
High Performance Visual Tracking with Siamese Region Proposal Network

Bo Li1,2, Junjie Yan3,Wei Wu1, Zheng Zhu1,4,5, Xiaolin Hu3

1 SenseTime Group Limited
2 Beihang University
3 Tsinghua University

4 Institute of Automation, Chinese Academy of Sciences
5 University of Chinese Academy of Sciences

{libo,wuwei}@sensetime.com yanjunjie@mail.tsinghua.edu.cn zhuzheng2014@ia.ac.cn

Abstract

Visual object tracking has been a fundamental topic in

recent years and many deep learning based trackers have

achieved state-of-the-art performance on multiple bench-

marks. However, most of these trackers can hardly get top

performance with real-time speed. In this paper, we pro-

pose the Siamese region proposal network (Siamese-RPN)

which is end-to-end trained off-line with large-scale image

pairs. Specifically, it consists of Siamese subnetwork for

feature extraction and region proposal subnetwork includ-

ing the classification branch and regression branch. In the

inference phase, the proposed framework is formulated as a

local one-shot detection task. We can pre-compute the tem-

plate branch of the Siamese subnetwork and formulate the

correlation layers as trivial convolution layers to perform

online tracking. Benefit from the proposal refinement, tra-

ditional multi-scale test and online fine-tuning can be dis-

carded. The Siamese-RPN runs at 160 FPS while achieving

leading performance in VOT2015, VOT2016 and VOT2017

real-time challenges.

1. Introduction

Visual object tracking is a basic building block in var-

ious tasks of computer vision, such as automatic driving

[19] and video surveillance [32]. It is challenging in large

appearance variance caused by illumination, deformation,

occlusion and motion [37, 39]. Besides, the speed is also

important in practical applications [13, 4, 38].

Modern trackers can be roughly divided into two branch-

es. The first branch is based on correlation filter, which

trains a regressor by exploiting the properties of circular

correlation and performing operations in the Fourier do-

main. It can do online tracking and update the weights of

filters at the same time efficiently. The original version is

Figure 1: Comparisons of our approach with two state-of-the-art trackers. SiamRPN

(short for Siamese-RPN) is able to predict the shape more precisely than SiamFC

(short for Siamese-FC) [4], CCOT [10] when target’s shape is severely changing.

conducted in Fourier domain and is then widely used in the

tracking community [5, 14]. Recent correlation filter based

methods use deep features to improve the accuracy, but it

largely harms the speed during model update [10, 7]. An-

other branch of methods aims to use very strong deep fea-

tures and do not update the model [13, 4, 35]. However,

because the domain specific information is not used, perfor-

mance of these methods is always not as good as correlation

filter based methods.

In this paper, we show that the off-line trained deep

learning based tracker can achieve competitive results com-

pared to the state-of-the-art correlation filter based methods

when properly designed. The key is the proposed Siamese

region proposal network (Siamese-RPN). It consists of a

template branch and a detection branch, which are trained

off-line with large-scale image pairs in an end-to-end man-

ner. Inspired by the state-of-the-art proposal extraction
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method RPN [27], we perform proposal extraction on the

correlation feature maps. Different from standard RPN, we

use correlation feature map of the two branches for propos-

al extraction. In tracking task we don’t have pre-defined

categories, so we need the template branch to encode the

target’s appearance information into the RPN feature map

to discriminate foreground from background.

For inference, we formulate it as a local one-shot detec-

tion framework, where the bounding box in the first frame is

the only exemplar. We reinterpret the template branch as pa-

rameters to predict the detection kernels as a meta-learner

like [2]. Both the meta-learner and the detection branch

are trained end-to-end only using the RPN’s supervision.

The template branch is pruned to accelerate the speed after

the initial frame during online tracking. To the best of our

knowledge, this is the first work to formulate online track-

ing task as one-shot detection.

We evaluate the proposed method in VOT2015,

VOT2016 and VOT2017 real-time challenges [17, 16, 15].

