER".
 05 FILLER PIC X(33) VALUE " DATE".
 05 FILLER PIC X(33) VALUE " DATE-COMPILED".
 05 FILLER PIC X(33) VALUE " DATE-MODIFIED".
 05 FILLER PIC X(33) VALUE "IDATE-OF-INTEGER".
 05 FILLER PIC X(33) VALUE "IDATE-TO-YYYYMMDD".
 05 FILLER PIC X(33) VALUE " DATE-WRITTEN".
 05 FILLER PIC X(33) VALUE " DAY".
 05 FILLER PIC X(33) VALUE "IDAY-OF-INTEGER".
 05 FILLER PIC X(33) VALUE " DAY-OF-WEEK".
 05 FILLER PIC X(33) VALUE "IDAY-TO-YYYYDDD".
 05 FILLER PIC X(33) VALUE " DE".
 05 FILLER PIC X(33) VALUE " DEBUGGING".
 05 FILLER PIC X(33) VALUE " DECIMAL-POINT".
 05 FILLER PIC X(33) VALUE " DECLARATIVES".
 05 FILLER PIC X(33) VALUE " DEFAULT".
 05 FILLER PIC X(33) VALUE "VDELETE".
 05 FILLER PIC X(33) VALUE " DELIMITED".
 05 FILLER PIC X(33) VALUE "KDELIMITER".
 05 FILLER PIC X(33) VALUE " DEPENDING".
 05 FILLER PIC X(33) VALUE " DESCENDING".
 05 FILLER PIC X(33) VALUE " DESTINATION".
 05 FILLER PIC X(33) VALUE " DETAIL".
 05 FILLER PIC X(33) VALUE " DISABLE".
 05 FILLER PIC X(33) VALUE " DISK".
 05 FILLER PIC X(33) VALUE "VDISPLAY".
 05 FILLER PIC X(33) VALUE "VDIVIDE".
 05 FILLER PIC X(33) VALUE "KDIVISION".
 05 FILLER PIC X(33) VALUE "KDOWN".
 05 FILLER PIC X(33) VALUE " DUPLICATES".
 05 FILLER PIC X(33) VALUE " DYNAMIC".
 05 FILLER PIC X(33) VALUE "IE".
 05 FILLER PIC X(33) VALUE " EBCDIC".
 05 FILLER PIC X(33) VALUE " EC".
 05 FILLER PIC X(33) VALUE "VELSE".
 05 FILLER PIC X(33) VALUE " END".
 05 FILLER PIC X(33) VALUE " END-ACCEPT".
 05 FILLER PIC X(33) VALUE " END-ADD".
 05 FILLER PIC X(33) VALUE " END-CALL".
 05 FILLER PIC X(33) VALUE " END-COMPUTE".
 05 FILLER PIC X(33) VALUE " END-DELETE".
 05 FILLER PIC X(33) VALUE " END-DISPLAY".
 05 FILLER PIC X(33) VALUE " END-DIVIDE".
 05 FILLER PIC X(33) VALUE " END-EVALUATE".
 05 FILLER PIC X(33) VALUE " END-IF".
 05 FILLER PIC X(33) VALUE " END-MULTIPLY".
 05 FILLER PIC X(33) VALUE " END-OF-PAGE".
 05 FILLER PIC X(33) VALUE " END-PERFORM".
 05 FILLER PIC X(33) VALUE " END-READ".
 05 FILLER PIC X(33) VALUE " END-RETURN".
 05 FILLER PIC X(33) VALUE " END-REWRITE".
 05 FILLER PIC X(33) VALUE " END-SEARCH".
 05 FILLER PIC X(33) VALUE " END-START".
 05 FILLER PIC X(33) VALUE " END-STRING".
 05 FILLER PIC X(33) VALUE " END-SUBTRACT".
 05 FILLER PIC X(33) VALUE " END-UNSTRING".
 05 FILLER PIC X(33) VALUE " END-WRITE".
 05 FILLER PIC X(33) VALUE "VENTRY".
 05 FILLER PIC X(33) VALUE "KENVIRONMENT".
 05 FILLER PIC X(33) VALUE " ENVIRONMENT-NAME".
 05 FILLER PIC X(33) VALUE " ENVIRONMENT-VALUE".
 05 FILLER PIC X(33) VALUE " EO".
 05 FILLER PIC X(33) VALUE " EOL".
 05 FILLER PIC X(33) VALUE " EOP".
 05 FILLER PIC X(33) VALUE " EOS".
 05 FILLER PIC X(33) VALUE " EQUAL".
 05 FILLER PIC X(33) VALUE "KEQUALS".
 05 FILLER PIC X(33) VALUE " ERASE".
 05 FILLER PIC X(33) VALUE " ERROR".
 05 FILLER PIC X(33) VALUE " ESCAPE".
 05 FILLER PIC X(33) VALUE "VEVALUATE".

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-30

 05 FILLER PIC X(33) VALUE " EXCEPTION".
 05 FILLER PIC X(33) VALUE "IEXCEPTION-FILE".
 05 FILLER PIC X(33) VALUE "IEXCEPTION-LOCATION".
 05 FILLER PIC X(33) VALUE " EXCEPTION-OBJECT".
 05 FILLER PIC X(33) VALUE "IEXCEPTION-STATEMENT".
 05 FILLER PIC X(33) VALUE "IEXCEPTION-STATUS".
 05 FILLER PIC X(33) VALUE " EXCLUSIVE".
 05 FILLER PIC X(33) VALUE "VEXIT".
 05 FILLER PIC X(33) VALUE "IEXP".
 05 FILLER PIC X(33) VALUE "IEXP10".
 05 FILLER PIC X(33) VALUE " EXTEND".
 05 FILLER PIC X(33) VALUE " EXTERNAL".
 05 FILLER PIC X(33) VALUE "IFACTORIAL".
 05 FILLER PIC X(33) VALUE " FACTORY".
 05 FILLER PIC X(33) VALUE " FALSE".
 05 FILLER PIC X(33) VALUE "KFD".
 05 FILLER PIC X(33) VALUE "KFILE".
 05 FILLER PIC X(33) VALUE " FILE-CONTROL".
 05 FILLER PIC X(33) VALUE " FILE-ID".
 05 FILLER PIC X(33) VALUE " FILLER".
 05 FILLER PIC X(33) VALUE " FINAL".
 05 FILLER PIC X(33) VALUE " FIRST".
 05 FILLER PIC X(33) VALUE " FLOAT-BINARY-16".
 05 FILLER PIC X(33) VALUE " FLOAT-BINARY-34".
 05 FILLER PIC X(33) VALUE " FLOAT-BINARY-7".
 05 FILLER PIC X(33) VALUE " FLOAT-DECIMAL-16".
 05 FILLER PIC X(33) VALUE " FLOAT-DECIMAL-34".
 05 FILLER PIC X(33) VALUE " FLOAT-EXTENDED".
 05 FILLER PIC X(33) VALUE " FLOAT-LONG".
 05 FILLER PIC X(33) VALUE " FLOAT-SHORT".
 05 FILLER PIC X(33) VALUE " FOOTING".
 05 FILLER PIC X(33) VALUE " FOR".
 05 FILLER PIC X(33) VALUE " FOREGROUND-COLOR".
 05 FILLER PIC X(33) VALUE " FOREVER".
 05 FILLER PIC X(33) VALUE " FORMAT".
 05 FILLER PIC X(33) VALUE "MFORMFEED".
 05 FILLER PIC X(33) VALUE "IFRACTION-PART".
 05 FILLER PIC X(33) VALUE "VFREE".
 05 FILLER PIC X(33) VALUE " FROM".
 05 FILLER PIC X(33) VALUE " FULL".
 05 FILLER PIC X(33) VALUE " FUNCTION".
 05 FILLER PIC X(33) VALUE " FUNCTION-ID".
 05 FILLER PIC X(33) VALUE " FUNCTION-POINTER".
 05 FILLER PIC X(33) VALUE "VGENERATE".
 05 FILLER PIC X(33) VALUE " GET".
 05 FILLER PIC X(33) VALUE "KGIVING".
 05 FILLER PIC X(33) VALUE " GLOBAL".
 05 FILLER PIC X(33) VALUE "VGO".
 05 FILLER PIC X(33) VALUE "VGOBACK".
 05 FILLER PIC X(33) VALUE " GREATER".
 05 FILLER PIC X(33) VALUE " GROUP".
 05 FILLER PIC X(33) VALUE " GROUP-USAGE".
 05 FILLER PIC X(33) VALUE " HEADING".
 05 FILLER PIC X(33) VALUE " HIGH-VALUE".
 05 FILLER PIC X(33) VALUE " HIGH-VALUES".
 05 FILLER PIC X(33) VALUE " HIGHLIGHT".
 05 FILLER PIC X(33) VALUE " I-O".
 05 FILLER PIC X(33) VALUE " I-O-CONTROL".
 05 FILLER PIC X(33) VALUE "KID".
 05 FILLER PIC X(33) VALUE "KIDENTIFICATION".
 05 FILLER PIC X(33) VALUE "VIF".
 05 FILLER PIC X(33) VALUE " IGNORE".
 05 FILLER PIC X(33) VALUE " IGNORING".
 05 FILLER PIC X(33) VALUE " IN".
 05 FILLER PIC X(33) VALUE " INDEX".
 05 FILLER PIC X(33) VALUE "KINDEXED".
 05 FILLER PIC X(33) VALUE " INDICATE".
 05 FILLER PIC X(33) VALUE " INFINITY".
 05 FILLER PIC X(33) VALUE " INHERITS".
 05 FILLER PIC X(33) VALUE " INITIAL".
 05 FILLER PIC X(33) VALUE " INITIALISED".
 05 FILLER PIC X(33) VALUE "VINITIALIZE".
 05 FILLER PIC X(33) VALUE " INITIALIZED".
 05 FILLER PIC X(33) VALUE "VINITIATE".
 05 FILLER PIC X(33) VALUE " INPUT".
 05 FILLER PIC X(33) VALUE "KINPUT-OUTPUT".
 05 FILLER PIC X(33) VALUE "VINSPECT".
 05 FILLER PIC X(33) VALUE " INSTALLATION".
 05 FILLER PIC X(33) VALUE "IINTEGER".
 05 FILLER PIC X(33) VALUE "IINTEGER-OF-DATE".
 05 FILLER PIC X(33) VALUE "IINTEGER-OF-DAY".
 05 FILLER PIC X(33) VALUE "IINTEGER-PART".
 05 FILLER PIC X(33) VALUE " INTERFACE".
 05 FILLER PIC X(33) VALUE " INTERFACE-ID".

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-31

 05 FILLER PIC X(33) VALUE "KINTO".
 05 FILLER PIC X(33) VALUE " INTRINSIC".
 05 FILLER PIC X(33) VALUE " INVALID".
 05 FILLER PIC X(33) VALUE " INVOKE".
 05 FILLER PIC X(33) VALUE " IS".
 05 FILLER PIC X(33) VALUE " JUST".
 05 FILLER PIC X(33) VALUE " JUSTIFIED".
 05 FILLER PIC X(33) VALUE " KEY".
 05 FILLER PIC X(33) VALUE " LABEL".
 05 FILLER PIC X(33) VALUE " LAST".
 05 FILLER PIC X(33) VALUE " LEADING".
 05 FILLER PIC X(33) VALUE " LEFT".
 05 FILLER PIC X(33) VALUE " LEFT-JUSTIFY".
 05 FILLER PIC X(33) VALUE "ILENGTH".
 05 FILLER PIC X(33) VALUE " LESS".
 05 FILLER PIC X(33) VALUE " LIMIT".
 05 FILLER PIC X(33) VALUE " LIMITS".
 05 FILLER PIC X(33) VALUE " LINAGE".
 05 FILLER PIC X(33) VALUE "ILINAGE-COUNTER".
 05 FILLER PIC X(33) VALUE " LINE".
 05 FILLER PIC X(33) VALUE " LINE-COUNTER".
 05 FILLER PIC X(33) VALUE " LINES".
 05 FILLER PIC X(33) VALUE "KLINKAGE".
 05 FILLER PIC X(33) VALUE "KLOCAL-STORAGE".
 05 FILLER PIC X(33) VALUE " LOCALE".
 05 FILLER PIC X(33) VALUE "ILOCALE-DATE".
 05 FILLER PIC X(33) VALUE "ILOCALE-TIME".
 05 FILLER PIC X(33) VALUE "ILOCALE-TIME-FROM-SECONDS".
 05 FILLER PIC X(33) VALUE " LOCK".
 05 FILLER PIC X(33) VALUE "ILOG".
 05 FILLER PIC X(33) VALUE "ILOG10".
 05 FILLER PIC X(33) VALUE " LOW-VALUE".
 05 FILLER PIC X(33) VALUE " LOW-VALUES".
 05 FILLER PIC X(33) VALUE " LOWER".
 05 FILLER PIC X(33) VALUE "ILOWER-CASE".
 05 FILLER PIC X(33) VALUE " LOWLIGHT".
 05 FILLER PIC X(33) VALUE " MANUAL".
 05 FILLER PIC X(33) VALUE "IMAX".
 05 FILLER PIC X(33) VALUE "IMEAN".
 05 FILLER PIC X(33) VALUE "IMEDIAN".
 05 FILLER PIC X(33) VALUE " MEMORY".
 05 FILLER PIC X(33) VALUE "VMERGE".
 05 FILLER PIC X(33) VALUE " METHOD".
 05 FILLER PIC X(33) VALUE " METHOD-ID".
 05 FILLER PIC X(33) VALUE "IMIDRANGE".
 05 FILLER PIC X(33) VALUE "IMIN".
 05 FILLER PIC X(33) VALUE " MINUS".
 05 FILLER PIC X(33) VALUE "IMOD".
 05 FILLER PIC X(33) VALUE " MODE".
 05 FILLER PIC X(33) VALUE "VMOVE".
 05 FILLER PIC X(33) VALUE " MULTIPLE".
 05 FILLER PIC X(33) VALUE "VMULTIPLY".
 05 FILLER PIC X(33) VALUE " NATIONAL".
 05 FILLER PIC X(33) VALUE " NATIONAL-EDITED".
 05 FILLER PIC X(33) VALUE " NATIVE".
 05 FILLER PIC X(33) VALUE " NEGATIVE".
 05 FILLER PIC X(33) VALUE " NESTED".
 05 FILLER PIC X(33) VALUE "VNEXT".
 05 FILLER PIC X(33) VALUE " NO".
 05 FILLER PIC X(33) VALUE " NOT".
 05 FILLER PIC X(33) VALUE " NULL".
 05 FILLER PIC X(33) VALUE " NULLS".
 05 FILLER PIC X(33) VALUE " NUMBER".
 05 FILLER PIC X(33) VALUE "INUMBER-OF-CALL-PARAMETERS".
 05 FILLER PIC X(33) VALUE " NUMBERS".
 05 FILLER PIC X(33) VALUE " NUMERIC".
 05 FILLER PIC X(33) VALUE " NUMERIC-EDITED".
 05 FILLER PIC X(33) VALUE "INUMVAL".
 05 FILLER PIC X(33) VALUE "INUMVAL-C".
 05 FILLER PIC X(33) VALUE " OBJECT".
 05 FILLER PIC X(33) VALUE " OBJECT-COMPUTER".
 05 FILLER PIC X(33) VALUE " OBJECT-REFERENCE".
 05 FILLER PIC X(33) VALUE " OCCURS".
 05 FILLER PIC X(33) VALUE " OF".
 05 FILLER PIC X(33) VALUE " OFF".
 05 FILLER PIC X(33) VALUE " OMITTED".
 05 FILLER PIC X(33) VALUE " ON".
 05 FILLER PIC X(33) VALUE " ONLY".
 05 FILLER PIC X(33) VALUE "VOPEN".
 05 FILLER PIC X(33) VALUE " OPTIONAL".
 05 FILLER PIC X(33) VALUE " OPTIONS".
 05 FILLER PIC X(33) VALUE " OR".
 05 FILLER PIC X(33) VALUE "IORD".
 05 FILLER PIC X(33) VALUE "IORD-MAX".

