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Abstract

Generating diverse yet specific data is the goal of the

generative adversarial network (GAN), but it suffers from

the problem of mode collapse. We introduce the concept of

normalized diversity which force the model to preserve the

normalized pairwise distance between the sparse samples

from a latent parametric distribution and their correspond-

ing high-dimensional outputs. The normalized diversifica-

tion aims to unfold the manifold of unknown topology and

non-uniform distribution, which leads to safe interpolation

between valid latent variables. By alternating the maxi-

mization over the pairwise distance and updating the total

distance (normalizer), we encourage the model to actively

explore in the high-dimensional output space. We demon-

strate that by combining the normalized diversity loss and

the adversarial loss, we generate diverse data without suf-

fering from mode collapsing. Experimental results show

that our method achieves consistent improvement on un-

supervised image generation, conditional image generation

and hand pose estimation over strong baselines.

1. Introduction

Diversity is an important concept in many areas, e.g.

portfolio analysis [33], ecological science [26] and recom-

mendation system [45]. This concept is also crucial to gen-

erative models which have wide applications in machine

learning and computer vision. Several representative exam-

ples include Variational Autoencoder (VAE) [21] and Gen-

erative Adversarial Network (GAN) [14], which are capable

of modeling complicated data. One ideal principle shared

by all generative models, simple or complex, is quite sim-

ilar, that the generated data should be diverse. Otherwise,

the model may have a so-called problem of mode collapse,

where all generated outputs are highly similar. This prob-

lem is more common in GAN [14] since the objective func-

tion is mostly about the validity of generated samples but

not the diversity of them.

∗ indicates equal contribution

Figure 1: Comparison of generative models’ capability to

learn from sparse samples with unknown topology (a donut

shape). Generated samples from GAN [14], BourGAN [39]

and ours are illustrated. GAN [14] suffers from mode col-

lapse. BourGAN [39] concentrates tightly around the train-

ing data points. Ours generates dense coverage around the

training samples with limited outliers.

Our goal is to learn a generative model for high-

dimensional image data which are non-uniformly dis-

tributed over a space with unknown topology, only using

very sparse samples. These conditions stated above, even

one of them being removed, may result in a much easier

problem to solve. We formulate the solution as learning a

mapping from a low-dimensional variable in latent space Z
to an image defined in output space Y . However, we face

a dilemma that, in order to fit the complicated topology of

output data, we need the learned mapping to be complex

and highly expressive, which actually requires dense sam-

ples from real-world. This problem might be alleviated if

the topology is simpler since a parametrized function of

smaller VC dimension might be able to fit. This situation

however is most likely not the case if we need to deal with

arbitrary images.

We start from an idea that is orthogonal to previous re-

search: that we aim to expand as well as unfold the mani-

fold of generated images, actively and safely. We want to

model the data with complex topology in output space us-

ing a parametrized mapping from a latent space with sim-

ple topology. To learn a model that is specific to training

images and also generalizable, we wish to achieve that the

interpolation and extrapolation on a pair of latent variables

should generate valid samples in output space. This requires

the generative model, globally, to generate diverse and valid

images via exploration, which we refer to as safe extrapo-

lation, and locally, to preserve the neighbouring relation so

that interpolation is also safe.
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Figure 2: Illustration on the training procedure with proposed normalized diversification on highly irregular topology (top

row) and non-uniform data density (bottom row). The generative model can effectively learn from sparse data by constructing

a mapping from the latent space Z to the target distribution by minimizing normalized diversity loss. Top Left: The latent

variable z ∈ Z in 2D space is sampled from an uniform distribution. 5 points (P1-P5, colored blue) along the diagonal

are used for illustration. Bottom Left: The normalized pairwise distance matrix on P1-P5. From Left to Right: We show

qualitative results on two synthetic cases: ‘HI’ and ‘Ring’. We visualize the mapping from the latent space to the output

space for several iterations together with DY ∈ R
5×5 and we illustrate safe interpolation on the diagonal of the latent space

onto the output space. Right Most Column: We generate dense samples from the learned model, to illustrate the diversity

and the consistency w.r.t. the ground-truth distribution shown in the second column.

