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Abstract

We introduce the Randomized Dependence Coefficient (RDC), a measure of non-
linear dependence between random variables of arbitrary dimension based on the
Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient. RDC is defined in
terms of correlation of random non-linear copula projections; it is invariant with
respect to marginal distribution transformations, has low computational cost and
is easy to implement: just five lines of R code, included at the end of the paper.

1 Introduction

Measuring statistical dependence between random variables is a fundamental problem in statistics.
Commonly used measures of dependence, Pearson’s rho, Spearman’s rank or Kendall’s tau are com-
putationally efficient and theoretically well understood, but consider only a limited class of asso-
ciation patterns, like linear or monotonically increasing functions. The development of non-linear
dependence measures is challenging because of the radically larger amount of possible association
patterns.

Despite these difficulties, many non-linear statistical dependence measures have been developed
recently. Examples include the Alternating Conditional Expectations or backfitting algorithm (ACE)
[2, 9], Kernel Canonical Correlation Analysis (KCCA) [1], (Copula) Hilbert-Schmidt Independence
Criterion (CHSIC, HSIC) [6, 5, 15], Distance or Brownian Correlation (dCor) [24, 23] and the
Maximal Information Coefficient (MIC) [18]. However, these methods exhibit high computational
demands (at least quadratic costs in the number of samples for KCCA, HSIC, CHSIC, dCor or
MIC), are limited to measuring dependencies between scalar random variables (ACE, MIC) or can
be difficult to implement (ACE, MIC).

This paper develops the Randomized Dependence Coefficient (RDC), an estimator of the Hirschfeld-
Gebelein-Rényi Maximum Correlation Coefficient (HGR) addressing the issues listed above. RDC
defines dependence between two random variables as the largest canonical correlation between ran-
dom non-linear projections of their respective empirical copula-transformations. RDC is invariant
to monotonically increasing transformations, operates on random variables of arbitrary dimension,
and has computational cost of O(n log n) with respect to the sample size. Moreover, it is easy to
implement: just five lines of R code, included in Appendix A.

The following Section reviews the classic work of Alfréd Rényi [17], who proposed seven desirable
fundamental properties of dependence measures, proved to be satisfied by the Hirschfeld-Gebelein-
Rényi’s Maximum Correlation Coefficient (HGR). Section 3 introduces the Randomized Depen-
dence Coefficient as an estimator designed in the spirit of HGR, since HGR itself is computationally
intractable. Properties of RDC and its relationship to other non-linear dependence measures are
analysed in Section 4. Section 5 validates the empirical performance of RDC on a series of numeri-
cal experiments on both synthetic and real-world data.
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2 Hirschfeld-Gebelein-Rényi’s Maximum Correlation Coefficient

In 1959 [17], Alfréd Rényi argued that a measure of dependence ρ∗ : X × Y → [0, 1] between
random variables X ∈ X and Y ∈ Y should satisfy seven fundamental properties:

1. ρ∗(X,Y ) is defined for any pair of non-constant random variables X and Y .
2. ρ∗(X,Y ) = ρ∗(Y,X)

3. 0 ≤ ρ∗(X,Y ) ≤ 1

4. ρ∗(X,Y ) = 0 iff X and Y are statistically independent.
5. For bijective Borel-measurable functions f, g : R→ R, ρ∗(X,Y ) = ρ∗(f(X), g(Y )).
6. ρ∗(X,Y ) = 1 if for Borel-measurable functions f or g, Y = f(X) or X = g(Y ).
7. If (X,Y ) ∼ N (µ,Σ), then ρ∗(X,Y ) = |ρ(X,Y )|, where ρ is the correlation coefficient.

Rényi also showed the Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient (HGR) [3, 17]
to satisfy all these properties. HGR was defined by Gebelein in 1941 [3] as the supremum of Pear-
son’s correlation coefficient ρ over all Borel-measurable functions f, g of finite variance:

hgr(X,Y ) = sup
f,g

ρ(f(X), g(Y )), (1)

Since the supremum in (1) is over an infinite-dimensional space, HGR is not computable. It is
an abstract concept, not a practical dependence measure. In the following we propose a scalable
estimator with the same structure as HGR: the Randomized Dependence Coefficient.