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-32

 05 FILLER PIC X(33) VALUE "IORD-MIN".
 05 FILLER PIC X(33) VALUE " ORDER".
 05 FILLER PIC X(33) VALUE " ORGANIZATION".
 05 FILLER PIC X(33) VALUE " OTHER".
 05 FILLER PIC X(33) VALUE " OUTPUT".
 05 FILLER PIC X(33) VALUE " OVERFLOW".
 05 FILLER PIC X(33) VALUE " OVERLINE".
 05 FILLER PIC X(33) VALUE " OVERRIDE".
 05 FILLER PIC X(33) VALUE " PACKED-DECIMAL".
 05 FILLER PIC X(33) VALUE " PADDING".
 05 FILLER PIC X(33) VALUE " PAGE".
 05 FILLER PIC X(33) VALUE " PAGE-COUNTER".
 05 FILLER PIC X(33) VALUE " PARAGRAPH".
 05 FILLER PIC X(33) VALUE "VPERFORM".
 05 FILLER PIC X(33) VALUE " PF".
 05 FILLER PIC X(33) VALUE " PH".
 05 FILLER PIC X(33) VALUE "IPI".
 05 FILLER PIC X(33) VALUE "KPIC".
 05 FILLER PIC X(33) VALUE "KPICTURE".
 05 FILLER PIC X(33) VALUE " PLUS".
 05 FILLER PIC X(33) VALUE "KPOINTER".
 05 FILLER PIC X(33) VALUE " POSITION".
 05 FILLER PIC X(33) VALUE " POSITIVE".
 05 FILLER PIC X(33) VALUE " PRESENT".
 05 FILLER PIC X(33) VALUE "IPRESENT-VALUE".
 05 FILLER PIC X(33) VALUE " PREVIOUS".
 05 FILLER PIC X(33) VALUE "MPRINTER".
 05 FILLER PIC X(33) VALUE " PRINTING".
 05 FILLER PIC X(33) VALUE "KPROCEDURE".
 05 FILLER PIC X(33) VALUE " PROCEDURE-POINTER".
 05 FILLER PIC X(33) VALUE " PROCEDURES".
 05 FILLER PIC X(33) VALUE " PROCEED".
 05 FILLER PIC X(33) VALUE " PROGRAM".
 05 FILLER PIC X(33) VALUE "KPROGRAM-ID".
 05 FILLER PIC X(33) VALUE " PROGRAM-POINTER".
 05 FILLER PIC X(33) VALUE " PROMPT".
 05 FILLER PIC X(33) VALUE " PROPERTY".
 05 FILLER PIC X(33) VALUE " PROTOTYPE".
 05 FILLER PIC X(33) VALUE " QUOTE".
 05 FILLER PIC X(33) VALUE " QUOTES".
 05 FILLER PIC X(33) VALUE " RAISE".
 05 FILLER PIC X(33) VALUE " RAISING".
 05 FILLER PIC X(33) VALUE "IRANDOM".
 05 FILLER PIC X(33) VALUE "IRANGE".
 05 FILLER PIC X(33) VALUE " RD".
 05 FILLER PIC X(33) VALUE "VREAD".
 05 FILLER PIC X(33) VALUE "VREADY".
 05 FILLER PIC X(33) VALUE " RECORD".
 05 FILLER PIC X(33) VALUE " RECORDING".
 05 FILLER PIC X(33) VALUE " RECORDS".
 05 FILLER PIC X(33) VALUE " RECURSIVE".
 05 FILLER PIC X(33) VALUE "KREDEFINES".
 05 FILLER PIC X(33) VALUE " REEL".
 05 FILLER PIC X(33) VALUE " REFERENCE".
 05 FILLER PIC X(33) VALUE " RELATIVE".
 05 FILLER PIC X(33) VALUE "VRELEASE".
 05 FILLER PIC X(33) VALUE "IREM".
 05 FILLER PIC X(33) VALUE " REMAINDER".
 05 FILLER PIC X(33) VALUE " REMARKS".
 05 FILLER PIC X(33) VALUE " REMOVAL".
 05 FILLER PIC X(33) VALUE "KRENAMES".
 05 FILLER PIC X(33) VALUE "KREPLACING".
 05 FILLER PIC X(33) VALUE "KREPORT".
 05 FILLER PIC X(33) VALUE " REPORTING".
 05 FILLER PIC X(33) VALUE " REPORTS".
 05 FILLER PIC X(33) VALUE " REPOSITORY".
 05 FILLER PIC X(33) VALUE " REPRESENTS-NOT-A-NUMBER".
 05 FILLER PIC X(33) VALUE " REQUIRED".
 05 FILLER PIC X(33) VALUE " RESERVE".
 05 FILLER PIC X(33) VALUE " RESUME".
 05 FILLER PIC X(33) VALUE " RETRY".
 05 FILLER PIC X(33) VALUE "VRETURN".
 05 FILLER PIC X(33) VALUE "IRETURN-CODE".
 05 FILLER PIC X(33) VALUE "KRETURNING".
 05 FILLER PIC X(33) VALUE "IREVERSE".
 05 FILLER PIC X(33) VALUE " REVERSE-VIDEO".
 05 FILLER PIC X(33) VALUE " REWIND".
 05 FILLER PIC X(33) VALUE "VREWRITE".
 05 FILLER PIC X(33) VALUE " RF".
 05 FILLER PIC X(33) VALUE " RH".
 05 FILLER PIC X(33) VALUE " RIGHT".
 05 FILLER PIC X(33) VALUE " RIGHT-JUSTIFY".
 05 FILLER PIC X(33) VALUE "VROLLBACK".
 05 FILLER PIC X(33) VALUE " ROUNDED".

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-33

 05 FILLER PIC X(33) VALUE " RUN".
 05 FILLER PIC X(33) VALUE " SAME".
 05 FILLER PIC X(33) VALUE "KSCREEN".
 05 FILLER PIC X(33) VALUE " SCROLL".
 05 FILLER PIC X(33) VALUE "KSD".
 05 FILLER PIC X(33) VALUE "VSEARCH".
 05 FILLER PIC X(33) VALUE "ISECONDS-FROM-FORMATTED-TIME".
 05 FILLER PIC X(33) VALUE "ISECONDS-PAST-MIDNIGHT".
 05 FILLER PIC X(33) VALUE "KSECTION".
 05 FILLER PIC X(33) VALUE " SECURE".
 05 FILLER PIC X(33) VALUE " SECURITY".
 05 FILLER PIC X(33) VALUE " SEGMENT-LIMIT".
 05 FILLER PIC X(33) VALUE " SELECT".
 05 FILLER PIC X(33) VALUE " SELF".
 05 FILLER PIC X(33) VALUE " SENTENCE".
 05 FILLER PIC X(33) VALUE " SEPARATE".
 05 FILLER PIC X(33) VALUE " SEQUENCE".
 05 FILLER PIC X(33) VALUE " SEQUENTIAL".
 05 FILLER PIC X(33) VALUE "VSET".
 05 FILLER PIC X(33) VALUE " SHARING".
 05 FILLER PIC X(33) VALUE "ISIGN".
 05 FILLER PIC X(33) VALUE " SIGNED".
 05 FILLER PIC X(33) VALUE " SIGNED-INT".
 05 FILLER PIC X(33) VALUE " SIGNED-LONG".
 05 FILLER PIC X(33) VALUE " SIGNED-SHORT".
 05 FILLER PIC X(33) VALUE "ISIN".
 05 FILLER PIC X(33) VALUE " SIZE".
 05 FILLER PIC X(33) VALUE "VSORT".
 05 FILLER PIC X(33) VALUE " SORT-MERGE".
 05 FILLER PIC X(33) VALUE "ISORT-RETURN".
 05 FILLER PIC X(33) VALUE " SOURCE".
 05 FILLER PIC X(33) VALUE " SOURCE-COMPUTER".
 05 FILLER PIC X(33) VALUE " SOURCES".
 05 FILLER PIC X(33) VALUE " SPACE".
 05 FILLER PIC X(33) VALUE " SPACE-FILL".
 05 FILLER PIC X(33) VALUE " SPACES".
 05 FILLER PIC X(33) VALUE " SPECIAL-NAMES".
 05 FILLER PIC X(33) VALUE "ISQRT".
 05 FILLER PIC X(33) VALUE " STANDARD".
 05 FILLER PIC X(33) VALUE " STANDARD-1".
 05 FILLER PIC X(33) VALUE " STANDARD-2".
 05 FILLER PIC X(33) VALUE "ISTANDARD-DEVIATION".
 05 FILLER PIC X(33) VALUE "VSTART".
 05 FILLER PIC X(33) VALUE " STATUS".
 05 FILLER PIC X(33) VALUE "VSTOP".
 05 FILLER PIC X(33) VALUE "ISTORED-CHAR-LENGTH".
 05 FILLER PIC X(33) VALUE "VSTRING".
 05 FILLER PIC X(33) VALUE "ISUBSTITUTE".
 05 FILLER PIC X(33) VALUE "ISUBSTITUTE-CASE".
 05 FILLER PIC X(33) VALUE "VSUBTRACT".
 05 FILLER PIC X(33) VALUE "ISUM".
 05 FILLER PIC X(33) VALUE " SUPER".
 05 FILLER PIC X(33) VALUE "VSUPPRESS".
 05 FILLER PIC X(33) VALUE "MSWITCH-1".
 05 FILLER PIC X(33) VALUE "MSWITCH-2".
 05 FILLER PIC X(33) VALUE "MSWITCH-3".
 05 FILLER PIC X(33) VALUE "MSWITCH-4".
 05 FILLER PIC X(33) VALUE "MSWITCH-5".
 05 FILLER PIC X(33) VALUE "MSWITCH-6".
 05 FILLER PIC X(33) VALUE "MSWITCH-7".
 05 FILLER PIC X(33) VALUE "MSWITCH-8".
 05 FILLER PIC X(33) VALUE " SYMBOLIC".
 05 FILLER PIC X(33) VALUE " SYNC".
 05 FILLER PIC X(33) VALUE " SYNCHRONIZED".
 05 FILLER PIC X(33) VALUE "MSYSERR".
 05 FILLER PIC X(33) VALUE "MSYSIN".
 05 FILLER PIC X(33) VALUE "MSYSIPT".
 05 FILLER PIC X(33) VALUE "MSYSLIST".
 05 FILLER PIC X(33) VALUE "MSYSLST".
 05 FILLER PIC X(33) VALUE "MSYSOUT".
 05 FILLER PIC X(33) VALUE " SYSTEM-DEFAULT".
 05 FILLER PIC X(33) VALUE " TABLE".
 05 FILLER PIC X(33) VALUE "KTALLYING".
 05 FILLER PIC X(33) VALUE "ITAN".
 05 FILLER PIC X(33) VALUE " TAPE".
 05 FILLER PIC X(33) VALUE "VTERMINATE".
 05 FILLER PIC X(33) VALUE " TEST".
 05 FILLER PIC X(33) VALUE "ITEST-DATE-YYYYMMDD".
 05 FILLER PIC X(33) VALUE "ITEST-DAY-YYYYDDD".
 05 FILLER PIC X(33) VALUE " THAN".
 05 FILLER PIC X(33) VALUE " THEN".
 05 FILLER PIC X(33) VALUE " THROUGH".
 05 FILLER PIC X(33) VALUE " THRU".
 05 FILLER PIC X(33) VALUE " TIME".