In this paper, we propose normalized diversification fol-

lowing the motivation above. This is achieved by combin-

ing the adversarial loss of GAN and a novel normalized di-

versity loss. This diversity loss encourages the learned map-

ping to preserve the normalized pairwise distance between

every pair of inputs z, z′ ∈ Z and their corresponding out-

puts gθ(z), gθ(z
′) ∈ Y , where gθ is a parametrized function.

This utilizes the same insight as manifold unfolding [37].

During training, we also fix the normalization term while

maximizing the pairwise distance, which also encourages

the model to visit outer modes i.e. to extrapolate.

To illustrate the concept, we sample sparse points from a

donut shape as training data for GAN [14], BourGAN [39]

and our method, shown in Figure 1. After the model be-

ing trained, we generate 5k new samples from the learned

distribution for visualization. Our method achieves safe in-

terpolation, fills in the gap in sparse samples and generates

dense coverage while GAN [14] and BourGAN [39] fails to

generalize.

Our paper is organized as follows: Section 3 presents

more motivations towards a better understanding of normal-

ized diversification. Section 4 describes how we apply nor-

malized diversification onto multiple vision applications by

employing different metric spaces on the outputs. Finally

in Section 5, we show promising experimental results on

multiple tasks to demonstrate the effectiveness.

2. Related Work

Early attempts for addressing the problem of mode col-

lapse include maximum mean discrepancy [10], boundary

equilibrium [4] and training multiple discriminators [9].

Later, some other works [1, 5, 27] modified the objective

function. The usage of the distance matrix was implicitly

introduced as a discrimination score in [32] or covariance

in [20]. Recently, several novel methods via either statisti-

cal or structural information are proposed in [35, 24, 39].

Most problems in computer vision are fundamentally ill-

posed that they have multiple or infinite number of solu-

tions. To obtain a better encoder with diverse generated

data, there are a variety of ideas making full use of the VAE

[21], GAN [14] and its conditional version to develop better

models [3, 18, 23, 31, 34, 44]. Huang et al. [17] proposed

to learn a disentangled representation, Ye et al. [41] used

a parametrized GMM, other works like [2, 6, 11, 12] selec-

tively back-propagated the gradients of multiple samples.

The normalized diversification, defined with pairwise terms

on the mapping function itself, appears orthogonal to most

of the existing methods.

3. Method

We consider a generative model gθ that generates an im-

age y ∈ Y based on a latent variable z. The target of

training the model is to fit an unknown target distribution

pdata(y) based on limited samples. In this paper, we con-

sider two different kinds of implicit generative models that

solve different problems but intrinsically share the same

spirit of diversification.

• Unsupervised generative model. This model is used

for tasks that do not depend on auxiliary information,

e.g. image synthesis without supervision. Existing

methods such as GAN [14] and VAE [21] use a latent
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variable z ∈ Z that follows a parametric distribution

p(z) in latent space and learn the mapping gθ : Z → Y
to fit the target y ∈ Y .

• Conditional generative model. This model uti-

lizes additional information to generate more specific

outputs, e.g. text-to-image (image-to-image) trans-

lation, pose estimation, future prediction. Related

works include a variety of conditional generative mod-

els [3, 18, 23, 31, 44]. They also use a predefined latent

space Z and aim to fit the joint distribution (X ,Y) for

the input domain X and output domain Y (for conve-

nience we also use Y here). Specifically, an encoder

E : X → C is used to get the latent code c ∈ C.

Then, either addition (VAE) or concatenation (CGAN)

is employed to combine c and z for training generator

gθ : C × Z → Y .

The problem of mode collapse is frequently encountered es-

pecially in generative models like GAN [14], that the model

generates highly similar data but satisfies the criterion for

training. Our motivation for normalized diversification is

to encourage gθ to generate data with enough diversity, so

the model visits most of the important modes. In the mean-

time, we wish gθ to be well-conditioned around the visited

modes, so we could infer latent variables from some valid

image samples, and ensure safe interpolation and extrapola-

tion between these latent variables to generate meaningful

images. We could address the problem of mode collapse by

diversifying the outputs, which is similar to enlarging the

variance parameter of a Gaussian distribution, but a hard

problem is how to measure the diversity of real-world im-

ages analytically and properly, as the variance of a distribu-

tion might be too universal for general tasks to be specific

to our problem.

