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1 Introduction

P(Z)

Figure 1. The logistic curve P(Z)

The sigmoid curve of Figure 1 is traced by the logistic function
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P

P behaves like the distribution function of a symmetrical density, with mid-
point zero; as Z moves through the real number axis, P rises monotonically
between the bounds of zero and 1. The meaning of this function varies ac-
cording to the the definition of the variables. In the logit version of bio-assay
P is the probability of a binary outcome, and Z = a+ 34X, with X a stimulus
or exposure variable; o determines the location of the curve on the X-axis,
and f its slope. In logistic regression there are several determinants of P,
and Z = 2z’ 3, with z a vector of covariates (including a unit constant) and (3
their coefficients. But the logistic function originally describes the course of
a proportion P over time t, with Z = « + [t; since P(t) rises monotonically
with ¢) this is a growth curve.

Over a fairly wide central range, for values of P from .3 to .7, the logis-
tic curve closely resembles in shape as the normal probability distribution
function. The two functions
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and

Pala) = —— 7 exp{—1/2(u/0)*}du. (3)
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both pass through the point (0,.5), and they can be made almost to coincide
upon a suitable adjustment of § and . This is a sheer algebraic coincidence,
for there appears to be no intrinsic relation between the two forms.

2 The origins of the logistic function

The logistic function was invented in the 19th century for the description of
the growth of populations and the course of autocatalytic chemical reactions.
In either case we consider the time path of a quantity W(¢) and its growth
rate

W(t) = dw(t)/dt. (4)
The simplest assumption is that W (t) is proportional to W (t)
W(t) = BW(t), B=W(t)/W(t), (5)

with (3 the constant rate of growth. This leads of course to exponential
growth

W (t) = Aexp (t,

where A is sometimes replaced by the initial value W (0). This is a reasonable
model for unopposed population growth in a young country like the United
States in its early years; as Malthus (1789) put it, a human population, left to
itself, will increase in geometric progression.! But Alphonse Quetelet (1795
1874), the Belgian astronomer turned statistician, was well aware that the
indiscriminate extrapolation of exponential growth must lead to impossible
values. He experimented with several adjustments of (5) and also asked his
pupil Pierre-Frangois Verhulst (1804-1849) to look into the problem.

Like Quetelet, Verhulst approached the problem by adding an extra term
to (5) to represent the increasing resistance to further growth, as in

W(t) = BW(t) — o(W(t). (6)

!Two hundred years later exponential growth played a major part in the Report to the
Club of Rome of Meadows et al (1972), and it still lies at the basis of many economic
analyses.




and then experimenting with various forms of ¢. The logistic appears when
this is a quadratic, for then we may rewrite (6) as

W(t) = BW () (2 — W(t) (7)

where €2 denotes the upper limit or saturation level of W. Growth is now pro-
portional both to the population already attained W (t) and to the remaining
room for further expansion 2 — W(t). If we express W (t) as a proportion
P(t) = W(t)/Q this gives

P(t) = pP(){1 - P(t)}, (8)
and the solution of this differential equation is
exp(a + Gt
P(t) = 2P0+ 1) 0

" 1+exp(a+pt)’

which Verhulst named the logistic function. The population W(t) then fol-
lows
exp(a + f3t)

W) =87 exp(a+ ft)’ (10)

Verhulst published his suggestions between 1838 and 1847 in three papers.
The first is a brief note in the Correspondance Mathématique et Physique
edited by Quetelet in 1838. It contains the essence of the argument in four
small pages, followed by a demonstration that the curve agrees very well with
the actual course of the population of France, Belgium, Essex and Russia for
periods up to 1833; Verhulst explains that he did his research a couple of years
before, that he did not have the time for an update and that he publishes
these notes only at the insistence of Quetelet. He does not say how he
fitted the curves. The second paper, in the Proceedings of the Belgian Royal
Academy of 1845, is a much fuller account of the function and its properties.
Here Verhulst names it the logistic, without further explanation: in a neat
diagram, the courbe logistique is drawn alongside the courbe logarithmique,
which we would nowadays call the exponential. Verhulst also determines
the three parameters €2, a and 3 of (10) by making the curve pass through
three observed points. With data for some twenty or thirty years only this
is a hazardous method, as is borne out by the resulting estimates of the
limiting population €2 of 6.6 millions for Belgium and 40 million for France:
at present these populations number 10.2 and 58.7 million. In 1847 there
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followed a second paper in the Proceedings, which is chiefly notable for an
adjustment of the correction term that leads to a much better estimate of
9.5 millions for the belgian €.