It can achieve leading performance in all of the three chal-

lenges. There are mainly two reasons why we can get

state-of-the-art result without online fine-tuning. Firstly,

our method can be trained off-line with image pairs, which

can take advantage of the large-scale training data, such as

Youtube-BB [25]. Ablation study shows that the more data

can help to get even better performance. Secondly, We find

that the the region proposal subnetwork usually predicts ac-

curate scale and ratio of proposals to get compact bounding

boxes as in Fig. 1.

The contributions can be summarized as three folds. 1).

We propose the Siamese region proposal network (Siamese-

RPN) which is end-to-end trained off-line with large-scale

image pairs for the tracking task. 2). During online track-

ing, the proposed framework is formulated as a local one-

shot detection task, which can refine the proposal to discard

the expensive multi-scale test. 3). It achieves leading per-

formance in VOT2015, VOT2016 and VOT2017 real-time

challenges with the speed of 160 FPS, which proves its ad-

vantages in both accuracy and efficiency.

2. Related Works

Since the main contribution of this paper is the Siamese-

RPN formulated as local one-shot detection task, we give a

brief review on three aspects related to our work: trackers

based on Siamese network structure, RPN in detection and

one-shot learning.

2.1. Trackers based on Siamese network structure

A Siamese network consists of two branches which im-

plicitly encodes the original patches to another space and

then fuses them with a specific tensor to produce a single

output. It’s usually used for comparing two branches’ fea-

tures in the implicitly embedded space especially for con-

trastive tasks. Recently, Siamese networks have drawn great

attention in visual tracking community because of their bal-

anced accuracy and speed [13, 12, 4, 35, 36] . GOTURN

[13] adopts the Siamese network as feature extractor and

uses fully connected layers as the fusion tensor. It can be

seen as a regression method by using predicted bounding

box in the last frame as the only one proposal. Re3 [12] em-

ploys a recurrent network to get better feature produced by

the template branch. Inspired by correlation based methods,

Siamese-FC [4] first introduces the correlation layer as fu-

sion tensor and highly improves the accuracy. The reason of

its success is the densely supervised heatmap when compar-

ing to GOTURN’s one proposal regression, which enables

Siamese-FC more robust to fast-moving objects. CFNet

[35] adds a correlation filter to the template branch and

makes the Siamese network shallower but more efficient.

However, both Siamese-FC and CFNet are lack of bounding

box regression and need to do multi-scale test which makes

it less elegant. The main drawback of these real-time track-

ers is their unsatisfying accuracy and robustness compared

to state-of-the-art correlation filter approaches.

2.2. RPN in detection

Region Proposal Network (RPN) is first proposed in

Faster R-CNN [27]. Before RPN, traditional proposal ex-

traction methods are time consuming. For example, Selec-

tive Search [34] needs 2 seconds to process one image. Be-

sides, these proposals are not good enough for detection.

The enumeration of multiple anchors [27] and sharing con-

volution features make the proposal extraction method time

efficient while achieving high quality. RPN is capable of

extracting more precise proposals due to the supervision

of both foreground-background classification and bounding

box regression. There are several variants of Faster R-CNN

which employs RPN. R-FCN [6] takes component’s posi-

tion information into account and FPN [21] employs a fea-

ture pyramid network to improve the performance of tiny

object detection. In contrast to two stage detectors, the im-

proved versions of RPN, such as SSD [22] and YOLO9000

[26] are efficient detectors. RPN has many successful ap-

plications in detection because of its speed and great perfor-

mance, however, it hasn’t been fully exploited in tracking.

2.3. One­shot learning

In recent years, more and more attention has been paid

to the one-shot learning topic in deep learning. Bayesian s-

tatistics based approaches and the meta-learning approaches

are two major methods to solve the problem. In [20], ob-

ject categories are represented by probabilistic models and

Bayesian estimation is adopted in the inference phase. In

another way, meta-learning approaches aim to get the abili-

ty of learning to learn, that is to say, being aware of and tak-

ing control of one’s own learning. Concretely, [1] utilizes
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Figure 2: Main framework of Siamese-RPN: left side is Siamese subnetwork for feature extraction. Region proposal subnetwork lies in the middle, which has two branches, one

for classification and the other for regression. Pair-wise correlation is adopted to obtain the output of two branches. Details of these two output feature maps are in the right side.