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-34

 05 FILLER PIC X(33) VALUE " TIMES".
 05 FILLER PIC X(33) VALUE "KTO".
 05 FILLER PIC X(33) VALUE " TOP".
 05 FILLER PIC X(33) VALUE " TRAILING".
 05 FILLER PIC X(33) VALUE " TRAILING-SIGN".
 05 FILLER PIC X(33) VALUE "VTRANSFORM".
 05 FILLER PIC X(33) VALUE "ITRIM".
 05 FILLER PIC X(33) VALUE " TRUE".
 05 FILLER PIC X(33) VALUE " TYPE".
 05 FILLER PIC X(33) VALUE " TYPEDEF".
 05 FILLER PIC X(33) VALUE " UNDERLINE".
 05 FILLER PIC X(33) VALUE " UNIT".
 05 FILLER PIC X(33) VALUE " UNIVERSAL".
 05 FILLER PIC X(33) VALUE "VUNLOCK".
 05 FILLER PIC X(33) VALUE " UNSIGNED".
 05 FILLER PIC X(33) VALUE " UNSIGNED-INT".
 05 FILLER PIC X(33) VALUE " UNSIGNED-LONG".
 05 FILLER PIC X(33) VALUE " UNSIGNED-SHORT".
 05 FILLER PIC X(33) VALUE "VUNSTRING".
 05 FILLER PIC X(33) VALUE " UNTIL".
 05 FILLER PIC X(33) VALUE "KUP".
 05 FILLER PIC X(33) VALUE " UPDATE".
 05 FILLER PIC X(33) VALUE " UPON".
 05 FILLER PIC X(33) VALUE " UPPER".
 05 FILLER PIC X(33) VALUE "IUPPER-CASE".
 05 FILLER PIC X(33) VALUE " USAGE".
 05 FILLER PIC X(33) VALUE "VUSE".
 05 FILLER PIC X(33) VALUE " USER-DEFAULT".
 05 FILLER PIC X(33) VALUE "KUSING".
 05 FILLER PIC X(33) VALUE " VAL-STATUS".
 05 FILLER PIC X(33) VALUE " VALID".
 05 FILLER PIC X(33) VALUE " VALIDATE".
 05 FILLER PIC X(33) VALUE " VALIDATE-STATUS".
 05 FILLER PIC X(33) VALUE " VALUE".
 05 FILLER PIC X(33) VALUE " VALUES".
 05 FILLER PIC X(33) VALUE "IVARIANCE".
 05 FILLER PIC X(33) VALUE "KVARYING".
 05 FILLER PIC X(33) VALUE " WAIT".
 05 FILLER PIC X(33) VALUE "VWHEN".
 05 FILLER PIC X(33) VALUE "IWHEN-COMPILED".
 05 FILLER PIC X(33) VALUE " WITH".
 05 FILLER PIC X(33) VALUE " WORDS".
 05 FILLER PIC X(33) VALUE "KWORKING-STORAGE".
 05 FILLER PIC X(33) VALUE "VWRITE".
 05 FILLER PIC X(33) VALUE "IYEAR-TO-YYYY".
 05 FILLER PIC X(33) VALUE " YYYYDDD".
 05 FILLER PIC X(33) VALUE " YYYYMMDD".
 05 FILLER PIC X(33) VALUE " ZERO".
 05 FILLER PIC X(33) VALUE " ZERO-FILL".
 05 FILLER PIC X(33) VALUE " ZEROES".
 05 FILLER PIC X(33) VALUE " ZEROS".
 01 Reserved-Word-Table REDEFINES Reserved-Words.
 05 Reserved-Word OCCURS 591 TIMES
 ASCENDING KEY RW-Word
 INDEXED RW-Idx.
 10 RW-Type PIC X(1).
 10 RW-Word PIC X(32).

 01 Saved-Section PIC X(15).

 01 Search-Token PIC X(32).

 01 Source-Line-No PIC 9(6).

 01 Src-Ptr USAGE BINARY-LONG.

 01 Syntax-Parsing-Items.
 05 SPI-Current-Char PIC X(1).
 88 Current-Char-Is-Punct VALUE "=", "(", ")", "*", "/",
 "&", ";", ",", "<", ">",
 ":".
 88 Current-Char-Is-Quote VALUE '"', "'".
 88 Current-Char-Is-X VALUE "x", "X".
 88 Current-Char-Is-Z VALUE "z", "Z".
 05 SPI-Current-Division PIC X(1).
 88 In-IDENTIFICATION-DIVISION VALUE "I", "?".
 88 In-ENVIRONMENT-DIVISION VALUE "E".
 88 In-DATA-DIVISION VALUE "D".
 88 In-PROCEDURE-DIVISION VALUE "P".
 05 SPI-Current-Line-No PIC 9(6).
 05 SPI-Current-Program-ID.
 10 FILLER PIC X(12).
 10 SPI-CP-13-15 PIC X(3).
 05 SPI-Current-Section.

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-35

 10 SPI-CS-1 PIC X(1).
 10 SPI-CS-2-14.
 15 FILLER PIC X(10).
 15 SPI-CS-11-14 PIC X(3).
 10 SPI-CS-15 PIC X(1).
 05 SPI-Current-Token PIC X(32).
 05 SPI-Current-Token-UC PIC X(32).
 05 SPI-Current-Verb PIC X(12).
 05 SPI-Next-Char PIC X(1).
 88 Next-Char-Is-Quote VALUE '"', "'".
 05 SPI-Prior-Token PIC X(32).
 05 SPI-Token-Type PIC X(1).
 88 Token-Is-EOF VALUE HIGH-VALUES.
 88 Token-Is-Identifier VALUE "I".
 88 Token-Is-Key-Word VALUE "K", "V".
 88 Token-Is-Literal-Alpha VALUE "L".
 88 Token-Is-Literal-Number VALUE "N".
 88 Token-Is-Verb VALUE "V".

 01 Tally USAGE BINARY-LONG.

 01 Todays-Date PIC 9(8).

 LINKAGE SECTION.
 01 Produce-Source-Listing PIC X(1).
 01 Produce-Xref-Listing PIC X(1).
 01 Src-Filename PIC X(256).
 /
 PROCEDURE DIVISION USING Produce-Source-Listing
 Produce-Xref-Listing
 Src-Filename.
 000-Main SECTION.
 001-Init.
 PERFORM 100-Initialization
 PERFORM 200-Execute-cobc
 OPEN OUTPUT Report-File
 IF Produce-Source-Listing NOT = SPACE
 PERFORM 500-Produce-Source-Listing
 END-IF
 IF Produce-Xref-Listing NOT = SPACE
 SORT Sort-File
 ASCENDING KEY SR-Prog-ID
 SR-Token-UC
 SR-Line-No-Ref
 INPUT PROCEDURE 300-Tokenize-Source
 OUTPUT PROCEDURE 400-Produce-Xref-Listing
 END-IF
 CLOSE Report-File
 GOBACK
 .
 /
 100-Initialization SECTION.

 ** Perform all program-wide initialization operations **

 101-Establish-Working-Env.
 MOVE TRIM(Src-Filename,Leading) TO Src-Filename
 ACCEPT Env-TEMP
 FROM ENVIRONMENT "TEMP"
 END-ACCEPT
 ACCEPT Lines-Per-Page-ENV
 FROM ENVIRONMENT "OCXREF_LINES"
 END-ACCEPT
 INSPECT Src-Filename REPLACING ALL "\" BY "/"
 INSPECT Env-TEMP REPLACING ALL "\" BY "/"
 MOVE Src-Filename TO Program-Path
 MOVE Program-Path TO Heading-2
 CALL "C$JUSTIFY"
 USING Heading-2, "Right"
 END-CALL
 MOVE LENGTH(TRIM(Src-Filename,Trailing)) TO I
 MOVE 0 TO J
 PERFORM UNTIL Src-Filename(I:1) = '/'
 OR I = 0
 SUBTRACT 1 FROM I
 ADD 1 TO J
 END-PERFORM
 UNSTRING Src-Filename((I + 1):J) DELIMITED BY "."
 INTO Filename, Dummy
 END-UNSTRING
 STRING TRIM(Env-TEMP,Trailing)
 "/"
 TRIM(Filename,Trailing)
 ".i"

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-36

 DELIMITED SIZE
 INTO Expanded-Src-Filename
 END-STRING
 STRING Program-Path(1:I)
 TRIM(Filename,Trailing)
 ".lst"
 DELIMITED SIZE
 INTO Report-Filename
 END-STRING
 IF Lines-Per-Page-ENV NOT = SPACES
 MOVE NUMVAL(Lines-Per-Page-ENV) TO Lines-Per-Page
 ELSE
 MOVE 60 TO Lines-Per-Page
 END-IF
 ACCEPT Todays-Date
 FROM DATE YYYYMMDD
 END-ACCEPT
 MOVE Todays-Date TO H1X-Date
 H1S-Date
 MOVE "????????????..." TO SPI-Current-Program-ID
 MOVE SPACES TO SPI-Current-Verb
 Held-Reference
 MOVE "Y" TO F-First-Record
 .
 /
 200-Execute-cobc SECTION.
 201-Build-Cmd.
 STRING "cobc -E "
 TRIM(Program-Path, Trailing)
 " > "
 TRIM(Expanded-Src-Filename,Trailing)
 DELIMITED SIZE
 INTO Cmd
 END-STRING
 CALL "SYSTEM"
 USING Cmd
 END-CALL
 IF RETURN-CODE NOT = 0
 DISPLAY
 "Cross-reference terminated by previous errors"
 UPON SYSERR
 END-DISPLAY
 GOBACK
 END-IF
 .

 209-Exit.
 EXIT
 .
 /
 300-Tokenize-Source SECTION.
 301-Driver.
 OPEN INPUT Expand-Code
 MOVE SPACES TO Expand-Code-Rec
 MOVE 256 TO Src-Ptr
 MOVE 0 TO Num-UserNames
 SPI-Current-Line-No
 MOVE "?" TO SPI-Current-Division
 PERFORM FOREVER
 PERFORM 310-Get-Token
 IF Token-Is-EOF
 EXIT PERFORM
 END-IF
 MOVE UPPER-CASE(SPI-Current-Token)
 TO SPI-Current-Token-UC
 IF Token-Is-Verb
 MOVE SPI-Current-Token-UC TO SPI-Current-Verb
 SPI-Prior-Token
 IF Held-Reference NOT = SPACES
 MOVE Held-Reference TO Sort-Rec
 MOVE SPACES TO Held-Reference
 RELEASE Sort-Rec
 END-IF
 END-IF
 EVALUATE TRUE
 WHEN In-IDENTIFICATION-DIVISION
 PERFORM 320-IDENTIFICATION-DIVISION
 WHEN In-ENVIRONMENT-DIVISION
 PERFORM 330-ENVIRONMENT-DIVISION
 WHEN In-DATA-DIVISION
 PERFORM 340-DATA-DIVISION
 WHEN In-PROCEDURE-DIVISION
 PERFORM 350-PROCEDURE-DIVISION
 END-EVALUATE

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-37

 IF Token-Is-Key-Word
 MOVE SPI-Current-Token-UC TO SPI-Prior-Token
 END-IF
 IF F-Token-Ended-Sentence = "Y"
 AND SPI-Current-Division NOT = "I"
 MOVE SPACES TO SPI-Prior-Token
 SPI-Current-Verb
 END-IF

 END-PERFORM
 CLOSE Expand-Code
 EXIT SECTION
 .
 *>>>
 310-Get-Token.
 *>-- Position to 1st non-blank character
 MOVE F-Token-Ended-Sentence TO F-Last-Token-Ended-Sent
 MOVE "N" TO F-Token-Ended-Sentence
 PERFORM UNTIL Expand-Code-Rec(Src-Ptr : 1) NOT = SPACE
 IF Src-Ptr > 255
 READ Expand-Code AT END
 IF Held-Reference NOT = SPACES
 MOVE Held-Reference TO Sort-Rec
 MOVE SPACES TO Held-Reference
 RELEASE Sort-Rec
 END-IF
 SET Token-Is-EOF TO TRUE
 MOVE 0 TO SPI-Current-Line-No
 EXIT PARAGRAPH
 END-READ
 IF ECR-1 = "#"
 PERFORM 311-Control-Record
 ELSE
 PERFORM 312-Expand-Code-Record
 END-IF
 ELSE
 ADD 1 TO Src-Ptr
 END-IF
 END-PERFORM
 *>-- Extract token string
 MOVE Expand-Code-Rec(Src-Ptr : 1) TO SPI-Current-Char
 MOVE Expand-Code-Rec(Src-Ptr + 1: 1) TO SPI-Next-Char
 IF SPI-Current-Char = "."
 ADD 1 TO Src-Ptr
 MOVE SPI-Current-Char TO SPI-Current-Token
 MOVE SPACE TO SPI-Token-Type
 MOVE "Y" TO F-Token-Ended-Sentence
 EXIT PARAGRAPH
 END-IF
 IF Current-Char-Is-Punct
 AND SPI-Current-Char = "="
 AND SPI-Current-Division = "P"
 ADD 1 TO Src-Ptr
 MOVE "EQUALS" TO SPI-Current-Token
 MOVE "K" TO SPI-Token-Type
 EXIT PARAGRAPH
 END-IF
 IF Current-Char-Is-Punct *> So subscripts don't get flagged w/ "*"
 AND SPI-Current-Char = "("
 AND SPI-Current-Division = "P"
 MOVE SPACES TO SPI-Prior-Token
 END-IF
 IF Current-Char-Is-Punct
 ADD 1 TO Src-Ptr
 MOVE SPI-Current-Char TO SPI-Current-Token
 MOVE SPACE TO SPI-Token-Type
 EXIT PARAGRAPH
 END-IF
 IF Current-Char-Is-Quote
 ADD 1 TO Src-Ptr
 UNSTRING Expand-Code-Rec
 DELIMITED BY SPI-Current-Char
 INTO SPI-Current-Token
 WITH POINTER Src-Ptr
 END-UNSTRING
 IF Expand-Code-Rec(Src-Ptr : 1) = "."
 MOVE "Y" TO F-Token-Ended-Sentence
 ADD 1 TO Src-Ptr
 END-IF
 SET Token-Is-Literal-Alpha TO TRUE
 EXIT PARAGRAPH
 END-IF
 IF Current-Char-Is-X AND Next-Char-Is-Quote
 ADD 2 TO Src-Ptr