Verhulst was primarily a mathematician, but sensitive to social and po-
litical issues; he was in poor health and died young. Quetelet attributes his
early death to overwork and, rather curiously, to his great stature, as Verhulst
was 1.89 meters or six feet tall. His impulsive nature was demonstrated in the
summer of 1830. Verhulst had gone to Italy for his health and was staying in
Rome when the news of the revolution in Paris and of the Belgian secession
from the Netherlands broke. These events moved him strongly and set him
drafting a democratic constitution for the Papal State. He submitted this
document to some cardinals he had met, who expressed great interest; still
the police were called in, and Verhulst banished from Rome. He left under
somewhat dramatic circumstances, having at first barricaded his apartment
with the intention of withstanding a siege by the forces of law and order.

The logistic function was discovered anew in 1920 by Pearl and Reed in
a study of the population growth of the United States. They were unaware
of Verhulst’s work (though not of the curves for autocatalytic reactions dis-
cussed presently), and they arrived independently at the logistic curve of
(10). When this was fitted to Census figures, again by making the curve
pass through three points, it gave a good fit for the period from 1790 to
1910. But the estimate of €2 of 197 millions again compares badly with the
present value of about 270 millions. In spite of many other interests, Pearl
and his collaborators in the next twenty years went on to apply the logistic
growth curve to almost any living population from fruit flies to the human
population of the French colonies in North Africa as well as to the growth of
cantaloupes; we list a few of these studies in the bibliography.

In 1920, Raymond Pearl (1879-1940) had just been appointed Director of
the Department of Biometry and Vital Statistics at Johns Hopkins University,
and Lowell J. Reed (1886-1966) was his deputy (and his successor when
a few years later Pearl was promoted to Professor of Biology). Pearl was
trained as a biologist and acquired his statistics as a young man in 1905
1906 by spending a year in London with Karl Pearson (and later quarrelling
with him). He became a prodigious investigator and a prolific writer on a
wide variety of phenomena like longevity, fertility, contraception, and the
effects of alcohol and tobacco consumption on health, all subsumed under
the heading of human biology. During World War I Pearl worked in the
U.S. Food Administration, and this may account for his preoccupation with
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the food needs of a growing population in the 1920 paper. Reed, who was
trained as a mathematician, made a quiet career in biostatistics; he excelled
as a teacher and as an administrator, and was brought back in 1953 from
retirement to serve as President of Johns Hopkins. Among his publications
in the aftermath of the 1920 paper with Pearl is an application of the logistic
curve to autocatalytic reactions, Reed and Berkson (1929). We shall hear
more about this co-author in the next section.

The term logistic was of course not used until Verhulst’s work was re-
discovered, which was soon after Pearl and Reed’s first paper of 1920. The
immediate sequel, Pearl and Reed (1922), does not mention Verhulst; his
priority is first acknowledged in a footnote in Pearl (1922). In Pearl and
Reed (1923) Verhulst is again named and references are given to his two pa-
pers of 1845 and 1847, but his terminology is not adopted. Pearl and Reed
call Verhulst’s papers "long since forgotten’, except for a single article by Du
Pasquier (1918), and they then go out of their way to criticize that author
for an entirely unjustified and in practice usually incorrect modification of
Verhulst’s formula, without substantiating this harsh judgment. In fact Du
Pasquier’s paper is a harmless reflection on four mathematical theories of
population, of a very formal and abstract character to the point of inanity.
The four theories are linked to Halley, de Moivre, Fuler and Verhulst, and
these authors are briefly introduced; Halley, for example, as "the famous as-
tronomer”, and Verhulst as "a Belgian who died in 1847". No references are
given. It is not clear how Du Pasquier knew about Verhulst, nor how Pearl
and Reed knew about Du Pasquier. On the first point, Du Pasquier (1876
— 7), who was a Professor of Mathematics at the University of Neuchatel,
in Switzerland, was educated in mathematics and economics in Ziirich and
Paris, and he may have read about Verhulst in the French literature. On the
second point, Du Pasquier may well have taken the initiative in establishing
contact with Pearl or Reed; after all, Pear]l and Reed had published their
paper in the Proceedings of the National Academy of Sciences, which would
reach Switzerland, and Du Pasquier in the Vierteljahrsschrift der Natur-
forschenden Gesellschaft in Ziirich which was unlikely to reach Baltimore.
But all this is pure speculation.