We start with an intuition to prevent the pairwise distance

d(·, ·) between two generated points A and B from being

too close. Note that if the outputs are linearly scaled, so

will the pairwise distance d(A,B): the samples seem to di-

versify from each other, without actually solving the intrin-

sic problem of mode collapse. Thus, we measure whether

the mapping preserves the normalized pairwise distance be-

tween inputs ‖z − z′‖ and outputs ‖gθ(z)− gθ(z
′)‖.

Since we do not have access to infinite amount of data,

we sample a limited amount of data from a well-defined

parametric distribution p(z), and try to visit more mode via

diversification. We measure the diversity of generated sam-

ples by the pairwise distance in Y through the parametrized

mapping gθ. The objective function is simplified as a finite-

sum form on N samples {zi}
N
i=1, along with corresponding

images {yi|yi = gθ(zi)}
N
i=1. We denote two metric spaces

MZ = (Z, dZ) and MY = (Y, dY ). We use two addi-

tional functions hY and hZ for some task-specific usage,

and then define the metric as composite functions upon Eu-

Figure 3: Quantitative comparison between normalized di-

versity loss and BourGAN loss [39] on the learned distri-

bution in Fig. 1. We discretized the donut region into uni-

form mesh grids and measured “cover rate” (the percentage

of grids which have generated samples in them). We also

measured “outlier rate”: the ratio of samples outside the

donut. “Data sparsity” measures the cover rate of the train-

ing samples over the donut. Our method improve the cover

rate over GAN [14] and BourGAN [39] while maintaining

comparable outlier rate.

clidean distance, as follows,

dZ(zi, zj) = ‖hZ(zi)− hZ(zj)‖2 (1)

dY (yi, yj) = ‖hY (yi)− hY (yj)‖2 (2)

To explain with a concrete application in diverse video syn-

thesis that we try to generate a realistic video from a moving

vehicle based on a sequence of segmentation mask, here dY
may be used for extracting deep features using an off-the-

shelf network like the perceptual loss [19]. We also define

DZ , DY ∈ R
N×N to be the normalized pairwise distance

matrix of {zi}
N
i=1 and {yi}

N
i=1 respectively in Eq.(3). Each

element in the matrix is defined as

DZ
ij =

dZ(zi, zj)∑
j dZ(zi, zj)

, DY
ij =

dY (yi, yj)∑
j dY (yi, yj)

, (3)

for ∀i, j ∈ [N ]. The normalized diversity loss can be for-

mulated as in Eq.(4), where α ≈ 1 is a slack factor of this

diversity loss.

Lndiv(θ, p) =
1

N2 −N

N∑

i=1

N∑

j 6=i

max(αDZ
ij−D

Y
ij , 0). (4)

To enforce the extrapolation, we treat the normalizer in

Eq.(3) as a constant when back-propagating the gradient to

generator. As a result minimizing Eq.(4) would also force

the model to actively expand in the high-dimensional out-

put space, we refer to Algorithm 1 and Section 3.1 for more

details.

For the purpose of unfolding the manifold, we could fo-

cus on the expansion of densely connected pairs of DZ
ij >

DY
ij or on the contraction of loosely connected pairs of

DZ
ij < DY

ij . Only minimizing max(αDZ
ij −DY

ij , 0) would

encourage active extrapolation when we hold the normal-

izer constant.
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Combining the diversity loss, the objective function over

θ can be written in a compact form as

min
θ
L(θ, p) = Lgen(θ, p) + Lndiv(θ, p) (5)

whereLgen(θ, p) is the original objective function for learn-

ing the generator gθ. In the conditional model, the objective

function also depends on x which we omitted here.