In classification branch, the output feature map has 2k channels which corresponding to foreground and background of k anchors. In regression branch, the output feature map

has 4k channels which corresponding to four coordinates used for proposal refinement of k anchors. In the figure, ⋆ denotes correlation operator.

a neural network to predict the gradient of the target net-

work during the back-propagation. [30] learns a network

that maps a small labelled support set and an unlabelled

example to its label. Although these meta-learning based

methods have got competitive results, these approaches are

often evaluated on classification task and very few of them

has extended to the tracking task. Learnet [2] is the first

work to utilize the meta-learning method to solve the track-

ing task, which predicts the parameters of a pupil network

from a single exemplar. However, the performance of Lear-

net is not competitive the modern DCF based methods, e.g.

CCOT in multiple benchmarks.

3. Siamese-RPN framework

In this section, we describe the proposed Siamese-RPN

framework in detail. As shown in Fig. 2, the proposed

framework consists of a Siamese subnetwork for feature ex-

traction and a region proposal subnetwork for proposal gen-

eration. Specifically, there are two branches in RPN subnet-

work, one is in charge of the foreground-background clas-

sification, another is used for proposal refinement. Image

patches including the target objects are fed into the pro-

posed framework and the whole system is trained end-to-

end.

3.1. Siamese feature extraction subnetwork

In Siamese network, we adopt a fully convolution net-

work without padding. Let Lτ denote the translation oper-

ator (Lτx)[u] = x[u− τ ], then all paddings are removed to

satisfy the definition of fully convolution with stride k:

h(Lkτx) = Lτh(x) (1)

Here we use the modified AlexNet [18], where the groups

from conv2 and conv4 are removed [4].

The Siamese feature extraction subnetwork consists of

two branches. One is called the template branch which re-

ceives target patch in the historical frame as input (denoted

as z). The other is called the detection branch which re-

ceives target patch in the current frame as input (denoted as

x). The two branches share parameters in CNN so that the

two patches are implicitly encoded by the same transforma-

tion which is suitable for the subsequent tasks. For conve-

nience, we denote ϕ(z) and ϕ(x) as the output feature maps

of Siamese subnetwork.

3.2. Region proposal subnetwork

The region proposal subnetwork consists of a pair-wise

correlation section and a supervision section. The su-

pervision section has two branches, one for foreground-

background classification and the other for proposal regres-

sion. If there are k anchors, network needs to output 2k
channels for classification and 4k channels for regression.

So the pair-wise correlation section first increase the chan-

nels of ϕ(z) to two branches [ϕ(z)]cls and [ϕ(z)]reg which

have 2k and 4k times in channel respectively by two convo-

lution layers. ϕ(x) is also split into two branches [ϕ(x)]cls
and [ϕ(x)]reg by two convolution layers but keeping the

channels unchanged. [ϕ(z)] is served as the correlation ker-

nel of [ϕ(x)] in a “group” manner, that is to say, the channel

number in a group of [ϕ(z)] is the same as the overall chan-

nel number of [ϕ(x)]. The correlation is computed on both

the classification branch and the regression branch:

Acls
w×h×2k = [ϕ(x)]cls ⋆ [ϕ(z)]cls

A
reg
w×h×4k = [ϕ(x)]reg ⋆ [ϕ(z)]reg

(2)
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The template feature maps [ϕ(z)]cls and [ϕ(z)]reg are used

as kernels and ⋆ denotes the convolution operation. As

shown in Fig. 2, each point inAcls
w×h×2k denoted as (w̃, h̃, :)

contains a 2k channel vector, which represents for negative

and positive activation of each anchor at corresponding lo-

cation on original map. Softmax loss is adopted to supervise

the classification branch. Similarly, each point in A
reg
w×h×4k

denoted as (ŵ, ĥ, :) contains a 4k channel vector , which

represents for dx, dy, dw, dh measuring the distance be-

tween anchor and corresponding groundtruth.