The next important publication is Yule’s Presidential Address to the
Royal Statistical Society of 1925. Yule, who says he owes the reference to
Pearl (1922), treats Verhulst much more handsomely than Pearl and Reed
did, devoting an appendix to his work and reviving the name logistic. It
would take until 1933 for Miner (a collaborator of Pearl) to pay tribute to
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Verhulst, if in an indirect way: instead of reproducing at least one of Ver-
hulst’s papers, he published a translation of Verhulst’s obituary by Quetelet,
with the addition of an extract from the memoirs of Queen Hortense de
Beauharnais, who records the episode of Verhulst’s stay in Rome in 1830.

As we have indicated there is another early root of the logistic function
in chemistry, where it was employed (again with some variations) to describe
the course of autocatalytic reactions. These are chemical chain reactions
where the product itself acts as a catalyst for the process while the supply
of raw material is fixed. This leads naturally to a differential equation like
(8) and hence to the logistic function for the time path of the amount of
the reaction product. The review of the application of logistic curves to a
number of such processes by Reed and Berkson (1929) quotes work of the
German professor of chemistry Wilhelm Ostwald of 1883. Authors like Yule
(1925) and Wilson (1925) were well aware of this strand of the literature.

The basic idea of logistic growth is simple and effective, and it is used to
this day to model population growth and market penetration of new products
and technologies. The introduction of mobile telephones is an autocatalytic
process, and so is the spread of many new products and techniques in indus-
try.

3 The invention of the probit and the advent of the logit

The invention of the probit model is usually credited to Gaddum (1933) and
Bliss (1934a), (1934b), but one look at the historical section of Finney (1971)
or indeed at Gaddum’s paper and his references will show that this is too
simple. The roots of the method and in particular the transformation of fre-
quencies to equivalent normal deviates can be traced to the German scholar
Fechner (1801-1887). Stigler (1986) recounts how Fechner was drawn to
study human responses to external stimuli by experimental test of the abil-
ity to distinguish differences in weight. The issue of the variability of human
responses had been raised by astronomers, who relied on human observers
of celestial phenomena and found that their readings showed much unac-
countable variation. Fechner recognized that human response to an identical
stimulus is not uniform, and he was the first to transform observed differences
to equivalent normal deviates. The historical sketches of Finney (1971), Ch.
3.6, and of Aitchison and Brown (1957), Ch. 1.2, record a long line of largely
independent rediscoveries of this approach that spans the seventy years from
Fechner (1860) to the early 1930’s when Gaddum and Bliss published their



contributions. Both authors regard the assumption of a normal distribution
as commonplace, and attach more importance to the logarithmic transfor-
mation of the stimulus. Their papers contain no major innovations, but they
mark the emergence of a standard paradigm of bio-assay. Gaddum wrote a
comprehensive and authoritative report with the emphasis on practical as-
pects of the experiments and on the statistical interpretation of bio-assay,
giving several worked examples from the medical and pharmaceutical litera-
ture. Bliss published two brief notes in Science, introducing the term probit;
he followed this up with a series of articles setting out the maximum like-
lihood estimation of the probit curve, in one instance with assistance from
R.A. Fisher (Bliss (1935)). Both Gaddum and Bliss set standards of esti-
mation; until the 1930’s this was largely a matter of ad hoc numerical and
graphical adjustment of curves to categorical data.