3.1. Interpolation and Extrapolation

A fundamental motivation behind the normalized diver-

sification is to achieve that interpolation and extrapolation

on a pair of latent variables should generate valid samples

in output space. This pursues a trade-off between pairwise

diversity and validity. This motivation aligns with the con-

cept of local isometry [38], which has a nice property that

the near neighbors in Z , are encoded to Y using a rotation

plus a translation. Local isometry requires the output man-

ifold to be smooth and without invalid ‘holes’ within the

neighbor region of a valid point, and the interpolation in Z
generates valid points in Y through a parametrized mapping

gθ where θ is the learned parameter. Differently, Variational

Autoencoder (VAE) [21] mostly cares about local perturba-

tion, or pointwise diversity.

Normalized diversification is orthogonal to previous re-

search as it aims to unfold the manifold of generated images

[37]. Interpolation. By pushing apart the pairwise distance

of the sample points, we prevent the ’short-cuts’ that links

samples through the exterior space. As shown in Figure 1,

given a set of points, our goal is to discover the underlying

parametrization so we can densely generate new valid sam-

ples in the interior (on the donut), without crossing over to

the exterior (the donut hole). This leads to safe interpola-

tion. Extrapolation. For active exploration of output space

Y with the current model, in each iteration, we first cal-

culate the normalizer of the pairwise distance matrix, then

use the gradient back-propagated from the dYij to force ex-

pansion, after which we update the normalizer. With these

alternating steps, we ensure the stability of exploration. We

illustrate the evolution of the training procedure on two syn-

thetic 2D distributions in Figure 2

3.2. Understanding from Geometric Perspective

Simply trying to enlarge the pairwise distance between

samples in Y can explore the unobserved space, but a cru-

cial problem is how to make sure the interpolated points

are still valid. From a geometric perspective, imagine that

A,B,C are on a curvy 1D line in 2D space, the transitive

distance between them, d(A,B)+d(B,C) on the 1D curve

is much longer than 2D distance d(A,C), which violates

the triangle inequality. If we make an interpolation point

D in the inner part of the line (A,C), although the direct

2D distance between d(A,C) could be very small, the line

between them might lie in the part of unreasonable space

out of the manifold. However, by pushing (A,C) as far as

possible away, we ‘discover’ the true 1D distance.

This insight is different from existing approaches, e.g.

BourGAN [39], which aims at matching the pairwise dis-

tance between output space and latent space which can pre-

serve the data modality but hinder its generalization ability.

Our method, besides the mode preserving ability, can also

actively expand and unfold the manifold which enables safe

interpolation on the latent space where the generated sam-

ples will neither lie outside the valid region nor overfit the

existing data (See Figure 1 and 3).

3.3. Understanding via Simplified Models

To understand the normalized diversification, we start

from another perspective by using simple functions to illus-

trate the functionality of the regularization term. We assume

the generator to be a simple linear model as gθ(z) = θT z,

where θ is the matrix that characterizes the linear trans-

formation. A simple calculation induces that the diversity

regularization thus encourages ‖θ‖⋆ (or ‖θ‖2) being suffi-

ciently large. However, this alone does not prevent some de-

generated cases. Suppose that the generator is constructed

in the following way

gθ(z) = θT z, θ = UT diag[β, 0, 0, · · · , 0]V ∈ R
K×D,

where K and D are the dimension of the latent variable z
and generated data respectively, and U, V are the matrices

consisting of all singular-vectors. When β is sufficiently

large, this model seems to be strongly diversified, however,

is actually not a reasonable model as it measures the dif-

ference of two vectors along only one direction, i.e. the

singular-vector corresponding to the singular value β. Nor-

malization over the diversity helps to prevent these kinds of

degenerated cases, as the normalized distance does not scale

with β. The normalization also helps to adapt to a condi-

tional setting that some related works e.g. BourGAN [39]

might fail to adapt, based on an input variable x and a latent

variable z, especially with large variations w.r.t. x. Imag-

ine a simple example where y = gθ(x, z) = (x + z)3, and

x ∈ [1, 10]. The upper bound of Lipschitz constant could be

larger than 3max(x)
2
= 300 while the lower bound should

be lower than 3min(x)
2
= 3. However, this value is mean-

ingless for the most part of the whole domain [1, 10]. Nor-

malizing the distance could fix it to a reasonable range.