When training the network with several anchors, we em-

ploy the loss function that is used in Faster R-CNN [27].

Loss for classification is the cross-entropy loss and we

adopt smooth L1 loss with normalized coordinates for re-

gression. Let Ax, Ay , Aw, Ah denote center point and

shape of the anchor boxes and let Tx, Ty , Tw, Th denote

those of the ground truth boxes, the normalized distance is:

δ[0] =
Tx −Ax

Aw

, δ[1] =
Ty −Ay

Ah

δ[2] = ln
Tw

Aw

, δ[3] = ln
Th

Ah

(3)

Then they pass through smooth L1 loss which can be writ-

ten as below,

smoothL1
(x, σ) =

{

0.5σ2x2, |x| < 1
σ2

|x| − 1
2σ2 , |x| ≥ 1

σ2

(4)

Finally we optimize the loss function

loss = Lcls + λLreg (5)

where λ is hyper-parameter to balance the two parts. Lcls

is the cross entropy loss and Lreg is:

Lreg =

3
∑

i=0

smoothL1(δ[i], σ) (6)

3.3. Training phase: End­to­end train Siamese­
RPN

During the training phase, sample pairs are picked from

ILSVRC [29] with a random interval and from Youtube-BB

[25] continuously. The template and the detection patch-

es are extracted from two frames of the same video. We

train Siamese-RPN end-to-end using Stochastic Gradien-

t Descent (SGD) after the Siamese subnetwork being pre-

trained using Imagenet. Because of the need of training re-

gression branch, some data augmentations are adopted in-

cluding affine transformation.

We choose less anchors in tracking task than detection

task by noticing that the same object in two adjacent frames

won’t change much. So only one scale with different ratios

of anchor is adopted and the anchor ratios we adopted are

[0.33, 0.5, 1, 2, 3].

The strategy to pick positive and negative training sam-

ples is also important in our proposed framework. The cri-

terion used in object detection task is adopted here that we

use IoU together with two thresholds thhi and thlo as the

measurement. Positive samples are defined as the anchors

which have IoU > thhi with their corresponding ground

truth. Negative ones are defined as the anchors which sat-

isfy IoU < thlo. We set thlo to 0.3 and thhi to 0.6. We

also limit at most 16 positive samples and totally 64 sam-

ples from one training pair.

4. Tracking as one-shot detection

In this subsection, we firstly formulate the tracking task

as a local one-shot detection task. Afterwards, the inference

phase under this interpretation is analyzed in detail and sim-

plified to get a speed up. At last, some specific strategies are

introduced to make the framework suitable for the tracking

task.

4.1. Formulation

We consider one-shot detection as a discriminative task

as in [2]. Its objective is to find the parameters W that min-

imize the average loss L of a predictor function ψ(x;W ). It

is computed over a dataset of n samples xi and correspond-

ing labels ℓi:

min
W

1

n

n
∑

i=1

L(ψ(xi;W ), ℓi) (7)

One-shot learning is aiming to learn W from a single tem-

plate z of the class of interest. The challenge in discrimina-

tive one-shot learning is to find a mechanism to incorporate

category information in the learner, i.e. learning to learn.

To address the challenge, we propose a method to learn the

parameters W of the predictor from a single template z us-

ing a meta-learning process, i.e. a feed-forward function ω

that maps (z;W
′

) to W . Let zi be template samples in one

batch then the problem can be formulated as:

min
W

′

1

n

n
∑

i=1

L(ψ(xi;ω(zi;W
′

)), ℓi) (8)

As the same above, let z denote for the template patch, x for

the detection patch, function ϕ for the Siamese feature ex-

traction subnetwork and function ζ for the region proposal

subnetwork then the one-shot detection task can be formu-

lated as:

min
W

1

n

n
∑

i=1

L(ζ(ϕ(xi;W );ϕ(zi;W )), ℓi) (9)

We can now reinterpret the template branch in Siamese

subnetwork as training parameters to predict the kernel of

the local detection task, which is typically the learning to

learn process. In this interpretation, the template branch

is used to embed the category information into the kernel

and the detection branch performs detection using the em-

bedded information. During the training phase, the meta-
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Figure 3: Tracking as one-shot detection: the template branch predicts the weights(in

gray) for kernels of region proposal subnetwork on detection branch using the first

frame. Then the template branch is pruned and only the detection branch is retained.