John Henry Gaddum (1900-1965) studied medicine at Cambridge but
failed in his final examinations. He turned to pharmacology and worked
under Trevan at the Wellcome Laboratories, then transferred to the National
Institute for Medical Research (where he wrote the 1933 report) before he
embarked on an academic career of professorships in pharmacology in Cairo,
London and Edinburgh. He was elected to the Royal Society in 1945 and
knighted in 1964. To this day the British Pharmacological Society awards
an annual Gaddum Memorial Prize for pharmaceutical research.

Charles Ittner Bliss (1899-1979) studied as an entomologist at Ohio State
University and was a field worker with the U.S. Department of Agriculture
until this employment was terminated in 1933. He then spent two years in
London studying statistics with R.A. Fisher, and Fisher found him a job
in Leningrad where he lived from 1936 and 1938. The political conditions
were not propitious for serious work. Bliss returned to the Connecticut Agri-
cultural Experiment Station, combining his work as a practising statistician
with a Lecturership at Yale from 1942 until his retirement. He played an
important role in the founding of the Biometric Society.

In their early writings on bio-assay both authors adhere firmly to the
classical model of bio-assay, where the stimulus is determinate and responses
are random because of the variability of individual tolerance levels. Bliss
introduced the term probit (short for "probability unit’) originally as a con-
venient scale for normal deviates, but abandoned this within a year in favour
of a different definition which was generally accepted. For any (relative) fre-
quency f there is an equivalent normal deviate Z such that the cumulative



normal distribution at Z equals f; Z is the solution of

Z
f= \/%/_inf exp{—1/2u’}du,
and can be read of from a table of the normal distribution. The probit is
the equivalent normal deviate increased by 5. This ensures that the probit is
almost always positive, which facilitates calculation; at the time such additive
constants were a common device.

The acceptance of the probit method was aided by the articles of Bliss,
who published regularly in this field until the 1950’s, and by Finney and
others (Gaddum returned to pharmacology). The full flowering of this school
in bio-assay probably coincides with the first edition of Finney’s monograph
in 1947. Applications in other fields like economics and market research
appear already in the 1950’s: Farrell (1954) employed a probit model for
the ownership of cars of different vintage as a function of household income,
and Adam (1958) fitted lognormal demand curves to survey data of the
willingness to buy cigarette lighters and the like at various prices. The classic
monograph on the lognormal distribution of Aitchison and Brown (1957)
brought probit analysis to the notice of a wider audience of economists.

As far as I can see the introduction of the logistic as an alternative to the
normal probability function is the work of a single person, namely Joseph
Berkson (1899-1982), Reed’s co-author of the paper on autocatalytic func-
tions of 1929. Berkson read physics at Columbia, then went to Johns Hop-
kins for his M.D. and a doctorate in statistics in 1928. He stayed on as
an assistant for three years and this is when he collaborated with Reed on
autocatalytic functions. Berkson then moved to the Mayo Clinic where he
remained for the rest of his working life as chief statistician. In the 1930’s
he published numerous papers on medical and public health matters, but in
1944 he turned his attention to the statistical methodology of bio-assay and
proposed the use of the logistic, coining the term ’logit’ by analogy to the
"probit’ of Bliss (for which he was initially much derided). The issue of logit
versus probit was tangled by Berkson’s simultaneous attacks on the method
of maximum likelihood and his advocacy of minimum chi-squared estimation
instead. Between 1944 and 1980 he wrote a large number of papers on both
issues; examples are Berkson (1951) and Berkson (1980). He often adopted
a somewhat provocative style, and much controversy ensued.

The close resemblance of the logistic to the normal distribution function
must have been common knowledge among those who were familiar with
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the logistic; it had been demonstrated by Wilson (1925) and written up by
Winsor (1932) (another collaborator of Pearl). Wilson was probably the first
to publish an application of the logistic in bio-assay in Wilson and Worcester
(1943), just before Berkson (1944). But it was Berkson who persisted and
fought a long and spirited campaign which lasted for several decades.