Another side problem is on how to keep the semi-

definiteness of the distance metric, to concord with metric

learning research [8, 37, 38, 40]. Under this property, a pair

of samples (z, z′) deviating from each other in whichever

direction, should increase the pairwise distance in the out-

put space. This property should also be enforced by di-

versification, although may not explicitly. This formulation

of taking nonnegative part using max(·, 0) encourages the
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GAN Unrolled VEEGAN PacGAN Ours

Figure 4: Qualitative results on ‘2D Gaussian ring’ and ‘2D

Gaussian grid’. For baseline methods, We directly used the

visualization results in [39].

learned metric in Y to be positive semidefinite (PSD). To

understand with a counter-example, we consider a metric

defined as

dY (y, y
′) = (y − y′)TΦ(y − y′), where Φ ∈ R

D×D.

We assume the eigen-decomposition of Φ to be

Φ = UT diag[−β, 100β, 0, 0, · · · , 0]U (6)

where β > 0 (eigen-decomposition), and Φ is not PSD.

Suppose there is a pair of latent variables (y, y′) that y −
y′ =

∑
d Ud/D, where summation is taken over all eigen-

vectors. This pair of data incurs a variation of 99β of Lndiv

in Eq.(4) if the nonnegative operator max(·, 0) is not used,

which leads to the objective function being minimized if β
positively scales, but clearly, the metric is not reasonable as

it is not PSD. However, if the operator is applied, the same

case incurs a variation of β of Lndiv from a deviation in

the subspace corresponding to the negative eigenvalue −β,

as the max(·, 0) operator strongly contrast those directions

like U1 that wrongly contribute to Lndiv , and ignore other

subspace even if they correspond to strongly positive eigen-

values.

4. Real-World Applicability

In this section, we present the real-world applicability of

normalized diversification for different vision applications.

For different tasks, we need a validity checking function F
of the generated samples to validate that the data satisfies

some domain-specific constraints. For example, for the un-

supervised setting, F can be interpreted as the trained dis-

criminator in GAN [14].

Our training pipeline is summarized in Algorithm 1. For

a given latent distribution p(z) and the target distribution

pdata, we sample a finite set of latent samples {zi}
n
i=1 from

p(z) and {yi}
n
i=1 from pdata. We then compute normal-

ized pairwise distance matrix over {zi}
n
i=1 and the gener-

ated samples {gθ(zi)}
n
i=1 with the functions dZ and dY . We

update the normalizer and block its gradients as previously

Algorithm 1 Training generative model with normalized di-

versity.

1: Given: Latent distribution p(z), Target distribution

pdata
2: Given: Current generator gθ, Distance function dZ , dY
3: function NORMDIST({qj}

N
i=1, d):

4: for i← 1 to N do

5: Si =
∑N

j=1 d(qi, qj)
6: Si ← Si.value (treated as constant value with

back-propagated gradients blocked)

7: Dij = d(qi, qj)/Si, j ∈ [N ]
8: end for

9: return D
10: end function

11: while not converged do

12: {zi}
N
i=1 ∼ p(z)

13: {yi}
N
i=1 ∼ pdata

14: DZ =NORMDIST({zi}
N
i=1, dZ)

15: DY =NORMDIST({gθ(zi)}
N
i=1, dY )

16: (Optional for GAN) Update the discriminator F .

17: Compute total loss L by Eq. 5

18: Update model parameter θ = θ − η∂L/∂θ
19: end while

discussed. Finally, we compute the total loss L in Eq.(5)

and update the model with the back-propagated gradients

for each step.

4.1. Applications

The proposed normalized diversity term is general and

can be applied to many vision applications including image

generation, text-to-image (image-to-image) translation and

hand pose estimation, etc. We specify the conditional in-

put domain X , the output domain Y and the function hY

for each application to compute normalized diversity loss

in Eq.(4). We use a predefined Z with uniform distribution

and hz(z) = z for all tasks.

• Image generation. There is no conditional input for

this unsupervised generative model setting. Y is the

output image domain. The normalized pairwise dis-

tance on Y can be computed either with ℓ1 or ℓ2 dis-

tance or employing deep metrics such as using the

GAN [14] discriminator as the function hY .