3 Randomized Dependence Coefficient

The Randomized Dependence Coefficient (RDC) measures the dependence between random samples
X ∈ Rp×n and Y ∈ Rq×n as the largest canonical correlation between k randomly chosen non-
linear projections of their copula transformations. Before Section 3.4 defines this concept formally,
we describe the three necessary steps to construct the RDC statistic: copula-transformation of each
of the two random samples (Section 3.1), projection of the copulas through k randomly chosen non-
linear maps (Section 3.2) and computation of the largest canonical correlation between the two sets
of non-linear random projections (Section 3.3). Figure 1 offers a sketch of this process.
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Figure 1: RDC computation for a simple set of samples {(xi, yi)}100
i=1 drawn from a noisy circular

pattern: The samples are used to estimate the copula, then mapped with randomly drawn non-linear
functions. The RDC is the largest canonical correlation between these non-linear projections.

3.1 Estimation of Copula-Transformations

To achieve invariance with respect to transformations on marginal distributions (such as shifts or
rescalings), we operate on the empirical copula transformation of the data [14, 15]. Consider a ran-
dom vector X = (X1, . . . , Xd) with continuous marginal cumulative distribution functions (cdfs)
Pi, 1 ≤ i ≤ d. Then the vector U = (U1, . . . , Ud) := P (X) = (P1(X1), . . . , Pd(Xd)), known as
the copula transformation, has uniform marginals:
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Theorem 1. (Probability Integral Transform [14]) For a random variableX with cdf P , the random
variable U := P (X) is uniformly distributed on [0, 1].

The random variables U1, . . . , Ud are known as the observation ranks of X1, . . . , Xd. Crucially,
U preserves the dependence structure of the original random vector X , but ignores each of its d
marginal forms [14]. The joint distribution of U is known as the copula ofX:

Theorem 2. (Sklar [20]) Let the random vectorX = (X1, . . . , Xd) have continuous marginal cdfs
Pi, 1 ≤ i ≤ d. Then, the joint cumulative distribution ofX is uniquely expressed as:

P (X1, . . . , Xd) = C(P1(X1), . . . , Pd(Xd)), (2)

where the distribution C is known as the copula ofX .

A practical estimator of the univariate cdfs P1, . . . , Pd is the empirical cdf :

Pn(x) :=
1

n

n∑

i=1

I(Xi ≤ x), (3)

which gives rise to the empirical copula transformations of a multivariate sample:

Pn(x) = [Pn,1(x1), . . . , Pn,d(xd)]. (4)

The Massart-Dvoretzky-Kiefer-Wolfowitz inequality [13] can be used to show that empirical copula
transformations converge fast to the true transformation as the sample size increases:

Theorem 3. (Convergence of the empirical copula, [15, Lemma 7]) Let X1, . . . ,Xn be an i.i.d.
sample from a probability distribution over Rd with marginal cdf’s P1, . . . , Pd. Let P (X) be the
copula transformation and Pn(X) the empirical copula transformation. Then, for any ε > 0:

Pr

[
sup
x∈Rd

‖P (x)− Pn(x)‖2 > ε

]
≤ 2d exp

(
−2nε2

d

)
. (5)

Computing Pn(X) involves sorting the marginals ofX ∈ Rd×n, thus O(dn log(n)) operations.