So the framework is modified to a local detection network.

learner doesn’t need any other supervision except the pair-

wise bounding box supervision. In the inference phase,

Siamese framework is pruned only leaving the detection

branch except the initial frame thus leading to high speed.

The target patch from the first frame is sent into the template

branch and the detection kernel is pre-computed so that we

can perform one-shot detection in other frames. Because

the local detection task is based on the category informa-

tion only given by the template on initial frame, it can be

viewed as one-shot detection.

4.2. Inference phase: Perform one­shot detection

As the formulation in Sec. 4.1, we regard the template

branches’ outputs as the kernels for local detection. Both

the kernels are pre-computed on the initial frame and fixed

during the whole tracking period. With the current feature

map convolved by the pre-computed kernels, the detection

branch performs online inference as one-shot detection as

shown in Fig. 3. The forward pass on the detection branch

is performed to obtain the classification and regression out-

put, thus getting the top M proposals. Specifically, after the

notation we defined in Eq. 2, we denote the classification

and regression feature map as the point sets:

Acls
w×h×2k = {(xclsi , yclsj , cclsl )} (10)

where i ∈ [0, w), j ∈ [0, h), l ∈ [0, 2k).

A
reg
w×h×4k = {(xregi , y

reg
j , dxregp , dyregp , dwreg

p , dhregp )}

(11)

where i ∈ [0, w), j ∈ [0, h), p ∈ [0, k).

Since the odd channels on the classification feature maps

represent the positive activation, we collect the topK points

in all Acls
w×h×2k where l is odd number and denote the point

set asCLS∗ = {(xclsi , yclsj , cclsl )i∈I,j∈J,l∈L} where I , J , L

are some index set. Variables i and j encode the location of

corresponding anchor respectively, and l encode the ratio of

corresponding anchor, so we can derive the corresponding

anchor set as ANC∗ = {(xani , yanj , wan
l , hanl )i∈I,j∈J,l∈L}.

Moreover, we find the activation of ANC∗ on Acls
w×h×4k to

get the corresponding refinement coordinates as REG∗ =
{(xregi , y

reg
j , dx

reg
l , dy

reg
l , dw

reg
l , dh

reg
l )i∈I,j∈J,l∈L}. Af-

terwards, the refined top K proposals set PRO∗ =
{(xproi , y

pro
j , w

pro
l , h

pro
l )} can be obtained by following e-

quations Eq. 12 :

x
pro
i = xani + dx

reg
l ∗ wan

l

y
pro
j = yanj + dy

reg
l ∗ hanl

w
pro
l = wan

l ∗ edwl

h
pro
l = hanl ∗ edhl

(12)

After the top K proposals are generated, we use some pro-

posal selection strategy to make them suitable for the track-

ing task and we will discuss it in the next section.

4.3. Proposal selection

To make the one-shot detection framework suitable for

tracking task, we propose two strategies to select the pro-

posals.

The first proposal selection strategy is discarding the

bounding boxes generated by the anchors too far away from

the center. For example, we only keep the center g × g

subregion on the Acls
w×h×2k classification feature map to get

g × g × k anchors instead of m× n× k anchors. Because

the nearby frames always don’t have large motion, the dis-

card strategy can efficiently remove the outliers. Fig. 4 is a

illustration of choosing target anchors whose distances are

no more than 7 from the center in the classification feature

map.