• Conditional image generation. The conditional input

domain X can be the input text and input image for

text-to-image and image-to-image translation respec-

tively. Y is the output image domain. The computation

of normalized pairwise distance on Y is similar to that

in image generation.

• Hand pose estimation. The conditional input domain

X is the input RGB hand image. Y ∈ R
3K is the
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Table 1: Results on the synthetic dataset. We followed the

experimental setting in [39].

2D Ring 2D Grid

Method #modes fail (%) #modes fail (%)

GAN [14] 1.0 0.1 17.7 17.7

Unrolled [27] 7.6 12.0 14.9 95.1

Ours 8.0 10.3 25.0 11.1

VEEGAN [35] 8.0 13.2 24.4 22.8

PacGAN [24] 7.8 1.8 24.3 20.5

BourGAN [39] 8.0 0.1 25.0 4.1

output 3D pose, where K denotes the number of the

joints. For the function hY , we employ the visibility

mask V ∈ {0, 1}3K to gate each joint of the output 3D

pose inversely, encouraging diversity on the occluded

joints, i.e. hY (y) = (1− V ) ◦ y.

Note that [39] cannot fit in the conditional setting be-

cause the number of possible conditional inputs, e.g. input

text, RGB hand image are infinite, making the pairwise in-

formation for each conditional input impossible to be pre-

computed. Specifically for hand pose estimation, we de-

velop a pseudo-renderer by using morphological clues to

get a visibility mask.

The application of normalized diversity can fit in arbi-

trary checking function F for different tasks. When com-

pared to baseline adversarial methods, we use adversar-

ial loss for image generation either unsupervised or condi-

tional. For hand pose estimation, we choose to combine the

l2 distance on the visible joints and the joint adversarial dis-

criminator of (xi, ŷi) (image-pose GAN), where ŷi denotes

the 2D projection of the output 3D pose yi.

F (x, y) = Fvis(x, y) + Fgan(x, y) (7)

The two checking functions are formulated as follows

Fvis(x, y) = ‖V ◦ (y − yr)‖
2
2 (8)

Fgan(x, y) = Ex,ŷr∼pdata
[logD(x, ŷr)] (9)

+ Ex∼pdata,z∼p(z)[log(1−D(x, ŷ))]

With the image-pose GAN, the system has the capability to

learn much subtle relationship between x and y. By con-

straining only on the visible joints, our system gets less

noisy gradients and can learn better pose estimation along

with better image features.

5. Experiments

We conducted experiments on multiple vision tasks un-

der both unsupervised setting (Section 5.1 and 5.2) and con-

ditional setting (Section 5.3 and 5.4) to demonstrate the ef-

fectiveness of the proposed idea.

Table 2: FID Results [16] on Image Synthesis. “SN”

and “GP” denote spectral normalization [28] and gradient

penalty [15] respectively. Our method achieved consistent

improvement over various GANs.

CIFAR-10 CelebA

w/o ndiv w ndiv w/o ndiv w ndiv

GAN+SN 23.7 22.9 10.5 10.2

GAN+SN+GP 22.9 22.0 9.4 9.1

WGAN+GP 25.1 23.9 9.9 9.5

WGAN+SN+GP 23.7 23.3 9.2 9.0

Compared to the baseline, we added the normalized di-

versification loss with all other settings unchanged. We sim-

ply used α = 0.5 for Eq.(4) in most experiments except

conditional image generation, where we used α = 0.8.

5.1. Synthetic Datasets

We tested our method on the widely used 2D Gaus-

sian ring and 2D Gaussian grid to study the behavior of

mode collapse. For each iteration in our method, we per-

formed line 16 and 18 in Algorithm 1 all repeatedly for

3 times for faster convergence. Results are shown in Ta-

ble 1. We compared several baselines [14, 27, 35, 24, 39].

Of those methods VEEGAN [35], PacGAN [24] and Bour-

GAN [39] require pairwise information of the real image

sets, which is an expensive pre-requisite and cannot fit in

the conditional setting. Moreover, BourGAN [39] suffered

from severely overfitting the training samples (See Fig. 1).