3.2 Generation of Random Non-Linear Projections

The second step of the RDC computation is to augment the empirical copula transformations with
non-linear projections, so that linear methods can subsequently be used to capture non-linear depen-
dencies on the original data. This is a classic idea also used in other areas, particularly in regression.
In an elegant result, Rahimi and Recht [16] proved that linear regression on random, non-linear
projections of the original feature space can generate high-performance regressors:

Theorem 4. (Rahimi-Recht) Let p be a distribution on Ω and |φ(x;w)| ≤ 1. Let F ={
f(x) =

∫
Ω
α(w)φ(x;w)dw

∣∣ |α(w)| ≤ Cp(w)
}

. Draw w1, . . . ,wk iid from p. Further let
δ > 0, and c be some L-Lipschitz loss function, and consider data {xi, yi}ni=1 drawn iid from some
arbitrary P (X, Y ). The α1, . . . , αk for which fk(x) =

∑k
i=1 αiφ(x;wi) minimizes the empirical

risk c(fk(x), y) has a distance from the c-optimal estimator in F bounded by

EP [c(fk(x), y)]−min
f∈F

EP [c(f(x), y)] ≤ O
((

1√
n

+
1√
k

)
LC

√
log

1

δ

)
(6)

with probability at least 1− 2δ.

Intuitively, Theorem 4 states that randomly selecting wi in
∑k

i=1 αiφ(x;wi) instead of optimising
them causes only bounded error.

The choice of the non-linearities φ : R → R is the main and unavoidable assumption in RDC.
This choice is a well-known problem common to all non-linear regression methods and has been
studied extensively in the theory of regression as the selection of reproducing kernel Hilbert space
[19, §3.13]. The only way to favour one such family and distribution over another is to use prior
assumptions about which kind of distributions the method will typically have to analyse.
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We use random features instead of the Nyström method because of their smaller memory and com-
putation requirements [11]. In our experiments, we will use sinusoidal projections, φ(wTx+ b) :=
sin(wTx + b). Arguments favouring this choice are that shift-invariant kernels are approximated
with these features when using the appropriate random parameter sampling distribution [16], [4,
p. 208] [22, p. 24], and that functions with absolutely integrable Fourier transforms are approxi-
mated with L2 error below O(1/

√
k) by k of these features [10].

Let the random parameters wi ∼ N (0, sI), bi ∼ N (0, s). Choosing wi to be Normal is analogous
to the use of the Gaussian kernel for HSIC, CHSIC or KCCA [16]. Tuning s is analogous to selecting
the kernel width, that is, to regularize the non-linearity of the random projections.

Given a data collectionX = (x1, . . . ,xn), we will denote by

Φ(X; k, s) :=




φ(wT
1 x1 + b1) · · · φ(wT

k x1 + bk)
...

...
...

φ(wT
1 xn + b1) · · · φ(wT

k xn + bk)




T

(7)

the k−th order random non-linear projection from X ∈ Rd×n to Φ(X; k, s) ∈ Rk×n. The com-
putational complexity of computing Φ(X; k, s) with naive matrix multiplications is O(kdn). How-
ever, recent techniques using fast Walsh-Hadamard transforms [11] allow computing these feature
expansions within a computational cost of O(k log(d)n) and O(k) storage.

3.3 Computation of Canonical Correlations

The final step of RDC is to compute the linear combinations of the augmented empirical copula
transformations that have maximal correlation. Canonical Correlation Analysis (CCA, [7]) is the
calculation of pairs of basis vectors (α,β) such that the projections αTX and βTY of two ran-
dom samples X ∈ Rp×n and Y ∈ Rq×n are maximally correlated. The correlations between the
projected (or canonical) random samples are referred to as canonical correlations. There exist up to
max(rank(X), rank(Y )) of them. Canonical correlations ρ2 are the solutions to the eigenproblem:

(
0 C−1

xxCxy

C−1
yy Cyx 0

)(
α
β

)
= ρ2

(
α
β

)
, (8)

where Cxy = cov(X,Y ) and the matrices Cxx and Cyy are assumed to be invertible. Therefore,
the largest canonical correlation ρ1 betweenX andY is the supremum of the correlation coefficients
over their linear projections, that is: ρ1(X,Y ) = supα,β ρ(αTX,βTY ).