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-38

 UNSTRING Expand-Code-Rec
 DELIMITED BY SPI-Next-Char
 INTO SPI-Current-Token
 WITH POINTER Src-Ptr
 END-UNSTRING
 IF Expand-Code-Rec(Src-Ptr : 1) = "."
 MOVE "Y" TO F-Token-Ended-Sentence
 ADD 1 TO Src-Ptr
 END-IF
 SET Token-Is-Literal-Number TO TRUE
 EXIT PARAGRAPH
 END-IF
 IF Current-Char-Is-Z AND Next-Char-Is-Quote
 ADD 2 TO Src-Ptr
 UNSTRING Expand-Code-Rec
 DELIMITED BY SPI-Next-Char
 INTO SPI-Current-Token
 WITH POINTER Src-Ptr
 END-UNSTRING
 IF Expand-Code-Rec(Src-Ptr : 1) = "."
 MOVE "Y" TO F-Token-Ended-Sentence
 ADD 1 TO Src-Ptr
 END-IF
 SET Token-Is-Literal-Alpha TO TRUE
 EXIT PARAGRAPH
 END-IF
 IF F-Processing-PICTURE = "Y"
 UNSTRING Expand-Code-Rec
 DELIMITED BY ". " OR " "
 INTO SPI-Current-Token
 DELIMITER IN Delim
 WITH POINTER Src-Ptr
 END-UNSTRING
 IF Delim = ". "
 MOVE "Y" TO F-Token-Ended-Sentence
 ADD 1 TO Src-Ptr
 END-IF
 IF UPPER-CASE(SPI-Current-Token) = "IS"
 MOVE SPACE TO SPI-Token-Type
 EXIT PARAGRAPH
 ELSE
 MOVE "N" TO F-Processing-PICTURE
 MOVE SPACE TO SPI-Token-Type
 EXIT PARAGRAPH
 END-IF
 END-IF
 UNSTRING Expand-Code-Rec
 DELIMITED BY ". " OR " " OR "=" OR "(" OR ")" OR "*"
 OR "/" OR "&" OR ";" OR "," OR "<"
 OR ">" OR ":"
 INTO SPI-Current-Token
 DELIMITER IN Delim
 WITH POINTER Src-Ptr
 END-UNSTRING
 IF Delim = ". "
 MOVE "Y" TO F-Token-Ended-Sentence
 END-IF
 IF Delim NOT = ". " AND " "
 SUBTRACT 1 FROM Src-Ptr
 END-IF
 *>-- Classify Token
 MOVE UPPER-CASE(SPI-Current-Token) TO Search-Token
 IF Search-Token = "EQUAL" OR "EQUALS"
 MOVE "EQUALS" TO SPI-Current-Token
 MOVE "K" TO SPI-Token-Type
 EXIT PARAGRAPH
 END-IF
 SEARCH ALL Reserved-Word
 WHEN RW-Word (RW-Idx) = Search-Token
 MOVE RW-Type (RW-Idx) TO SPI-Token-Type
 EXIT PARAGRAPH
 END-SEARCH
 *>-- Not a reserved word, must be a user name
 SET Token-Is-Identifier TO TRUE *> NEEDS EXPANSION!!!!
 PERFORM 313-Check-For-Numeric-Token
 IF Token-Is-Literal-Number
 IF (F-Last-Token-Ended-Sent = "Y")
 AND (SPI-Current-Division = "D")
 MOVE "LEVEL #" TO SPI-Current-Token
 MOVE "K" TO SPI-Token-Type
 EXIT PARAGRAPH
 ELSE
 EXIT PARAGRAPH
 END-IF

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-39

 END-IF
 EXIT PARAGRAPH
 .
 *>>>
 311-Control-Record.
 UNSTRING ECR-2-256
 DELIMITED BY '"'
 INTO PIC-X10, PIC-X256, Dummy
 END-UNSTRING
 INSPECT PIC-X10 REPLACING ALL '"' BY SPACE
 COMPUTE I = NUMVAL(PIC-X10) - 1
 IF TRIM(PIC-X256,Trailing) = TRIM(Program-Path,Trailing)
 MOVE I TO SPI-Current-Line-No
 SET In-Main-Module TO TRUE
 IF Saved-Section NOT = SPACES
 MOVE Saved-Section TO SPI-Current-Section
 END-IF
 ELSE
 SET In-Copybook TO TRUE
 IF Saved-Section = SPACES
 MOVE SPI-Current-Section TO Saved-Section
 END-IF
 MOVE LENGTH(TRIM(PIC-X256,Trailing)) TO I
 MOVE 0 TO J
 PERFORM UNTIL PIC-X256(I:1) = '/'
 OR I = 0
 SUBTRACT 1 FROM I
 ADD 1 TO J
 END-PERFORM
 UNSTRING PIC-X256((I + 1):J) DELIMITED BY "."
 INTO Filename, Dummy
 END-UNSTRING
 MOVE "[" TO SPI-CS-1
 MOVE Filename TO SPI-CS-2-14
 IF SPI-CS-11-14 NOT = SPACES
 MOVE "..." TO SPI-CS-11-14
 END-IF
 MOVE "]" TO SPI-CS-15
 END-IF
 MOVE SPACES TO Expand-Code-Rec *> Force another READ
 MOVE 256 TO Src-Ptr
 .
 *>>>
 312-Expand-Code-Record.
 MOVE 1 TO Src-Ptr
 IF In-Main-Module
 ADD 1 To SPI-Current-Line-No
 END-IF
 .
 *>>>
 313-Check-For-Numeric-Token.
 MOVE SPI-Current-Token TO PIC-X32
 INSPECT PIC-X32
 REPLACING TRAILING SPACES BY "0"
 IF PIC-X32 IS NUMERIC *> Simple Unsigned Integer
 SET Token-Is-Literal-Number TO TRUE
 EXIT PARAGRAPH
 END-IF
 IF PIC-X32(1:1) = "+" OR "-"
 MOVE "0" TO PIC-X32(1:1)
 END-IF
 MOVE 0 TO Tally
 INSPECT PIC-X32
 TALLYING Tally FOR ALL "."
 IF Tally = 1
 INSPECT PIC-X32 REPLACING ALL "." BY "0"
 END-IF
 IF PIC-X32 IS NUMERIC
 SET Token-Is-Literal-Number TO TRUE
 EXIT PARAGRAPH
 END-IF
 .
 *>>>
 320-IDENTIFICATION-DIVISION.
 IF Token-Is-Key-Word AND SPI-Current-Token = "DIVISION"
 MOVE SPI-Prior-Token TO SPI-Current-Division
 EXIT PARAGRAPH
 END-IF
 IF SPI-Prior-Token = "PROGRAM-ID"
 MOVE SPACES TO SPI-Prior-Token
 MOVE SPI-Current-Token TO SPI-Current-Program-ID
 IF SPI-CP-13-15 NOT = SPACES
 MOVE "..." TO SPI-CP-13-15
 END-IF

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-40

 EXIT PARAGRAPH
 END-IF
 .
 *>>>
 330-ENVIRONMENT-DIVISION.
 IF Token-Is-Key-Word AND SPI-Current-Token = "DIVISION"
 MOVE SPI-Prior-Token TO SPI-Current-Division
 EXIT PARAGRAPH
 END-IF
 IF Token-Is-Key-Word AND SPI-Current-Token = "SECTION"
 MOVE SPI-Prior-Token TO SPI-Current-Section
 EXIT PARAGRAPH
 END-IF
 IF Token-Is-Identifier
 PERFORM 361-Release-Ref
 END-IF
 .
 *>>>
 340-DATA-DIVISION.
 IF Token-Is-Key-Word AND SPI-Current-Token = "DIVISION"
 MOVE SPI-Prior-Token TO SPI-Current-Division
 EXIT PARAGRAPH
 END-IF
 IF Token-Is-Key-Word AND SPI-Current-Token = "SECTION"
 MOVE SPI-Prior-Token TO SPI-Current-Section
 EXIT PARAGRAPH
 END-IF
 IF (SPI-Current-Token = "PIC" OR "PICTURE")
 AND (Token-Is-Key-Word)
 MOVE "Y" TO F-Processing-PICTURE
 EXIT PARAGRAPH
 END-IF
 IF Token-Is-Identifier
 EVALUATE SPI-Prior-Token
 WHEN "FD"
 PERFORM 360-Release-Def
 MOVE SPACES TO SPI-Prior-Token
 WHEN "SD"
 PERFORM 360-Release-Def
 MOVE SPACES TO SPI-Prior-Token
 WHEN "LEVEL #"
 PERFORM 360-Release-Def
 MOVE SPACES TO SPI-Prior-Token
 WHEN "INDEXED"
 PERFORM 360-Release-Def
 MOVE SPACES TO SPI-Prior-Token
 WHEN "USING"
 PERFORM 362-Release-Upd
 MOVE SPACES TO SPI-Prior-Token
 WHEN "INTO"
 PERFORM 362-Release-Upd
 MOVE SPACES TO SPI-Prior-Token
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 EXIT PARAGRAPH
 END-IF
 .
 *>>>
 350-PROCEDURE-DIVISION.
 IF SPI-Current-Section NOT = "PROCEDURE"
 MOVE "PROCEDURE" TO SPI-Current-Section
 END-IF
 IF Token-Is-Key-Word AND SPI-Current-Token = "DIVISION"
 MOVE SPI-Prior-Token TO SPI-Current-Division
 EXIT PARAGRAPH
 END-IF
 IF SPI-Current-Verb = SPACES
 IF Token-Is-Identifier
 PERFORM 360-Release-Def
 MOVE SPACES TO SPI-Prior-Token
 END-IF
 EXIT PARAGRAPH
 END-IF
 IF NOT Token-Is-Identifier
 EXIT PARAGRAPH
 END-IF
 EVALUATE SPI-Current-Verb
 WHEN "ACCEPT"
 PERFORM 351-ACCEPT
 WHEN "ADD"
 PERFORM 351-ADD
 WHEN "ALLOCATE"
 PERFORM 351-ALLOCATE

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-41

 WHEN "CALL"
 PERFORM 351-CALL
 WHEN "COMPUTE"
 PERFORM 351-COMPUTE
 WHEN "DIVIDE"
 PERFORM 351-DIVIDE
 WHEN "FREE"
 PERFORM 351-FREE
 WHEN "INITIALIZE"
 PERFORM 351-INITIALIZE
 WHEN "INSPECT"
 PERFORM 351-INSPECT
 WHEN "MOVE"
 PERFORM 351-MOVE
 WHEN "MULTIPLY"
 PERFORM 351-MULTIPLY
 WHEN "PERFORM"
 PERFORM 351-PERFORM
 WHEN "SET"
 PERFORM 351-SET
 WHEN "STRING"
 PERFORM 351-STRING
 WHEN "SUBTRACT"
 PERFORM 351-SUBTRACT
 WHEN "TRANSFORM"
 PERFORM 351-TRANSFORM
 WHEN "UNSTRING"
 PERFORM 351-UNSTRING
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-ACCEPT.
 EVALUATE SPI-Prior-Token
 WHEN "ACCEPT"
 PERFORM 362-Release-Upd
 MOVE SPACES TO SPI-Prior-Token
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-ADD.
 EVALUATE SPI-Prior-Token
 WHEN "GIVING"
 PERFORM 362-Release-Upd
 WHEN "TO"
 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-ALLOCATE.
 EVALUATE SPI-Prior-Token
 WHEN "ALLOCATE"
 PERFORM 362-Release-Upd
 MOVE SPACES TO SPI-Prior-Token
 WHEN "RETURNING"
 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-CALL.
 EVALUATE SPI-Prior-Token
 WHEN "RETURNING"
 PERFORM 362-Release-Upd
 WHEN "GIVING"
 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-COMPUTE.
 EVALUATE SPI-Prior-Token
 WHEN "COMPUTE"
 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-42

 .
 *>>>
 351-DIVIDE.
 EVALUATE SPI-Prior-Token
 WHEN "INTO"
 PERFORM 363-Set-Upd
 MOVE Sort-Rec TO Held-Reference
 WHEN "GIVING"
 IF Held-Reference NOT = SPACES
 MOVE Held-Reference To Sort-Rec
 MOVE SPACES To Held-Reference
 SR-Ref-Flag
 RELEASE Sort-Rec
 END-IF
 PERFORM 362-Release-Upd
 WHEN "REMAINDER"
 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-FREE.
 PERFORM 362-Release-Upd
 .
 *>>>
 351-INITIALIZE.
 EVALUATE SPI-Prior-Token
 WHEN "INITIALIZE"
 PERFORM 362-Release-Upd
 WHEN "REPLACING"
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-INSPECT.
 EVALUATE SPI-Prior-Token
 WHEN "INSPECT"
 PERFORM 364-Set-Ref
 MOVE SPACES TO Held-Reference
 MOVE SPACES TO SPI-Prior-Token
 WHEN "TALLYING"
 PERFORM 362-Release-Upd
 MOVE SPACES TO SPI-Prior-Token
 WHEN "REPLACING"
 IF Held-Reference NOT = SPACES
 MOVE Held-Reference TO Sort-Rec
 MOVE SPACES TO Held-Reference
 MOVE "*" TO SR-Ref-Flag
 RELEASE Sort-Rec
 END-IF
 MOVE SPACES TO SPI-Prior-Token
 WHEN "CONVERTING"
 IF Held-Reference NOT = SPACES
 MOVE Held-Reference TO Sort-Rec
 MOVE SPACES TO Held-Reference
 MOVE "*" TO SR-Ref-Flag
 RELEASE Sort-Rec
 END-IF
 MOVE SPACES TO SPI-Prior-Token
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-MOVE.
 EVALUATE SPI-Prior-Token
 WHEN "TO"
 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-MULTIPLY.
 EVALUATE SPI-Prior-Token
 WHEN "BY"
 PERFORM 363-Set-Upd
 MOVE Sort-Rec TO Held-Reference
 WHEN "GIVING"
 MOVE Held-Reference TO Sort-Rec
 MOVE SPACES TO Held-Reference
 SR-Ref-Flag
 RELEASE Sort-Rec