Our method, with the normalized diversification, achieved

promising results in the long-term training (50k iterations)

with only on-demand pairwise information. In Fig. 4, we

qualitatively demonstrate the results on synthetic point sets

where our method achieve comparable or even better results

over VEEGAN [35] and PacGAN [24] without using two or

more real samples at a time.

5.2. Image Generation

We further tested our method on the widely accepted task

of image generation. We conducted experiments on CIFAR-

10 [22] and CelebA [25] with state-of-the-art methods via

the off-the-shelf library1. Because there exist relatively

dense samples in this setting, conventional methods fit the

problem relatively well. Nevertheless, as shown in Ta-

ble 2, with the normalized diversification loss, our method

achieves consistent improvement on CIFAR-10 [22] and

CelebA [25] over strong baselines with spectral normal-

ization [28] and gradient penalty [15]. By regularizing the

model behavior around the visited modes through normal-

ized diversification, the generator maintains a safe extrapo-

lation depending on the current outputs.

1https://github.com/google/compare gan
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Table 3: Results of text-to-image translation on [30]. 15

volunteers voted for the better of the randomly sampled

pairs for a random text on the webpage. Diversity was com-

puted via the perceptual metric [43] using Inception model

[36].

votes diversity

GAN-CLS [31] 287 (31.3%) 43.7±16.8

Ours 291 (31.7%) 58.1±18.5

Neutral 340 (37.0%) -

Table 4: Quantitative comparison with BicycleGAN [44] on

conditional facade image generation [7]. We computed FID

[16] with the real data to measure the image quality (lower

better) and used LPIPS [43] to measure the output diversity

(higher better).

FID ↓ LPIPS ↑
Real data 0.0 0.291

BicycleGAN [44] 83.0 0.136 ± 0.049

Ours 76.3 0.188 ± 0.048

5.3. Conditional Image Generation

We tested the performance of conditional image gener-

ation described in Section 4.1. For text-to-image transla-

tion, we directly followed the architecture used in [31] for

fair comparison and added the diversity loss term to the

overall objective function. We used a discriminator as hY

to extract features from synthesized images and measured

the pairwise image distance in feature space. Experiments

were conducted on Oxford-102 Flower dataset [30] with 5

human-generated captions per image. We generated 5 sam-

ples for each text at training stage. Both the baseline and our

method were trained for 100 epochs on the training set. We

employed the zero-shot setting where we used the 3979 test

sets to evaluate both methods. We evaluated the quality and

the diversity of the generated images. For the diversity mea-

surement, we first generated 10 images for each input text,

then used the perceptual metric [43] via Inception model

[36] to compute the variance of the 10 generated samples

and took average over test sets. Table 3 shows the results

on [30]. With comparable image quality, we significantly

improved upon the baseline in terms of the diversity.

We compare with a strong baseline, BicycleGAN [44],

on image-to-image translation to further demonstrate our

ability to model multimodal distribution. We removed the

conditional latent regression branch of BicycleGAN [44]

and added normalized diversification. We used ℓ1 as the

pairwise image distance. Table 4 and Fig. 5 show the re-

sults on [7]. Even without the conditional latent regression

branch [44], our method outperforms BicycleGAN [44] on

both image quality and diversity.

Figure 5: Qualitative results of conditional image genera-

tion on facade dataset [7]. Our method improves both im-

age quality and diversity over BicycleGAN [44]. Top left:

input image. Bottom Left: corresponding groundtruth im-

age. Top Right: five generated images from BicycleGAN

[44]. Bottom Right: five generated images from Ours.

5.4. Hand Pose Estimation

We conducted experiments on three RGB hand datasets

including GANerated hands [29], Stereo [42], and FPHAB

[13]. For all datasets, we manually cropped the padded hand

bounding box and resized the input to 128x128. Follow-

ing [29], we directly used the net architecture of their re-

leased model. The weights were initialized from ImageNet

pretrained model. For each image, our multimodal system

generated 20 samples for training and 100 samples for test-

ing. We used zdim = 10 for all the conditional model. Our

method used channel-wise concatenation to aggregate the

encoded features ci and zi. Each dimension of zi was sam-

pled from a uniform distribution U(0, 1).