The second proposal selection strategy is that we use co-

sine window and scale change penalty to re-rank the pro-

posals’ score to get the best one. After the outliers are

discarded, a cosine window is added to suppress the large

displacement and then a penalty is added to suppress large

change in size and ratio:

penalty = ek∗max( r

r′
, r

′

r
)∗max( s

s′
, s

′

s
) (13)

Here k is a hyper-parameter. r represents the proposal’s

ratio of height and width and r′ represents that of last frame.

s and s′ represent the overall scale of the proposal and last

frame, which is computed as below:

(w + p)× (h+ p) = s2 (14)

where w and h represent the width and height of the tar-

get, and p represents the padding which is equal to w+h
2 .

After these operations, the top K proposals are re-ranked

after multiply the classification score by the temporal penal-

ty. Non-maximum-suppression (NMS) is performed after-

wards to get the final tracking bounding box. After the final

bounding box is selected, target size is updated by linear

interpolation to keep the shape changing smoothly.
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Figure 4: Illustration of center size 7 in RPN feature map, each grid represents en-

coded feature of k anchors at corresponding position. For example, there are 2k
channels representing foreground and background activations in classification feature

map. The center size of anchors indicate the search region of the model.

5. Experiments

Experiments are performed on four challenging tracking

datasets: VOT2015, VOT2016, VOT2017 real-time, each

with 60 videos and OTB2015 with 100 videos. All the

tracking results use the reported results to ensure a fair com-

parison.

5.1. Implementation details

We use a modified AlexNet pretrained from ImageNet

[28] with the parameters of the first three convolution layer-

s fixed and only fine-tune the last two convolution layers in

Siamese-RPN. These parameters are obtained by optimiz-

ing the loss function in Eq. 5 with SGD. There are totally

50 epoches performed and the learning rate is decreased in

log space from 10−2 to 10−6. We extract image pairs from

VID and Youtube-BB by choosing frames with interval less

than 100 and performing further crop procedure. If the size

of target’s bounding box is denoted as (w, h), we crop the

template patch centering on the historical frame with size

A×A which is defined as follows.

(w + p)× (h+ p) = A2 (15)

where p =
w + h

2
. It is resized to 127× 127 afterwards. In

the same way the detection patch is cropped on the current

frame with double the size of the template patch, and then

resized in 255× 255.

During inference phase, there is no online adaptation

since we formulate online tracking as one-shot detection

task. Our experiments are implemented using PyTorch on a

PC with an Intel i7, 12G RAM, Nvidia GTX 1060.

5.2. Result on VOT2015

The VOT2015 dataset consists of 60 sequences. The per-

formance is evaluated in terms of accuracy (average overlap

while tracking successfully) and robustness (failure times).

The overall performance is evaluated using Expected Aver-

age Overlap (EAO) which takes account of both accuracy
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Figure 5: Expected overlap of our tracker, Siamese-FC and top 10 trackers in

VOT2015 challenge.

and robustness. Besides, the speed is evaluated with a nor-

malized speed (EFO).

Tracker EAO Accuracy Failure EFO

DeepSRDCF 0.3181 0.56 1.0 0.38

EBT 0.313 0.45 1.02 1.76

SRDCF 0.2877 0.55 1.18 1.99

LDP 0.2785 0.49 1.3 4.36

sPST 0.2767 0.54 1.42 1.01

SC-EBT 0.2548 0.54 1.72 0.8

NSAMF 0.2536 0.53 1.29 5.47

Struck 0.2458 0.46 1.5 2.44

RAJSSC 0.242 0.57 1.75 2.12

S3Tracker 0.2403 0.52 1.67 14.27

SiamFC-3s 0.2915 0.54 1.42 8.68

SiamFC-5s 0.275 0.53 1.45 7.84

SiamRPN 0.358 0.58 0.93 23.0

Table 1: Details about the state-of-the-art trackers in VOT2015. Red, blue and green,

represent 1st, 2nd and 3rd respectively.