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-43

 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-PERFORM.
 EVALUATE SPI-Prior-Token
 WHEN "VARYING"
 PERFORM 362-Release-Upd
 MOVE SPACES TO SPI-Prior-Token
 WHEN "AFTER"
 PERFORM 362-Release-Upd
 MOVE SPACES TO SPI-Prior-Token
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-SET.
 EVALUATE SPI-Prior-Token
 WHEN "SET"
 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-STRING.
 EVALUATE SPI-Prior-Token
 WHEN "INTO"
 PERFORM 362-Release-Upd
 WHEN "POINTER"
 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-SUBTRACT.
 EVALUATE SPI-Prior-Token
 WHEN "GIVING"
 PERFORM 362-Release-Upd
 WHEN "FROM"
 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-TRANSFORM.
 EVALUATE SPI-Prior-Token
 WHEN "TRANSFORM"
 PERFORM 362-Release-Upd
 MOVE SPACES TO SPI-Prior-Token
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 351-UNSTRING.
 EVALUATE SPI-Prior-Token
 WHEN "INTO"
 PERFORM 362-Release-Upd
 WHEN "DELIMITER"
 PERFORM 362-Release-Upd
 WHEN "COUNT"
 PERFORM 362-Release-Upd
 WHEN "POINTER"
 PERFORM 362-Release-Upd
 WHEN "TALLYING"
 PERFORM 362-Release-Upd
 WHEN OTHER
 PERFORM 361-Release-Ref
 END-EVALUATE
 .
 *>>>
 360-Release-Def.
 MOVE SPACES TO Sort-Rec
 MOVE SPI-Current-Program-ID TO SR-Prog-ID
 MOVE SPI-Current-Token-UC TO SR-Token-UC
 MOVE SPI-Current-Token TO SR-Token
 MOVE SPI-Current-Section TO SR-Section
 MOVE SPI-Current-Line-No TO SR-Line-No-Def

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-44

 MOVE 0 TO SR-Line-No-Ref
 RELEASE Sort-Rec
 .
 *>>>
 361-Release-Ref.
 PERFORM 364-Set-Ref
 RELEASE Sort-Rec
 .
 *>>>
 362-Release-Upd.
 PERFORM 363-Set-Upd
 RELEASE Sort-Rec
 .
 *>>>
 363-Set-Upd.
 MOVE SPACES TO Sort-Rec
 MOVE SPI-Current-Program-ID TO SR-Prog-ID
 MOVE SPI-Current-Token-UC TO SR-Token-UC
 MOVE SPI-Current-Token TO SR-Token
 MOVE SPI-Current-Section TO SR-Section
 MOVE SPI-Current-Line-No TO SR-Line-No-Ref
 MOVE "*" TO SR-Ref-Flag
 .
 *>>>
 364-Set-Ref.
 MOVE SPACES TO Sort-Rec
 MOVE SPI-Current-Program-ID TO SR-Prog-ID
 MOVE SPI-Current-Token-UC TO SR-Token-UC
 MOVE SPI-Current-Token TO SR-Token
 MOVE SPI-Current-Section TO SR-Section
 MOVE SPI-Current-Line-No TO SR-Line-No-Ref
 .
 /
 400-Produce-Xref-Listing SECTION.
 401-Init.
 MOVE SPACES TO Detail-Line-X
 Group-Indicators
 MOVE 0 TO I
 Lines-Left
 .

 402-Process-Sorted-Recs.
 PERFORM FOREVER
 RETURN Sort-File AT END
 EXIT PERFORM
 END-RETURN
 IF SR-Prog-ID NOT = GI-Prog-ID
 OR SR-Token-UC NOT = GI-Token
 IF Detail-Line-X NOT = SPACES
 PERFORM 410-Generate-Report-Line
 END-IF
 IF SR-Prog-ID NOT = GI-Prog-ID
 MOVE 0 TO Lines-Left
 END-IF
 MOVE SR-Prog-ID TO GI-Prog-ID
 MOVE SR-Token-UC TO GI-Token
 END-IF
 IF Detail-Line-X = SPACES
 MOVE SR-Prog-ID TO DLX-Prog-ID
 MOVE SR-Token TO DLX-Token
 MOVE SR-Section TO DLX-Section
 IF SR-Line-No-Def NOT = SPACES
 MOVE SR-Line-No-Def TO DLX-Line-No-Def
 END-IF
 END-IF
 IF SR-Reference > '000000'
 ADD 1 TO I
 IF I > Line-Nos-Per-Rec
 PERFORM 410-Generate-Report-Line
 MOVE 1 TO I
 END-IF
 MOVE SR-Line-No-Ref TO DLX-Line-No-Ref (I)
 MOVE SR-Ref-Flag TO DLX-Ref-Flag (I)
 END-IF
 END-PERFORM
 IF Detail-Line-X NOT = SPACES
 PERFORM 410-Generate-Report-Line
 END-IF
 EXIT SECTION
 .
 *>>>
 410-Generate-Report-Line.
 IF Lines-Left < 1
 IF F-First-Record = "Y"

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-45

 MOVE "N" TO F-First-Record
 WRITE Report-Rec FROM Heading-1X BEFORE 1
 ELSE
 MOVE SPACES TO Report-Rec
 WRITE Report-Rec BEFORE PAGE
 MOVE SPACES TO Report-Rec
 WRITE Report-Rec BEFORE 1
 WRITE Report-Rec FROM Heading-1X BEFORE 1
 END-IF
 WRITE Report-Rec FROM Heading-2 BEFORE 1
 WRITE Report-Rec FROM Heading-4X BEFORE 1
 WRITE Report-Rec FROM Heading-5X BEFORE 1
 COMPUTE
 Lines-Left = Lines-Per-Page - 4
 END-COMPUTE
 END-IF
 WRITE Report-Rec FROM Detail-Line-X BEFORE 1
 MOVE SPACES TO Detail-Line-X
 MOVE 0 TO I
 SUBTRACT 1 FROM Lines-Left
 .
 /
 500-Produce-Source-Listing SECTION.
 501-Generate-Source-Listing.
 OPEN INPUT Source-Code
 Expand-Code
 MOVE 0 TO Source-Line-No
 PERFORM FOREVER
 READ Expand-Code AT END
 EXIT PERFORM
 END-READ
 IF ECR-1 = "#"
 PERFORM 510-Control-Record
 ELSE
 PERFORM 520-Expand-Code-Record
 END-IF
 END-PERFORM
 CLOSE Source-Code
 Expand-Code
 EXIT SECTION
 .
 *>>>
 510-Control-Record.
 UNSTRING ECR-2-256
 DELIMITED BY '"'
 INTO PIC-X10, PIC-X256, Dummy
 END-UNSTRING
 IF TRIM(PIC-X256,Trailing) = TRIM(Program-Path,Trailing) *> Main Pgm
 SET In-Main-Module TO TRUE
 IF Source-Line-No > 0
 READ Expand-Code END-READ
 END-IF
 ELSE *> COPY
 SET In-Copybook TO TRUE
 END-IF
 .
 *>>>
 520-Expand-Code-Record.
 IF In-Main-Module
 ADD 1 To SPI-Current-Line-No
 READ Source-Code AT END NEXT SENTENCE END-READ
 ADD 1 TO Source-Line-No
 MOVE SPACES TO Detail-Line-S
 MOVE Source-Line-No TO DLS-Line-No
 MOVE SCR-1-128 TO DLS-Statement
GC0410 IF SCR-7 = "/"
GC0410 MOVE 0 TO Lines-Left
GC0410 END-IF
 PERFORM 530-Generate-Source-Line
 IF SCR-129-256 NOT = SPACES
 MOVE SPACES TO Detail-Line-S
 MOVE SCR-129-256 TO DLS-Statement
 PERFORM 530-Generate-Source-Line
 END-IF
 ELSE
 IF Expand-Code-Rec NOT = SPACES
 MOVE SPACES TO Detail-Line-S
 MOVE ECR-1-128 TO DLS-Statement
 PERFORM 530-Generate-Source-Line
 IF ECR-129-256 NOT = SPACES
 MOVE SPACES TO Detail-Line-S
 MOVE ECR-129-256 TO DLS-Statement
 PERFORM 530-Generate-Source-Line
 END-IF

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-46

 END-IF
 END-IF
 .
 *>>>
 530-Generate-Source-Line.
 IF Lines-Left < 1
 IF F-First-Record = "Y"
 MOVE "N" TO F-First-Record
 WRITE Report-Rec FROM Heading-1S BEFORE 1
 ELSE
 MOVE SPACES TO Report-Rec
 WRITE Report-Rec BEFORE PAGE
 MOVE SPACES TO Report-Rec
 WRITE Report-Rec BEFORE 1
 WRITE Report-Rec FROM Heading-1S BEFORE 1
 END-IF
 WRITE Report-Rec FROM Heading-2 BEFORE 1
 WRITE Report-Rec FROM Heading-4S BEFORE 1
 WRITE Report-Rec FROM Heading-5S BEFORE 1
 COMPUTE
 Lines-Left = Lines-Per-Page - 4
 END-COMPUTE
 END-IF
 WRITE Report-Rec FROM Detail-Line-S BEFORE 1
 MOVE SPACES TO Detail-Line-S
 SUBTRACT 1 FROM Lines-Left
 .

 END PROGRAM LISTING.

8.4. WINSYSTEM – Execute Windows Shell Commands (For Cygwin)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. WINSYSTEM.

 ** This is an OpenCOBOL subroutine that will submit a Windows **
 ** command to the Windows "cmd.exe" command shell for proces- **
 ** sing. This is needed if your OpenCOBOL version was built **
 ** using Cygwin because the "SYSTEM" built-in subroutine will **
 ** submit commands to the Cygwin shell rather than the Windows **
 ** shell. **
 ** **
 ** CALL "WINSYSTEM" USING <cmd> **
 ** **
 ** >>> Note that the subroutine name MUST be specified in <<< **
 ** >>> upper-case <<< **

 ** DATE CHANGE DESCRIPTION **
 ** ====== == **
 ** GC0909 Initial coding **

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.
 FUNCTION ALL INTRINSIC.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Cmd-Len USAGE BINARY-LONG.
 01 Shell-Cmd PIC X(1024).
 LINKAGE SECTION.
 01 Cmd PIC X(1) ANY LENGTH.
 PROCEDURE DIVISION USING Cmd.
 000-Main.
 CALL "C$PARAMSIZE" USING 1.
 MOVE RETURN-CODE TO Cmd-Len.
 MOVE SPACES TO Shell-Cmd.
 STRING "cmd.exe /C "
 Cmd(1:Cmd-Len)
 INTO Shell-Cmd
 END-STRING
 CALL "SYSTEM"

OpenCOBOL 1.1 Programmers Guide Sample Programs

06FEB2009 Version Page 8-47

 USING TRIM(Shell-Cmd)
 END-CALL
 .
 099-Wave-Bye-Bye.
 GOBACK
 .

OpenCOBOL 1.1 Programmers Guide Glossary of Terms

06FEB2009 Version Page 9-1

9. Glossary of Terms

There are many terms that are used throughout this document (as well as throughout ANY document dealing with the
COBOL language) that are used to make discussions of syntax and semantics more concise. The following is a list of
such terms and their definitions.

Alphanumeric
literal

A string of characters enclosed within a pair of quotation marks (“) or apostrophes (‘). See section
1.8.

Collating
sequence

The sequence in which the characters that are acceptable to a computer are ordered for purposes
of all types of sorting, merging, comparing, and processing. OpenCOBOL programs may utilize
standard character-set collating sequences (such as that defined by the ASCII or EBCDIC
charactersets) or programmer-defined custom sequences as specified in the OBJECT-COMPUTER
paragraph (section 4.1.2) and defined in the SPECIAL-NAMES paragraph (section 4.1.4).

Compilation unit A single source file being compiled by the OpenCOBOL compiler. A compilation unit may contain
one or more program units.

Division COBOL programs are broken into four major areas, called DIVISIONS. Divisions are used to collect
program components oriented toward specific similar goals together in a single place. The COBOL
divisions are:

 IDENTIFICATION DIVISION – names the program and, optionally, if it is a subprogram,
defines it’s high-level data initialization policy and/or global availability to other programs
compiled in the same compilation unit.

 ENVIRONMENT DIVISION – defines characteristics of the environment in which the
program will be executed, such as files the program will be reading and/or writing, run-
time switches that may be used to pass information into the program from the operating
system environment and any special options that may be needed in order for the
program to properly compile; typically, those special options are used to enable COBOL
programs created using some other version of COBOL to be compiled and executed
under a different version.

 DATA DIVISION – provides detailed descriptions of the files, data and data structures the
program will be working with.

 PROCEDURE DIVISION – contains the actual executable program code.

Dynamically-
loadable library

The OpenCOBOL compiler can create dynamically-loadable library files when compiling
subprograms as their own separate compilation units. On UNIX systems, these will be “.so” files
while on Windows systems these will be DLLs. Main programs can be created in this manner also.
The “-m” compiler switch is used to create dynamically-loadable libraries.

Dynamically-
loadable module

A synonym for Dynamically-loadable library.

Elementary Item A data item described as not being further logically subdivided.

Entry-point A spot in the PROCEDURE DIVISION where a program may begin execution when it is executed
from the operating system or CALLed by another program. Every program has at least one entry-
point – known as the primary entry-point – which corresponds to the first executable statement in
the PROCEDURE DIVISION following the DECLARATIVES area, if any. Additional entry-points may
be defined via the ENTRY statement (see section 6.16).

Entry-point
name

Every entry-point has a name. That name must be unique for all program units that comprise an
executable program. Entry-point names are defined using a subroutine’s PROGRAM-ID clause (see
section 3) or via ENTRY statements coded in the subroutine’s PROCEDURE DIVISION (see section
6.16).

OpenCOBOL 1.1 Programmers Guide Glossary of Terms

06FEB2009 Version Page 9-2

Executable file The OpenCOBOL compiler can create operating-system appropriate files that may be executed
directly from the operating system environment. On Windows systems, these will be “.exe” files
whereas on UNIX systems they will have no specific extensions. The “-x” compiler switch is used
to create executable files. Only main programs should be compiled in this manner.

Figurative
constants

OpenCOBOL, like other COBOL implementations, supports a number of reserved words that may
be used to represent a specific literal value. These are known as figurative constants. See section
1.9.

Group item A group item is an identifier that is broken down into sub-items. For example, a MAILING-
ADDRESS might be broken down into STREET-ADDRESS, APARTMENT-NUMBER, CITY, STATE and
ZIP-CODE components.