When p, q � n, the cost of CCA is dominated by the estimation of the matricesCxx,Cyy andCxy ,
hence being O((p+ q)2n) for two random variables of dimensions p and q, respectively.

3.4 Formal Definition or RDC

Given the random samplesX ∈ Rp×n and Y ∈ Rq×n and the parameters k ∈ N+ and s ∈ R+, the
Randomized Dependence Coefficient betweenX and Y is defined as:

rdc(X,Y ; k, s) := sup
α,β

ρ
(
αTΦ(P (X); k, s),βTΦ(P (Y ); k, s)

)
. (9)

4 Properties of RDC

Computational complexity: In the typical setup (very large n, large p and q, small k) the compu-
tational complexity of RDC is dominated by the calculation of the copula-transformations. Hence,
we achieve a cost in terms of the sample size ofO((p+q)n log n+kn log(pq)+k2n) ≈ O(n log n).

Ease of implementation: An implementation of RDC in R is included in the Appendix A.

Relationship to the HGR coefficient: It is tempting to wonder whether RDC is a consistent, or
even an efficient estimator of the HGR coefficient. However, a simple experiment shows that it is not
desirable to approximate HGR exactly on finite datasets: Consider p(X,Y ) = N (x; 0, 1)N (y; 0, 1)
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which is independent, thus, by both Rényi’s 4th and 7th properties, has hgr(X,Y ) = 0. How-
ever, for finitely many N samples from p(X,Y ), almost surely, values in both X and Y are
pairwise different and separated by a finite difference. So there exist continuous (thus Borel
measurable) functions f(X) and g(Y ) mapping both X and Y to the sorting ranks of Y , i.e.
f(xi) = g(yi) ∀(xi, yi) ∈ (X,Y ). Therefore, the finite-sample version of Equation (1) is con-
stant and equal to “1” for continuous random variables. Meaningful measures of dependence from
finite samples thus must rely on some form of regularization. RDC achieves this by approximating
the space of Borel measurable functions with the restricted function class F from Theorem 4:

Assume the optimal transformations f and g (Equation 1) to belong to the Reproducing Kernel
Hilbert Space F (Theorem 4), with associated shift-invariant, positive semi-definite kernel function
k(x,x′) = 〈φ(x),φ(x′)〉F ≤ 1. Then, with probability greater than 1− 2δ:

hgr(X,Y ;F)− rdc(X,Y ; k) = O

((‖m‖F√
n

+
LC√
k

)√
log

1

δ

)
, (10)

where m := ααT + ββT and n, k denote the sample size and number of random features. The
bound (10) is the sum of two errors. The error O(1/

√
n) is due to the convergence of CCA’s

largest eigenvalue in the finite sample size regime. This result [8, Theorem 6] is originally ob-
tained by posing CCA as a least squares regression on the product space induced by the feature map
ψ(x,y) = [φ(x)φ(x)T ,φ(y)φ(y)T ,

√
2φ(x)φ(y)T ]T . Because of approximating ψ with k ran-

dom features, an additional error O(1/
√
k) is introduced in the least squares regression [16, Lemma

3]. Therefore, an equivalence between RDC and KCCA is established if RDC uses an infinite num-
ber of sinusoidal features, the random sampling distribution is set to the inverse Fourier transform
of the shift-invariant kernel used by KCCA and the copula-transformations are discarded. However,
when k ≥ n regularization is needed to avoid spurious perfect correlations, as discussed above.

Relationship to other estimators: Table 1 summarizes several state-of-the-art dependence mea-
sures showing, for each measure, whether it allows for general non-linear dependence estimation,
handles multidimensional random variables, is invariant with respect to changes in marginal distri-
butions, returns a statistic in [0, 1], satisfy Rényi’s properties (Section 2), and how many parameters
it requires. As parameters, we here count the kernel function for kernel methods, the basis function
and number of random features for RDC, the stopping tolerance for ACE and the search-grid size for
MIC, respectively. Finally, the table lists computational complexities with respect to sample size.