We compared our tracker with top 10 trackers accord-

ing to the latest VOT rules (remove MDNet [24] from the

board since it’s trained with data generated from OTB’s

sequences). Siamese-FC is added into comparison as our

baseline. Fig. 5 shows Siamese-RPN is able to outperform

the trackers in VOT2015 and Tab. 1 lists the details about

trackers. As shown in Tab. 1, Siamese-RPN is able to rank

1st in EAO, accuracy, failure and EFO. Among all the track-

ers in VOT2015’s report, only few trackers can track with

real-time speed, but their expected overlap is relatively low.

Siamese-FC is one of the top trackers on VOT2015 which

can run at frame-rates beyond real-time and achieves state-

of-the-art performance. Siamese-RPN is able to conduct at

160 FPS which is nearly two times of Siamese-FC (86 FPS),

while gains 23% relative increase in EAO.

5.3. Result on VOT2016

In VOT2016 challenge, the sequences are the same as

VOT2015, while the bounding boxes are re-annotated. The

performance evaluations are the same as VOT2015.

We compare our tracker with top 25 trackers in

VOT2016. Siamese-RPN can outperform all entries in chal-

lenge. Fig. 6 illustrates the EAO ranking and Tab. 2 shows
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Figure 6: Expected overlap scores in the VOT2016 challenge, larger is better.

Tracker EAO Accuracy Failure EFO

C-COT 0.331 0.53 0.85 0.507

ECO-HC 0.322 0.53 1.08 15.13

Staple 0.2952 0.54 1.35 11.14

EBT 0.2913 0.47 0.9 3.011

MDNet N 0.257 0.54 1.2 0.534

SiamRN 0.2766 0.55 1.37 5.44

SiamAN 0.2352 0.53 1.65 9.21

SiamRPN 0.3441 0.56 1.08 23.3

Table 2: Detail information about several published state-of-the-art trackers’ perfor-

mances in VOT2016.
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Figure 7: Performance and speed of our tracker and some state-of-the-art trackers

in VOT2016. More closed to top means higher precision, and more closed to right

means faster. Siamese-RPN is able to rank 1st in EAO while operating at 160 FPS.

detail information about several state-of-the-art trackers. As

shown in Fig. 6, our tracker can rank 1st according to EAO

while operating at 160 FPS, which is 500 times faster than

CCOT. As shown in Tab. 2, Siamese-RPN ranks 1st in

EAO, accuracy and EFO, and 3rd in failure. Fig. 7 shows

the performance and speed of the state-of-the-art trackers. It

shows our tracker can achieve a superior performance while

operating at high speed.

5.4. Result on VOT2017 real­time experiment

In VOT2017 [15], the least 10 challenging sequences are

replaced with 10 difficult sequences. Besides, a new real-

time experiment is conducted, where trackers need to deal
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Figure 8: Expected overlap score ranking for the real-time experiment in the

VOT2017 challenge.

with the real-time video stream at least 25 FPS. It means

that if the tracker fails to process the result in 40 ms, the

evaluator will use the bounding box of the last frame as the

result of current frame. It is challenging for almost all of

the state-of-the-art trackers. The top 10 trackers ranked by

raw EAO under no speed limit criterion get lower EAO in

real-time experiment.

Fig. 8 shows Siamese-RPN along with several real-time

trackers listed in the report of the VOT2017. In comparison,

Siamese-RPN can rank 1st according to EAO. Specifically,

it can surpass CSRDCF++ in the 2nd place by 14% and

surpass Siamese-FC in the 3nd place by 33%.

5.5. Result on OTB2015

OTB2015 [37] contains 100 sequences that are collected

from commonly used tracking sequences. The evaluation is

based on two metrics: precision and success plot. The pre-

cision plot shows the percentage of frames that the tracking

results are within 20 pixels from the target. The success

plot shows the ratios of successful frames when the thresh-

old varies from 0 to 1, where a successful frame means its

overlap is larger than given threshold. The area under curve

(AUC) of success plot is used to rank tracking algorithm.
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Figure 9: Success plot and precision plot of OTB2015

In this experiment, we compare our method with sever-

al representive trackers, including PTAV [11], CREST[31],

SRDCF [8], SINT [33], CSR-DCF [23], Siamese-FC [4],

Staple [3], CFNet [35] and DSST [9]. As shown in Fig. 9,

the proposed Siamese-RPN is able to rank 1st both in suc-
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cess plot and precision plot.