Evaluating the multimodal predictions is a non-trivial

task. Conventional methods put a max operation on top

of the multiple predictions and use the samples nearest the

groundtruth for evaluation. Some works even use this max

operation over each joint. This results in relatively unfair

comparison because simply drawing a sample uniformly

distributed in U(0, 1) will result in near zero error. Thus,

we introduce a better evaluation protocol for the multimodal

hand pose estimation: 1) Visible joint accuracy. For the

visible joints, we use the Percentage of Correct Keypoints

(PCK) following conventional methods. 2) Standard devia-

tion. We compute standard deviation of the outputs for each
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Table 5: Visible joint accuracy

on GANerated hands [29]. Using

a conditional model along with

the proposed normalized diversi-

fication helps on the visible joints

predictions. Our method achieves

1.6 (91.6→93.2) accuracy gain

over deterministic regression.

Regression 91.6

Ours w/o diversity loss 91.7

Ours 92.8

Ours+ 93.2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Standard Deviation

0.26

0.28

0.30

0.32
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0.36

0.38

0.40

Su
cc

es
sf
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VAE
Ours w/o diversity loss
Ours
Ours+

Figure 6: Results on successful rate and

standard deviation. We gets significant im-

provements on both quality and diversity.

20 25 30 35 40 45 50
Error Thresholds (mm)

0.5
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3D
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ICPPSO (AUC=0.748)
CHPR (AUC=0.839)
Z&B (AUC=0.948)
Mueller et al.(AUC=0.955)
Ours avg(AUC=0.980)
Ours max(AUC=0.988)

Figure 7: Results on Stereo dataset [42].

Our method outperforms existing state-of-

the-art alternatives by a large margin.

Figure 8: Qualitative results of the multiple pose predictions on GANerated hands [29] and FPHAB [13]. We show 3D hand

predictions and its projections on 2D image (better viewed when zoomed in). With comparable variance, while VAE [21]

failed to generated high quality samples, our model generates multiple valid 3D poses with subtle image-pose correlations.

image and take average. 3) Successful rate. For each im-

age, we use the pre-computed hand mask and object mask

to check validity of the samples. The sample is considered

valid if the whole hand configuration including the occluded

joints lie inside the foreground mask.

We first compare our method with the deterministic re-

gression method on the GANerated hand dataset [29]. We

concatenate the encoded feature ci ∈ R
100 with zi at bot-

tleneck which is contrast to the architecture of VAE [21]

where they restricted the latent space zi to be in the form of

Gaussian distribution. ‘Ours+’ denotes our model adapting

a higher dimensional latent space ci ∈ R
16384. We use 100

dimensional latent space zi in all experiments. Combining

Table 5 and Figure 6, it is clear that using a one-to-many

conditional model benefits much on the visible joints as well

as the successful rate. Our method achieves significant im-

provements on all three metrics, while VAE [21] struggles

more on its quality-diversity trade-off.

Moreover, we tested our method on two real-world

datasets including the Stereo Tracking Benchmark [42] and

FPHAB [13]. Our method outperforms state-of-the-art

methods both quantitatively and qualitatively. As is shown

in Figure 8, our method captures much subtle ambiguity

and could generate accurate predictions for visible joints on

each sample. With normalized diversification, the model

maintains a centralized structure which has good property

for pairwise interpolation. This promotes “safer” extrapo-

lation for robust occluded joints detection which leads to

valid yet diversified outputs.

6. Conclusion

In this paper, we proposed normalized diversification,

a generalized loss on the mapping function measuring

whether the mapping preserves the relative pairwise dis-

tance to address the problem of mode collapse. We aim

to diversify the outputs with normalized pairwise distance,

encouraging safe interpolation in the latent space and ac-

tive extrapolation towards outer important states simulta-

neously. Results show that by employing different metric

spaces, normalized diversification can be applied to mul-

tiple vision applications and achieves consistent improve-

ments on both encoding quality and output diversity.
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