When using random features φ linear for some neighbourhood around zero (like sinusoids or sig-
moids), RDC converges to Spearman’s rank correlation coefficient as s→ 0, for any k.

Table 1: Comparison between non-linear dependence measures.

Name of
Coeff.

Non-
Linear

Vector
Inputs

Marginal
Invariant

Renyi’s
Properties

Coeff.
∈ [0, 1]

# Par. Comp.
Cost

Pearson’s ρ × × × × X 0 n
Spearman’s ρ × × X × X 0 n log n
Kendall’s τ × × X × X 0 n log n
CCA × X × × X 0 n
KCCA [1] X X × × X 1 n3

ACE [2] X × × X X 1 n
MIC [18] X × × × X 1 n1.2

dCor [24] X X × × X 1 n2

HSIC [5] X X × × × 1 n2

CHSIC [15] X X X × × 1 n2

RDC X X X X X 2 n log n

Testing for independence with RDC: Consider the hypothesis “the two sets of non-linear projec-
tions are mutually uncorrelated”. Under normality assumptions (or large sample sizes), Bartlett’s ap-
proximation [12] can be used to show

(
2k+3

2 − n
)

log
∏k

i=1(1−ρ2
i ) ∼ χ2

k2 , where ρ1, . . . , ρk are the
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canonical correlations between Φ(P (X); k, s) and Φ(P (Y ); k, s). Alternatively, non-parametric
asymptotic distributions can be obtained from the spectrum of the inner products of the non-linear
random projection matrices [25, Theorem 3].

5 Experimental Results

We performed experiments on both synthetic and real-world data to validate the empirical perfor-
mance of RDC versus the non-linear dependence measures listed in Table 1. In some experiments
we do not compare against to KCCA because we were unable to find a good set of hyperparameters.

Parameter selection: For RDC, the number of random features is set to k = 20 for both random
samples, since no significant improvements were observed for larger values. The random feature
sampling parameter s is more crucial, and set as follows: when the marginals of u are standard
uniforms, w ∼ N (0, sI) and b ∼ N (0, s), then V[wTu+ b] = s

(
1 + d

3

)
; therefore, we opt to set

s to a linear scaling of the input variable dimensionality. In all our experiments s = 1
6d worked well.

The development of better methods to set the parameters of RDC is left as future work.

HSIC and CHSIC use Gaussian kernels k(z, z′) = exp(−γ‖z−z′‖22) with γ−1 set to the euclidean
distance median of each sample [5]. MIC’s search-grid size is set to B(n) = n0.6 as recommended
by the authors [18], although speed improvements are achieved when using lower values. ACE’s
tolerance is set to ε = 0.01, default value in the R package acepack.

5.1 Synthetic Data

Resistance to additive noise: We define the power of a dependence measure as its ability to
discern between dependent and independent samples that share equal marginal forms. In the spirit
of Simon and Tibshirani1, we conducted experiments to estimate the power of RDC as a measure
of non-linear dependence. We chose 8 bivariate association patterns, depicted inside little boxes in
Figure 3. For each of the 8 association patterns, 500 repetitions of 500 samples were generated,
in which the input sample was uniformly distributed on the unit interval. Next, we regenerated
the input sample randomly, to generate independent versions of each sample with equal marginals.
Figure 3 shows the power for the discussed non-linear dependence measures as the variance of some
zero-mean Gaussian additive noise increases from 1/30 to 3. RDC shows worse performance in
the linear association pattern due to overfitting and in the step-function due to the smoothness prior
induced by the sinusoidal features, but has good performance in non-functional association patterns.

Running times: Table 2 shows running times for the considered non-linear dependence measures
on scalar, uniformly distributed, independent samples of sizes {103, . . . , 106} when averaging over
100 runs. Single runs above ten minutes were cancelled. Pearson’s ρ, ACE, dCor, KCCA and MIC
are implemented in C, while RDC, HSIC and CHSIC are implemented as interpreted R code. KCCA
is approximated using incomplete Cholesky decompositions as described in [1].