5.6. Discussion

In this subsection, we discuss several factors that are es-

sential to our performance, including data size, anchor ra-

tios and positions.

5.6.1 Data size

Since our tracking framework only needs image pairs in-

stead of continuous video streams, we are able to bene-

fit from large-scale sparsely labelled videos. Compared to

ILSVRC [29] which consists of about 4,000 videos anno-

tated frame-by-frame, Youtube-BB [25] consists of more

than 100,000 videos annotated once in every 30 frames. We

train Siamese-RPN with different data set size by gradually

adding more data from Youtube-BB.
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Figure 10: Effects of using increasing number of videos from ILSVRC [29] and

Youtube-BB [25] on performance of tracker. Adding data from Youtube-BB can

boost the performance gradually. Performance is not saturated, which means tracker

performance may become better with more training data.

Fig. 10 illustrates tracking results of Siamese-RPN when

the training data size varies. Both the EAO of VOT2015 and

VOT2016 keeps increasing when there are more training

videos. Specifically, the introducing of Youtube-BB boosts

VOT2016’s EAO from 0.317 to 0.344. It is noting that the

performance is not saturated, which means tracker perfor-

mance may become better with more training data.

5.6.2 Anchor selection

Here we will discuss two factors about anchors: anchor ra-

tio selection during training and position selection during

inference.

anchor ratios As discussed in Sec. 3.3, we only consid-

er different ratios of anchors while fix scale of anchors s-

ince the target’s scale won’t change much in two adjacent

frames. Three ratios are tried, [0.5, 1, 2], [0.33, 0.5, 1, 2, 3],
[0.25, 0.33, 0.5, 1, 2, 3, 4] (denoted as A3, A5, A7, respec-

tively).

As shown in Tab. 3, tracker with A5 performs better

than that with A3, because it’s easier to predict the shape

ratios EAO(without Yuotube) EAO(with Youtube)

A3 0.279 0.311

A5 0.317 0.344

A7 0.304 0.337

Table 3: Anchor ratios and EAO on VOT2016. With/without Youtube means the

model is trained with or without Youtube-BB, respectively.

of target with large ratio of height and width through more

anchors. However, tracker with A7 fails to keep improv-

ing performance, which we think may be caused by over-

fitting. When adding more training data from Youtube-BB,

the EAO gap between A7 and A5 decreases from 0.013 to

0.007.
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Figure 11: Center size effect on different data sets. Dashed lines and solid lines

show the changes of model trained without and with Youtube-BB, respectively. Circle

point and cross show the changes on VOT2015 and VOT2016, respectively. When

adding Youtube-BB data set, the bigger center size we set, the better EAO we got.

When using only VID data set, the best center size of anchor is 4, indicating that the

discriminative ability of region proposal subnetwork is not good enough to use large

search region.

anchor position In our experiment, center size (as de-

fined in 4.3) is related to the size of search region. We can

see that in Fig. 4, larger center size means tracker can pick

anchors with a larger distance from the center to enlarge the

search region. As shown in Fig. 11, when the network is

trained with Youtube-BB, the performance becomes high-

er when the center size increases. However, if only trained

with ILSVRC, the performance doesn’t increase as expect-

ed, which means the discriminative ability of RPN is not

good enough to use large search region.

6. Conclusion

In this work, we propose the Siamese region proposal

network(Siamese-RPN) which is end-to-end offline trained

with large-scale image pairs from ILSVRC and Youtube-

BB. Siamese-RPN can get more accurate bounding boxes

by applying box refinement procedure. During online track-

ing, the proposed framework is formulated as a local one-

shot detection task. In experiments, our method can achieve

leading performance in VOT2015, VOT2016 and VOT2017

real-time challenges while operating at 160 FPS.
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