Identifiers These are data items a COBOL program will be working with. The vast majority of identifiers are
defined by the user (programmer) while a few are pre-defined by the OpenCOBOL compiler.
Identifiers pre-defined by the compiler are referred to as registers. Other programming languages
generally refer to identifiers as “variables”.

Imperative
statement

A sequence of one or more non-conditional OpenCOBOL statements or conditional OpenCOBOL
statements properly terminated with the correct “END-xxxx” trailer.

Level number A user-defined word expressed as a 1- or 2-digit number that indicates the hierarchical position of
a data item or the special properties of a data description entry.

Level numbers in the range 1 through 49 indicate the position of a data item in the hierarchical
structure of a logical record. Level numbers in the range 1 through 9 can be written either as a
single digit or as a zero followed by the significant digit.

Level numbers 66, 77, 78 and 88 identify special properties of a data description entry.

See sections 5.3, 5.4, 5.5 and 0.

Literal A numeric literal or an alphanumeric literal.

Main program An OpenCOBOL program that is to be executed directly from an operating system or shell event.
Main programs are not executed from other programs unless such execution is accomplished via
the CALL “SYSTEM” facility.

Numeric literal A numeric constant. See section 1.8.

Primary Entry-
point

See entry-point.

Procedure All executable code statements within a single PROCEDURE DIVISION paragraph or SECTION.

Procedure name A programmer-defined SECTION or paragraph name in the PROCEDURE DIVISION assigned to a
procedure. Procedure names serve as a means by which a statement may refer to the statements
that follow the procedure name.

Program unit An OpenCOBOL main program or subprogram. Subprogram program units may be nested inside
of other program units and a main program unit may be followed by any number of subprogram
program units in the same compilation unit.

Qualification The process of establishing a unique reference to a data item whose name is duplicated in a
program. This takes the form of using the duplicated data name and the name of any of its parent
data items, connected by “OF” or “IN” such that the combination of those two data names is
unique within the program.

Record The most-inclusive, highest level, data item. The level number for a record is 01. A record can be
either an elementary item or a group item.

Registers Special data items that are automatically defined for your use by the OpenCOBOL compiler. See
section 6.1.8.

OpenCOBOL 1.1 Programmers Guide Glossary of Terms

06FEB2009 Version Page 9-3

Reserved word A COBOL word specified in the list of words that can be used in a COBOL source program, but that
must not appear in the program as user-defined words or system names.

Sentence Any number of COBOL statements, followed by a period.

Statement A single COBOL instruction. Every statement starts with a verb which defines the overall action
the statement will take. Any additional syntax following the verb refines the actions that will be
taken.

Subprogram or
subroutine

These two interchangeable terms refer to OpenCOBOL programs that are executed by another
program. Typically this is done via the CALL statement from another OpenCOBOL program,
although OpenCOBOL may execute subprograms written in other languages and other language
programs may execute OpenCOBOL programs.

User-defined
names

Either the name of an identifier or a procedure in the program. OpenCOBOL limits user-defined
names to a maximum of 31 characters taken from the set of numeric digits, upper- and lower-case
letters, hyphens and underscores. A user-defined name may neither begin nor end with a hyphen
or underscore. User-defined names used as file names may additionally not begin with a digit
although - unlike many other programming languages - user-defined names used as identifiers or
procedure names may.

Verb A single COBOL reserved-word which defines an action a COBOL program will take at execution
time. Every COBOL statement begins with a verb. Some verbs perform relatively simple actions
(MOVE, STOP, SET, etc.) while others can perform extremely complex actions (SEARCH, SORT,
MERGE, STRING, UNSTRING, etc.).

OpenCOBOL 1.1 Programmers Guide Glossary of Terms

06FEB2009 Version Page 9-4

OpenCOBOL 1.1 Programmers Guide Index

06FEB2009 Version Page i

Index

*

* In Column 7, 1-11

>

>>D, 1-11
>>SOURCE FORMAT, 1-11

A

ACCEPT, 5-18, 6-24
Command-Line Arguments, 6-26
CONSOLE, 6-26
Date/Time, 6-29
Environment, 6-27
Screen Data, 6-28
Screen Size, 6-29

ACCESS MODE, 4-8, 4-9
DYNAMIC, 6-42, 6-73, 6-74, 6-78, 6-89
RANDOM, 6-42, 6-73, 6-74, 6-78
SEQUENTIAL, 6-42, 6-78, 6-89

ADD
CORRESPONDING, 6-32
GIVING, 6-32
TO, 6-31

ADDRESS OF
FREE, 6-54
SET, 6-84

AFTER, 6-72
INSPECT, 6-61, 6-62
PERFORM VARYING, 6-71
PERFORM WITH TEST, 6-71
WRITE ADVANCING, 6-101

ALL
INSPECT, 6-61, 6-62
VALUE, 5-11

ALL PROCEDURES, 6-25
ALLOCATE, 5-11, 6-33
ALPHABET, 4-4
ALPHABETIC, 6-6
ALPHABETIC-LOWER, 6-6
ALPHABETIC-UPPER, 6-6
Alphanumeric Literal, 1-13
ALTER, 6-34
ALTERNATE RECORD KEY, 4-9, 6-89
ALTERNATE RECORD KEY fields, 6-74
ANY, 6-50
ANY LENGTH, 5-11
ARGUMENT-NUMBER, 6-26
ARGUMENT-VALUE, 6-26, 6-27
Arithmetic Expressions, 6-2
ASCENDING KEY

SORT, 6-87, 6-88
Table, 5-11, 6-81

ASSIGN, 4-6
AT

ACCEPT, 6-28

DISPLAY, 6-44
END (READ), 6-73
END-OF-PAGE, 6-102

AUTO, 5-18

B

BACKGROUND-COLOR, 5-18, 5-19
BACK-TAB, 5-18
BASED, 5-10, 5-11, 6-84
BEEP, 5-17
BEFORE

INSPECT, 6-61, 6-62
PERFORM WITH TEST, 6-71
WRITE ADVANCING, 6-101

BELL, 5-17
Big-Endian, 5-13
BLANK, 5-18
BLANK WHEN ZERO, 5-11
BLINK, 5-19
BLOCK CONTAINS, 5-3
BY

CONTENT, 7-7
PERFORM VARYING, 6-71, 6-72
REFERENCE, 6-24, 6-36, 7-6, 7-8
VALUE, 6-24, 7-8

BYTE-LENGTH, 5-16

C

C$CHDIR, 7-15
C$COPY, 7-15
C$DELETE, 7-15
C$FILEINFO, 7-16
C$JUSTIFY, 7-16
C$MAKEDIR, 7-16
C$NARG, 7-16, 7-27
C$PARAMSIZE, 7-17
C$SLEEP, 7-17
C$TOLOWER, 7-17
C$TOUPPER, 7-17
CALL, 6-6, 6-35, 7-3, 9-1
CANCEL, 5-1, 6-37
CBL_AND, 7-17
CBL_CHANGE_DIR, 7-18
CBL_CHECK_FILE_EXIST, 7-18
CBL_CLOSE_FILE, 7-18
CBL_COPY_FILE, 7-18
CBL_CREATE_DIR, 7-19
CBL_CREATE_FILE, 7-19
CBL_DELETE_DIR, 7-19
CBL_DELETE_FILE, 7-19
CBL_EQ, 7-22
CBL_ERROR_PROC, 7-19
CBL_EXIT_PROC, 7-21
CBL_FLUSH_FILE, 7-22
CBL_IMP, 7-22
CBL_NIMP, 7-23

OpenCOBOL 1.1 Programmers Guide Index

06FEB2009 Version Page ii

CBL_NOR, 7-23
CBL_NOT, 7-24
CBL_OC_NANOSLEEP, 7-24
CBL_OPEN_FILE, 7-19, 7-24
CBL_OR, 7-24
CBL_READ_FILE, 7-24, 7-25
CBL_RENAME_FILE, 7-25
CBL_TOUPPER, 7-25
CBL_WRITE_FILE, 7-19, 7-24, 7-26
CBL_XOR, 7-26
CHAIN, 6-24
CHAINING, 6-24
CHARACTERS, 6-62
CLASS, 4-4
CLOSE, 6-23, 6-38, 6-70
cobcrun, 7-12
CODE-SET, 5-2
COL, 5-18
Collating Sequence, 9-1
COLLATING SEQUENCE, 4-2, 4-6
COLUMN, 5-18
Column 7

"*", 1-11
"D", 1-11

COLUMNS, 6-29
Combined Conditions, 6-8
COMMAND-LINE, 6-26
comment, 1-11
COMMIT, 6-23, 6-39, 6-78
COMMON-STORAGE SECTION (Alternative To), 5-1
Compilation Unit, 2-1, 5-3, 5-10, 9-1
Compiler Switches

All Switches, 7-1
-conf, 7-10
-fdebugging-line, 1-11
-ffunctions-all, 4-2
-fixed, 1-11
-fnotrunc, 7-29
-free, 1-11
-g, 6-14, 6-15
-m, 7-2, 7-3, 7-12, 9-1
-m, 3-1
-S, 7-3
-Wobsolete, 3-1
-x, 7-3, 7-12, 9-2
-x, 3-1

COMPUTE, 6-40
Condition Names, 6-5
Conditional Expressions, 6-2, 6-5
Conditions

Combined, 6-8
Level-88 Condition Names, 6-5
Negated, 6-9
Relation, 6-8
Switch Status, 6-7

Configuration Files, 7-10
CONFIGURATION SECTION, 4-1
CONSOLE, 6-43
CONSOLE IS CRT, 4-3
CONSTANT, 5-16
Constant Descriptions, 5-16

CONTINUE, 6-41
CONVERTING, 6-61, 6-62, 6-97
CORRESPONDING, 6-32
COUNT, 6-100
CRT, 4-5, 6-43
CURRENCY SIGN, 4-5
CURSOR IS, 4-5

D

D In Column 7, 1-11
DATA DIVISION, 1-7, 1-10
DATA RECORD, 5-2
DATE, 6-29
DATE YYYYMMDD, 6-29
DAY, 6-29
DAY YYYYDDD, 6-29
DAY-OF-WEEK, 6-29
DEBUGGING MODE, 4-1
DECIMAL POINT IS COMMA, 4-5
DECLARATIVES, 6-25, 6-42, 6-70, 9-1
DEFAULT, 6-59
DELETE, 6-42, 6-70
DELIMITED BY

STRING, 6-92
UNSTRING, 6-99

DELIMITED BY SIZE, 6-92
DELIMITER, 6-100
DESCENDING KEY

SORT, 6-87, 6-88
Table, 5-11, 6-81

DISK, 5-3
DISPLAY, 5-18

Command-Line Arguments, 6-43
CONSOLE, 6-43
Environment, 6-43
Screen Data, 6-44

DIVIDE
BY/GIVING, 6-47
BY/REMAINDER, 6-48
INTO, 6-46
INTO/GIVING, 6-46
INTO/REMAINDER, 6-47

DIVISION, 9-1
DYNAMIC, 4-8, 4-9
Dynamically-Loadable Library, 3-1, 9-1

E

Elementary Item, 9-1
ELSE, 6-58
END PROGRAM, 2-1, 2-2
END-IF, 6-58
ENTRY, 6-49, 6-83, 7-3, 9-1
Entry Point, 9-1
ENVIRONMENT, 6-27
ENVIRONMENT DIVISION, 1-7, 4-1
Environment Variables

COB_CC, 7-9
COB_CFLAGS, 7-9
COB_CONFIG_DIR, 7-9

OpenCOBOL 1.1 Programmers Guide Index

06FEB2009 Version Page iii

COB_CONFIG_PATH, 7-10
COB_COPY_DIR, 7-9, 7-10
COB_LDADD, 7-9
COB_LDFLAGS, 7-9
COB_LIBRARY_PATH, 7-13
COB_LIBS, 7-9
COB_PRE_LOAD, 7-13
COB_SCREEN_ESC, 4-5, 7-13
COB_SCREEN_EXCEPTIONS, 4-5, 7-13
COB_SORT_MEMORY, 7-13
COB_SWITCH_n, 4-4
COB_SWITCH_n, 7-13
COB_SYNC, 7-14
dd_literal-1, 4-7
DD_literal-1, 4-6
LD_LIBRARY_PATH, 7-9
literal-1, 4-7
PATH, 7-14
TEMP, 7-14
TMP, 7-10, 7-14
TMPDIR, 7-10, 7-14

ENVIRONMENT-NAME, 6-27
ENVIRONMENT-VALUE, 6-27
EOL, 5-18
EOS, 5-18
ERASE, 5-18
Error Procedure (user-defined), 6-70, 7-19
EVALUATE, 6-50
EVENT STATUS, 4-5
EXCEPTION

ACCEPT, 6-30
CALL, 6-35
DISPLAY, 6-45

Executable File, 3-1, 9-2
EXIT, 6-52

PARAGRAPH, 6-52, 6-65
PERFORM, 6-52
PERFORM CYCLE, 6-52
PROGRAM, 6-65, 6-86, 6-88
SECTION, 6-52, 6-65
Simple, 6-52

Exit Procedure (user-defined), 7-21
Expressions

Arithmetic, 6-2
Conditional, 6-2, 6-5

EXTEND, 6-70, 6-101
EXTERNAL

Data Item Description, 5-1, 5-10
FD, 5-3

F

FD, 6-101
-fdebugging-line, 4-1
Figurative Constant, 1-14, 9-2
File Description, 6-101
FILE SECTION, 1-7
FILE STATUS, 4-7
FILE-CONTROL, 1-7, 4-6
FILLER, 5-4
FIRST

INSPECT, 6-61, 6-62
-fixed, 1-11
fixed format, 1-11
FOREGROUND-COLOR, 5-18, 5-19
FOREVER, 6-71, 6-72
-free, 1-11
FREE, 6-54
free format, 1-11
FROM

PERFORM VARYING, 6-71
REWRITE, 6-78
Screen Item Description, 5-19
Screen Item Description, 5-19
WRITE, 6-101