Table 2: Average running times (in seconds) for dependence measures on versus sample sizes.

sample size Pearson’s ρ RDC ACE KCCA dCor HSIC CHSIC MIC
1,000 0.0001 0.0047 0.0080 0.402 0.3417 0.3103 0.3501 1.0983
10,000 0.0002 0.0557 0.0782 3.247 59.587 27.630 29.522 —
100,000 0.0071 0.3991 0.5101 43.801 — — — —
1,000,000 0.0914 4.6253 5.3830 — — — — —

Value of statistic in [0, 1]: Figure 4 shows RDC, ACE, dCor, MIC, Pearson’s ρ, Spearman’s rank
and Kendall’s τ dependence estimates for 14 different associations of two scalar random samples.
RDC scores values close to one on all the proposed dependent associations, whilst scoring values
close to zero for the independent association, depicted last. When the associations are Gaussian (first
row), RDC scores values close to the Pearson’s correlation coefficient (Section 2, 7th property).

1http://www-stat.stanford.edu/˜tibs/reshef/comment.pdf
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5.2 Feature Selection in Real-World Data

We performed greedy feature selection via dependence maximization [21] on eight real-world
datasets. More specifically, we attempted to construct the subset of features G ⊂ X that mini-
mizes the normalized mean squared regression error (NMSE) of a Gaussian process regressor. We
do so by selecting the feature x(i) maximizing dependence between the feature set Gi = {Gi−1, x

(i)}
and the target variable y at each iteration i ∈ {1, . . . 10}, such that G0 = {∅} and x(i) /∈ Gi−1.

We considered 12 heterogeneous datasets, obtained from the UCI dataset repository2, the Gaus-
sian process web site Data3 and the Machine Learning data set repository4. Random training/test
partitions are computed to be disjoint and equal sized.

Since G can be multi-dimensional, we compare RDC to the non-linear methods dCor, HSIC and
CHSIC. Given their quadratic computational demands, dCor, HSIC and CHSIC use up to 1, 000
points when measuring dependence; this constraint only applied on the sarcos and abalone
datasets. Results are averages of 20 random training/test partitions.
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Figure 2: Feature selection experiments on real-world datasets.

Figure 2 summarizes the results for all datasets and algorithms as the number of selected features
increases. RDC performs best in most datasets, with much lower running time than its contenders.

6 Conclusion

We have presented the randomized dependence coefficient, a lightweight non-linear measure of
dependence between multivariate random samples. Constructed as a finite-dimensional estimator in
the spirit of the Hirschfeld-Gebelein-Rényi maximum correlation coefficient, RDC performs well
empirically, is scalable to very large datasets, and is easy to adapt to concrete problems.

We thank fruitful discussions with Alberto Suárez, Theofanis Karaletsos and David Reshef.

2http://www.ics.uci.edu/˜mlearn
3http://www.gaussianprocess.org/gpml/data/
4http://www.mldata.org
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Figure 3: Power of discussed measures on several bivariate association patterns as noise increases.
Insets show the noise-free form of each association pattern.
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Figure 4: RDC, ACE, dCor, MIC, Pearson’s ρ, Spearman’s rank and Kendall’s τ estimates (numbers
in tables above plots, in that order) for several bivariate association patterns.

A R Source Code

rdc <- function(x,y,k=20,s=1/6,f=sin) {
x <- cbind(apply(as.matrix(x),2,function(u)rank(u)/length(u)),1)
y <- cbind(apply(as.matrix(y),2,function(u)rank(u)/length(u)),1)
x <- s/ncol(x)*x%*%matrix(rnorm(ncol(x)*k),ncol(x))
y <- s/ncol(y)*y%*%matrix(rnorm(ncol(y)*k),ncol(y))
cancor(cbind(f(x),1),cbind(f(y),1))$cor[1]

}
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