FULL, 5-18
FUNCTION-ID, 2-2

G

GENERATE, 6-55
GIVING

CALL, 6-35
MERGE, 6-65
SORT, 6-87
STOP, 6-91

GLOBAL, 6-25
data item, 5-10
Data Item Description, 5-1
FD, 5-3

GO TO, 6-65, 6-71, 6-86, 6-88
DEPENDING ON, 6-57
Simple, 6-57

GOBACK, 6-53, 6-56, 6-65, 6-86, 6-88, 7-21
Group Item, 9-2

H

HIGHLIGHT, 5-19

I

IDENTIFICATION DIVISION, 3-1
Identifier, 9-2
IF, 6-58
IGNORING LOCK, 6-23
Imperative Statement, 9-2
INDEXED BY, 5-11, 6-81, 6-84
INITIAL, 6-35
INITIALIZE, 6-33

Verb, 6-59
INITIATE, 6-60
INPUT, 6-70
INPUT PROCEDURE, 6-76, 6-86
INPUT-OUTPUT SECTION, 1-7, 4-5
INSPECT, 6-61, 6-97
Intrinsic Functions (Supported)

ABS, 6-11
CHAR, 6-12
COMBINED-DATETIME, 6-13
CONCATENATE, 6-13
CURRENT-DATE, 6-13

OpenCOBOL 1.1 Programmers Guide Index

06FEB2009 Version Page iv

DATE-OF-INTEGER, 6-13
DATE-TO-YYYYMMDD, 6-13
DAY-OF-INTEGER, 6-14
DAY-TO-YYYYDDD, 6-14
E, 6-14
EXCEPTION-FILE, 6-14
EXCEPTION-LOCATION, 6-14
EXCEPTION-STATEMENT, 6-14
EXCEPTION-STATUS, 6-15
EXP, 6-15
EXP10, 6-15
FACTORIAL, 6-15
FRACTIONAL-PART, 6-15
INTEGER, 6-15
INTEGER-OF-DATE, 6-15
INTEGER-OF-DAY, 6-15
INTEGER-PART, 6-16
LENGTH, 6-16
LOCALE-DATE, 6-16
LOCALE-TIME, 6-16
LOCALE-TIME-FROM-SECS, 6-16
LOG, 6-16
LOG10, 6-16
LOWER-CASE, 6-16, 6-21
MAX, 6-17, 6-20, 6-21
MIDRANGE, 6-17
MOD, 6-17
NUMVAL, 1-13, 6-17
NUMVAL-C, 1-13, 6-17
ORD, 6-18
ORD-MAX, 6-18
PI, 6-18
PRESENT-VALUE, 6-18
RANDOM, 6-18
RANGE, 6-19
REM, 6-19
REVERSE, 6-19
SECONDS-FROM-FORMATTED-TIME, 6-19
SECONDS-PAST-MIDNIGHT, 6-19
SIGN, 6-19
SIN, 6-19
SQRT, 6-19
STORED-CHAR-LENGTH, 6-20
SUBSTITUTE, 6-20
SUM, 6-20
TAN, 6-20
TEST-DATE-YYYYMMDD, 6-20
TEST-DAY-YYYYDDD, 6-20
TRIM, 6-20
WHEN-COMPILED, 6-21
YEAR-TO-YYYY, 6-21

Intrinsic Functions (Unsupported)
BOOLEAN-OF-INTEGER, 6-11
CHAR-NATIONAL, 6-11
DISPLAY-OF, 6-11
EXCEPTION-FILE-N, 6-11
EXCEPTION-LOCATION-N, 6-11
HIGHEST-ALGEBRAIC, 6-11
INTEGER-OF-BOOLEAN, 6-11
LOCALE-COMPARE, 6-11
LOWEST-ALGEBRAIC, 6-11

NATIONAL-OF, 6-11
NUMVAL-F, 6-11
STANDARD-COMPARE, 6-11
TEST-NUMVAL, 6-11
TEST-NUMVAL-C, 6-11
TEST-NUMVAL-F, 6-11

INVALID KEY
DELETE, 6-42
REWRITE, 6-78
START, 6-89
WRITE, 6-102

I-O, 6-70, 6-101
I-O-CONTROL, 4-10

J

JUSTIFIED RIGHT, 5-11

K

KEY (START), 6-89

L

LABEL RECORD, 5-2
LEADING

INSPECT, 6-61, 6-62
SIGN, 5-6

LENGTH, 5-16
LENGTH OF, 6-31

Use With Alphanumeric Literals, 1-14
Level

01, 5-4
02-49, 5-4
66, 5-5, 5-17
77, 5-5
78, 5-16, 5-17
88, 5-17

Level Number, 9-2
LINAGE, 5-1, 5-3, 6-21, 6-101
LINE, 5-18
LINES

ACCEPT, 6-29
AT BOTTOM, 6-102
AT TOP, 6-102
WRITE ADVANCING, 6-101

LINKAGE SECTION, 6-24, 6-84
Literal, 9-2
Little-Endian, 5-13
LOCALE, 4-4
LOCAL-STORAGE SECTION, 5-1, 6-35
LOCK, 4-7
LOWLIGHT, 5-19

M

Main Program, 9-2
MEMORY SIZE, 4-2
MERGE, 6-64
MOVE, 5-11

CORRESPONDING, 6-66

OpenCOBOL 1.1 Programmers Guide Index

06FEB2009 Version Page v

Simple, 6-66
MULTIPLE FILE TAPE, 4-10
MULTIPLY

BY, 6-68
GIVING, 6-68

N

Negated Conditions, 6-9
NEGATIVE, 6-6
Nested Source Programs, 2-2, 3-1
NEXT, 6-73
NEXT SENTENCE, 6-69
NO ADVANCING, 6-43
NO REWIND, 6-38
NOT AT END, 6-73
NOT AT END-OF-PAGE, 6-102
NOT EXCEPTION

ACCEPT, 6-30
DISPLAY, 6-45

NOT INVALID KEY
DELETE, 6-42
READ, 6-75
READ, 6-75
REWRITE, 6-78
START, 6-90
WRITE, 6-102

NOT ON OVERFLOW
STRING, 6-92
UNSTRING, 6-100

NOT ON SIZE ERROR
ADD, 6-31
COMPUTE, 6-40
DIVIDE, 6-46, 6-47, 6-48
MULTIPLY, 6-68
SUBTRACT, 6-93

NUMBER-OF-CALL-PARAMETERS, 7-16, 7-27
NUMERIC, 6-6
Numeric Literal, 1-12, 9-2

O

OBJECT-COMPUTER, 4-1
OCCURS, 5-10, 6-81
OFF STATUS, 4-4
OMITTED, 6-6
ON OVERFLOW

STRING, 6-92
UNSTRING, 6-100

ON SIZE ERROR
ADD, 6-31
COMPUTE, 6-40
DIVIDE, 6-46, 6-47, 6-48
MULTIPLY, 6-68
SUBTRACT, 6-93

ON STATUS, 4-4
OPEN, 6-70, 6-73, 6-74, 6-89, 6-101
OPTIONAL, 4-6
ORGANIZATION

INDEXED, 1-7, 4-9, 6-42, 6-73, 6-78, 6-89, 6-101, 6-102, 7-
14

LINE SEQUENTIAL, 1-5, 4-8, 5-3, 6-38, 6-64, 6-78, 6-86, 6-
101

RECORD BINARY SEQUENTIAL, 1-6, 4-8, 5-3, 6-38, 6-64, 6-
78, 6-86, 6-101

RELATIVE, 1-6, 4-8, 6-42, 6-78, 6-89, 6-101, 6-102
OUTPUT, 6-70, 6-101
OUTPUT PROCEDURE, 6-77

MERGE, 6-65
SORT, 6-87

OVERFLOW
CALL, 6-35

OVERLINE, 5-18

P

PAGE
WRITE ADVANCING, 6-101

PERFORM, 6-25, 6-52
Inline, 6-72
Procedural, 6-71

POSITIVE, 6-6
PREVIOUS, 6-73
PRIMARY KEY, 4-9
PRIMARY RECORD KEY, 6-74
PRINTER, 4-8, 6-43
Procedure, 9-2
PROCEDURE DIVISION, 6-24
Procedure Name, 9-2
PROGRAM COLLATING SEQUENCE, 6-87, 6-88
Program Unit, 2-1, 9-2
PROGRAM-ID, 3-1, 7-3
PROGRAM-POINTER, 6-83
PROMPT, 5-18

Q

Qualification, 6-1, 9-2

R

RANDOM, 4-8, 4-9
READ, 6-42, 6-70, 6-73, 6-74, 6-78
Record, 9-2
RECORD CONTAINS, 5-3, 6-78
RECORD DELIMITER, 4-6
RECORD IS VARYING, 5-3, 6-78
RECORD KEY, 4-9, 6-42, 6-78, 6-89
RECORDING MODE, 5-2
REDEFINES, 5-10, 5-11
REEL, 6-38
Reference Modifier, 6-2
Registers, 9-2
Relation Conditions, 6-8
RELATIVE KEY, 4-8, 4-9, 6-42, 6-78, 6-89
RELEASE, 6-76, 6-86
REPLACING

INITIALIZE, 6-59
REPLACING (COPY), 1-12
REPLACING (INSPECT), 6-61, 6-62
REPORT IS, 5-3
REPORT SECTION, 5-1

OpenCOBOL 1.1 Programmers Guide Index

06FEB2009 Version Page vi

REPOSITORY, 4-2, 6-11
REQUIRED, 5-18
RESERVE, 4-6
Reserved Word, 9-3
RETURN, 6-65, 6-77, 6-88
RETURN-CODE, 7-15, 7-16, 7-17, 7-18, 7-19, 7-20, 7-21, 7-22,

7-23, 7-24, 7-25, 7-26
RETURNING, 6-24, 6-33

CALL, 6-35
STOP, 6-91

REVERSE-VIDEO, 5-18
REWRITE, 6-78
ROLLBACK, 6-23, 6-79
ROUNDED, 6-31

ADD, 6-40
DIVIDE, 6-46, 6-47, 6-48
MULTIPLY, 6-68
SUBTRACT, 6-93

S

SAME RECORD AREA, 4-10, 6-64
SAME SORT AREA, 4-10, 6-64
SAME SORT-MERGE AREA, 4-10, 6-64
SCREEN CONTROL, 4-5
SCREEN SECTION, 1-10, 5-1
SCROLL, 6-28
SEARCH

(Sequential), 6-80
ALL (Binary Search), 6-81

SECURE, 5-18
SEGMENT-LIMIT, 4-2
SELECT, 1-7
Sentence, 9-3
SEPARATE CHARACTER, 5-6
SEQUENTIAL, 4-8, 4-9
SET

Address, 6-83
Condition Name, 6-84
ENVIRONMENT, 6-83
Index, 6-84
Program-Pointer, 6-83
Switch, 6-85
UP/DOWN, 6-84

SHARING, 4-7, 6-70
SHARING WITH ALL OTHER, 4-6
Shift-TAB, 5-18
SIGN, 5-6
SIZE, 6-24
SIZE IS AUTO, 6-24
SORT

File, 6-86
Table, 6-88

SOURCE-COMPUTER, 4-1
Special Registers, 9-2
SPECIAL-NAMES, 4-3, 6-43, 7-27
Split Keys, 4-9
START, 4-8, 4-9, 6-70, 6-89
Statement, 9-3
STOP RUN, 6-56, 6-65, 6-71, 6-86, 6-88, 6-91, 7-21
STRING, 6-92

Subprogram, 9-3
Subroutine, 9-3
Subscripts, 6-1
SUBTRACT

CORRESPONDING, 6-94
FROM, 6-93
GIVING, 6-93

SUPPRESS, 6-95
Switch Status Conditions, 6-7
SWITCH-n, 4-4, 7-27
SYMBOLIC CHARACTERS, 4-4
SYNCHRONIZED, 5-14
SYSTEM, 7-26

T

TAB, 5-18
TALLYING, 6-61

UNSTRING, 6-100
TERMINATE, 6-96
THROUGH, 6-50, 6-71
THRU, 6-50, 6-71
TIME, 6-29
TIMES, 6-52, 6-71, 6-72
TO

Screen Item Description, 5-19
TO VALUE, 6-59
TRAILING

INSPECT, 6-61, 6-62
SIGN, 5-6

TRANSFORM, 6-97

U

UNDERLINE, 5-18
UNIT, 6-38
UNLOCK, 6-23, 6-39, 6-70, 6-98
UNSTRING, 6-99
UNTIL, 6-52, 6-71, 6-72
UPDATE, 6-28
UPON, 6-43
USAGE

BINARY-CHAR, 7-4, 7-27
BINARY-CHAR SIGNED, 7-4
BINARY-CHAR UNSIGNED, 7-4
BINARY-C-LONG SIGNED, 7-5
BINARY-DOUBLE, 7-5
BINARY-DOUBLE SIGNED, 7-5
BINARY-DOUBLE UNSIGNED, 7-5
BINARY-LONG, 7-5
BINARY-LONG SIGNED, 7-5
BINARY-LONG UNSIGNED, 7-5
BINARY-SHORT, 7-4
BINARY-SHORT SIGNED, 7-4
BINARY-SHORT UNSIGNED, 7-4
COMPUTATIONAL-1, 7-5
COMPUTATIONAL-2, 7-5
DISPLAY, 6-5
INDEX, 6-84
POINTER, 6-5, 6-33, 6-84
PROGRAM POINTER, 6-5

OpenCOBOL 1.1 Programmers Guide Index

06FEB2009 Version Page vii

PROGRAM-POINTER, 6-84, 7-19, 7-21
USE AFTER STANDARD ERROR PROCEDURE, 6-25
USE BEFORE REPORTING, 6-25
USE FOR DEBUGGING, 6-25
user-defined name, 9-3
User-Defined Name, 9-3
USING, 6-24

Screen Item Description, 5-19
USING (CALL), 6-35
USING (SORT), 6-86

V

VALUE, 5-10, 5-19
VALUE OF, 5-2
VARYING, 6-52, 6-71, 6-72
Verb, 9-3

W

WHEN, 6-50
WITH

DUPLICATES, 4-9

DUPLICATES IN ORDER, 6-64, 6-86, 6-88
IGNORE LOCK, 6-23
LOCK, 6-23

CLOSE, 6-38, 6-70
NO LOCK, 6-23
NO REWIND

CLOSE, 6-70
POINTER

STRING, 6-92
UNSTRING, 6-99

TEST, 6-71, 6-72
WITH FILLER, 6-59
WITH WAIT, 6-23
WORKING-STORAGE SECTION, 1-7, 5-1
WRITE, 6-101

X

X"F4", 7-28
X"F5", 7-28
X”91”, 7-27

OpenCOBOL 1.1 Programmers Guide Index

06FEB2009 Version Page viii

OpenCOBOL 1.1 Programmers Guide GNU Free Documentation License

06FEB2009 Version Page ix

GNU Free Documentation License

Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

 <http://fsf.org/>

 Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially.

Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or

whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below,

refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical

connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero

Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and
that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input

OpenCOBOL 1.1 Programmers Guide GNU Free Documentation License

06FEB2009 Version Page x

to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent.

An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is
called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any title
page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to
this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition.

Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material.

OpenCOBOL 1.1 Programmers Guide GNU Free Documentation License

06FEB2009 Version Page xi

If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's
license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History"
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice.

OpenCOBOL 1.1 Programmers Guide GNU Free Documentation License

06FEB2009 Version Page xii

These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number.

Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one
section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled
"Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is
not used to limit the legal rights of the compilation's users beyond what the individual works permit.

When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.

Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

OpenCOBOL 1.1 Programmers Guide GNU Free Documentation License

06FEB2009 Version Page xiii

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4.

Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4)
to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies
you of the violation by some reasonable means, this is the first time you have received notice of violation of this
License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you
have the option of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number
of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

OpenCOBOL 1.1 Programmers Guide GNU Free Documentation License

06FEB2009 Version Page xiv

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under
this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

	Figures
	Introduction
	What is OpenCOBOL?
	Additional References and Documents
	Introducing COBOL
	“I Heard COBOL is a Dead Language!”
	Programmer Productivity – The “Holy Grail”
	Notable COBOL/OpenCOBOL Features
	Basic Program Readability
	COBOL Program Structure
	Copybooks
	Structured Data
	Files
	Table Handling
	Sorting and Merging Data
	String Manipulation
	Textual-User Interface (TUI) Features

	Syntax Description Conventions
	Source Program Format
	Use of Commas and Semicolons
	Using COPY
	Use of Literals
	Numeric Literals
	Alphanumeric Literals

	Use of Figurative Constants
	User-Defined Names
	Use of LENGTH OF

	General OpenCOBOL Program Format
	General Format for Nested Source Programs
	General Format for Nested Source Functions

	IDENTIFICATION DIVISION
	ENVIRONMENT DIVISION
	CONFIGURATION SECTION
	SOURCE-COMPUTER Paragraph
	OBJECT-COMPUTER Paragraph
	REPOSITORY Paragraph
	SPECIAL-NAMES Paragraph

	INPUT-OUTPUT SECTION
	FILE-CONTROL Paragraph
	ORGANIZATION SEQUENTIAL Files
	ORGANIZATION RELATIVE Files
	ORGANIZATION INDEXED Files

	I-O-CONTROL Paragraph

	DATA DIVISION
	FD - File Description
	SD - SORT Description
	General Format for Data Descriptions
	Condition Names
	Constant Descriptions
	Screen Descriptions

	PROCEDURE DIVISION
	General PROCEDURE DIVISION Components
	Table References
	Qualification of Data Names
	Reference Modifiers
	Expressions
	Arithmetic Expressions
	Conditional Expressions
	Condition Names (Level-88 Items)
	Class Conditions
	Sign Conditions
	Switch-Status Conditions
	Relation Conditions
	Combined Conditions
	Negated Conditions

	Use of Periods (.)
	Use of “VERB” / “END-VERB” Constructs
	Intrinsic Functions
	ABS(number)
	ACOS(angle)
	ANNUITY(interest-rate, number-of-periods)
	ASIN(number)
	ATAN(number)
	BYTE-LENGTH(string)
	CHAR(integer)
	COMBINED-DATETIME(days, seconds)
	CONCATENATE(string-1 [, string-2] …)
	COS(number)
	CURRENT-DATE
	DATE-OF-INTEGER(integer)
	DATE-TO-YYYYMMDD(yymmdd [, yy-cutoff])
	DAY-OF-INTEGER(integer)
	DAY-TO-YYYYDDD(yyddd [, yy-cutoff])
	E
	EXCEPTION-FILE
	EXCEPTION-LOCATION
	EXCEPTION-STATEMENT
	EXCEPTION-STATUS
	EXP(number)
	EXP10(number)
	FRACTION-PART(number)
	FACTORIAL(number)
	INTEGER(number)
	INTEGER-OF-DATE(date)
	INTEGER-OF-DAY(date)
	INTEGER-PART(number)
	LENGTH(string)
	LOCALE-DATE(date [, locale])
	LOCALE-TIME(time [, locale])
	LOCALE-TIME-FROM-SECS(seconds [, locale])
	LOG(number)
	LOG10(number)
	LOWER-CASE(string)
	MAX(number-1 [, number-2] …)
	MIN(number-1 [, number-2] …)
	MEAN(number-1 [, number-2] …)
	MEDIAN(number-1 [, number-2] …)
	MIDRANGE(number-1 [, number-2] …)
	MOD(value, modulus)
	NUMVAL(string)
	NUMVAL-C(string [, symbol])
	ORD(char)
	ORD-MAX(char-1 [, char-2] …)
	ORD-MIN(char-1 [, char-2] …)
	PI
	PRESENT-VALUE(rate,value-1 [, value-2])
	RANDOM [(seed)]
	RANGE(number-1 [, number-2] …)
	REM(number, divisor)
	REVERSE(string)
	SECONDS-FROM-FORMATTED-TIME(format,time)
	SECONDS-PAST-MIDNIGHT
	SIGN(number)
	SIN(angle)
	SQRT(number)
	MEAN(number-1 [, number-2] …)
	STORED-CHAR-LENGTH(string)
	SUBSTITUTE(string,from-1,to-1 [, from-n,to-n])
	SUBSTITUTE-CASE(string,from-1,to-1 [, from-n,to-n])
	SUM(number-1 [, number-2] …)
	TAN(angle)
	TEST-DATE-YYYYMMDD(date)
	TEST-DAY-YYYYDDD(date)
	TRIM(string[, LEADING|TRAILING])
	UPPER-CASE(string)
	VARIANCE(number-1 [, number-2] …)
	WHEN-COMPILED
	YEAR-TO-YYYY (yy [, yy-cutoff])

	Special Registers
	Controlling Concurrent Access to Files
	File Sharing
	Record Locking

	General Format of the PROCEDURE DIVISION
	General Format for DECLARATIVES Entries
	ACCEPT
	ACCEPT Format 1 – Read from Console
	ACCEPT Format 2 – Retrieve Command-Line Arguments
	ACCEPT Format 3 – Retrieve Environment Variable Values
	ACCEPT Format 4 – Retrieve Screen Data
	ACCEPT Format 5 – Retrieve Date/Time
	ACCEPT Format 6 - Retrieve Screen Size Data
	ACCEPT Exception Handling

	ADD
	ADD Format 1 – ADD TO
	ADD Format 2 – ADD GIVING
	ADD Format 3 – ADD CORRESPONDING

	ALLOCATE
	CALL
	CANCEL
	CLOSE
	COMMIT
	COMPUTE
	CONTINUE
	DELETE
	DISPLAY
	DISPLAY Format 1 – Upon Console
	DISPLAY Format 2 – Access Command-Line Arguments
	DISPLAY Format 3 – Access or Set Environment Variables
	DISPLAY Format 4 – Screen Data
	DISPLAY Exception Handling

	DIVIDE
	DIVIDE Format 1 – DIVIDE INTO
	DIVIDE Format 2 – DIVIDE INTO GIVING
	DIVIDE Format 3 – DIVIDE BY GIVING
	DIVIDE Format 4 – DIVIDE INTO REMAINDER
	DIVIDE Format 5 – DIVIDE BY REMAINDER

	ENTRY
	EVALUATE
	EXIT
	FREE
	GENERATE
	GOBACK
	GO TO
	GO TO Format 1 – Simple GO TO
	GO TO Format 2 – GO TO DEPENDING ON

	IF
	INITIALIZE
	INITIATE
	INSPECT
	MERGE
	MOVE
	MOVE Format 1 – Simple MOVE
	MOVE Format 2 – MOVE CORRESPONDING

	MULTIPLY
	MULTIPLY Format 1 – MULTIPLY BY
	MULTIPLY Format 2 – MULTIPLY GIVING

	NEXT SENTENCE
	OPEN
	PERFORM
	PERFORM Format 1 – Procedural
	PERFORM Format 2 – Inline

	READ
	READ Format 1 – Sequential READ
	READ Format 2 – Random Read

	RELEASE
	RETURN
	REWRITE
	ROLLBACK
	SEARCH
	SEARCH Format 1 –Sequential Search
	SEARCH Format 2 –Binary, or Half-interval Search (SEARCH ALL)

	SET
	SET Format 1 – SET ENVIRONMENT
	SET Format 2 – SET Program-Pointer
	SET Format 3 – SET ADDRESS
	SET Format 4 – SET Index
	SET Format 5 – SET UP/DOWN
	SET Format 6 – SET Condition Name
	SET Format 7 – SET Switch

	SORT
	SORT Format 1 – File-based Sort
	SORT Format 2 – Table Sort

	START
	STOP
	STRING
	SUBTRACT
	SUBTRACT Format 1 – SUBTRACT FROM
	SUBTRACT Format 2 – SUBTRACT GIVING
	SUBTRACT Format 3 – SUBTRACT CORRESPONDING

	SUPPRESS
	TERMINATE
	TRANSFORM
	UNLOCK
	UNSTRING
	WRITE

	The OpenCOBOL System Interface
	Using the OpenCOBOL Compiler (cobc)
	Introduction
	Syntax and Options
	Compiling Executable Programs
	Dynamically-Loadable Subprograms
	Static Subroutines
	Combining COBOL and C Programs
	OpenCOBOL Run-Time Library Requirements
	String Allocation Differences Between OpenCOBOL and C
	Matching C Data Types with OpenCOBOL USAGEs
	OpenCOBOL Main Programs CALLing C Subprograms
	C Main Programs CALLing OpenCOBOL Subprograms

	Important Environment Variables
	Locating Copybooks at Compilation Time
	Using Compiler Configuration Files

	Running OpenCOBOL Programs
	Executing Programs Directly
	Using the “cobcrun” Utility
	Program Arguments
	Important Environment Variables

	Built-In Subroutines
	“Call by Name” Routines
	CALL “C$CHDIR” USING directory-path, result
	CALL “C$COPY” USING src-file-path, dest-file-path, 0
	CALL “C$DELETE” USING file-path, 0
	CALL “C$FILEINFO” USING file-path, file-info
	CALL “C$JUSTIFY” USING data-item, “justification-type”
	CALL “C$MAKEDIR” USING dir-path
	CALL “C$NARG” USING arg-count-result
	CALL “C$PARAMSIZE” USING argument-number
	CALL “C$SLEEP” USING seconds-to-sleep
	CALL “C$TOLOWER” USING data-item, BY VALUE convert-length
	CALL “C$TOUPPER” USING data-item, BY VALUE convert-length
	CALL “CBL_AND” USING item-1, item-2, BY VALUE byte-length
	CALL “CBL_CHANGE_DIR” USING directory-path
	CALL “CBL_CHECK_FILE_EXIST” USING file-path, file-info
	CALL “CBL_CLOSE_FILE” USING file-handle
	CALL “CBL_COPY_FILE” USING src-file-path, dest-file-path
	CALL “CBL_CREATE_DIR” USING dir-path
	CALL “CBL_CREATE_FILE” USING file-path, 2, 0, 0, file-handle
	CALL “CBL_DELETE_DIR” USING dir-path
	CALL “CBL_DELETE_FILE” USING file-path
	CALL “CBL_ERROR_PROC” USING function, program-pointer
	CALL “CBL_EXIT_PROC” USING function, program-pointer
	CALL “CBL_EQ” USING item-1, item-2, BY VALUE byte-length
	CALL “CBL_FLUSH_FILE” USING file-handle
	CALL “CBL_GET_CURRENT_DIR” USING BY VALUE 0, BY VALUE length, BY REFERENCE buffer
	CALL “CBL_IMP” USING item-1, item-2, BY VALUE byte-length
	CALL “CBL_NIMP” USING item-1, item-2, BY VALUE byte-length
	CALL “CBL_NOR” USING item-1, item-2, BY VALUE byte-length
	CALL “CBL_NOT” USING item-1, BY VALUE byte-length
	CALL “CBL_OC_NANOSLEEP” USING nanoseconds-to-sleep
	CALL “CBL_OPEN_FILE” file-path, access-mode, 0, 0, handle
	CALL “CBL_OR” USING item-1, item-2, BY VALUE byte-length
	CALL “CBL_READ_FILE” USING handle, offset, nbytes, flag, buffer
	CALL “CBL_RENAME_FILE” USING old-file-path, new-file-path
	CALL “CBL_TOLOWER” USING data-item, BY VALUE convert-length
	CALL “CBL_TOUPPER” USING data-item, BY VALUE convert-length
	CALL “CBL_WRITE_FILE” USING handle, offset, nbytes, 0, buffer
	CALL “CBL_XOR” USING item-1, item-2, BY VALUE byte-length
	CALL “SYSTEM” USING command

	“Call by Number” Subroutines
	CALL X”91” USING return-code, function-code, binary-variable-arg
	CALL X”F4” USING byte, table
	CALL X”F5” USING byte, table
	Binary Truncation

	Sample Programs
	FileStat-Msgs.cpy – File Status Values
	COBDUMP – A Hex/Char Data Dump Subroutine
	OCic – an OpenCOBOL Full-Screen Compiler Front-End
	WINSYSTEM – Execute Windows Shell Commands (For Cygwin)

	Glossary of Terms
	Index
	GNU Free Documentation License