Berkson’s suggestion was not well received by the biometric establish-
ment. In the first place, the logit was regarded as somewhat inferior and
disreputable because unlike the probit it can not be related to an underly-
ing (normal) distribution of tolerance levels. Aitchison and Brown (1957)
dismiss the logit in a single sentence, because it "lacks a well-recognized and
manageable frequency distribution of tolerances which the probit curve does
possess in a natural way" (p.72). Berkson was aware of this defect and tried
to remedy it by adapting the autocatalytic argument, in Berkson (1951), but
this did not convince as the autocatalytic argument essentially deals with a
process over time. In retrospect it is surprising that so much importance was
attached to these somehwat ideological points of interpretation. At the time
no one (not even Berkson) seems to have recognized the formidable power of
the logistic’s analytical properties. In the second place, Berkson’s case for the
logit was not helped by his simultaneous attacks on the established wisdom
of maximum likelihood estimation and his advocacy of minimum chi-squared.
The unpleasant atmosphere in which this discussion was conducted can be
gauged from the acrimonious exchanges between R.A. Fisher and Berkson in
Fisher (1954).

In the practical aspect of ease of computation the logit had a clear advan-
tage over the probit, even with maximum likelihood estimation. To quote
Cochran (from his comments on Fisher (1954), p.147.) ".. the speed with
which a new technique becomes widely used is considerably influenced by the
simplicity or otherwise of the calculations that it requires. Next door to the
lecture room in which the probit method is expounded one may still find the
laboratory in which the workers compute their LD 50s by the [much less so-
phisticated| Behrens (Reed—Muench) method ..". On this count the logit
spread much more quickly in workfloor practice than in the academic dis-
course. Until the advent of the computer and the pocket calculator, some
trwenty years later, all numerical work was done by hand, that is with pencil
and paper, sometimes aided by graphical inspection of ’freehand curves’, "fit-
ted by eye’. For probit and logit analyses of grouped data or class frequencies
there was graph paper with a special grid on which a probit or logit curve
would appear as a straight line. Wilson (1925) had introduced the logistic
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(or ’autocatalytic’) grid, and examples of lognormal paper can be found in
Aitchison and Brown (1957) and Adam (1958);> Berkson himself had de-
signed logistic graph paper as well as several nomograms.® Numerical work
was supported rather feebly by the slide rule and by mechanical calculating
machines, driven by hand or powered by a small electric motor, which were
capable of addition and multiplication; punched card equipment was helpful
if numerous data had to be analysed. Values of the normal distribution (and
of exponentials and logarithms) were obtained from printed tables like Pear-
son’s Biometrika Tables or the Statistical Tables of Fisher and Yates (1938).
From the first edition the latter carried specially designed tables for probit
analysis (with auxiliary tables contributed by Bliss and by Finney), but from
the fifth edition of 1957 onwards they also included special tables for logit
analysis.

In time, the ideological conflict over bio-assay abated. Finney, who had
ignored the logit in the second edition of his textbook of 1952, made amends
in the third edition of 1970, recognizing that "what matters is the dependence
of P on dose and the unknown parameters, and the tolerance distribution is
merely a substructure leading to this". Between 1960 and 1970 the logit in-
deed gradually achieved an equal footing with the probit. By then it was also
slowly recognized that its analytical properties permit much wider statisti-
cal applications, beyond bio-assay: it can be linked to discriminant analysis,
it leads to loglinear models, it can be used with retrospective samples as
in case-control studies, and so on. One of the first to recognize and exploit
these avenues was Cox, in a series of articles in the 1960’s, and in Cox (1969).
This general development is illustrated in Table 1, which is drawn from the
JSTOR electronic repertory of twelve major statistical journals in the english
language. The table show the number of articles which contain the word
"probit" or "logit". The number of statistical journals included in JSTOR
increases over time, as does the number of articles in each journal; from 1935
to 1985 the total number of articles covered annually increases about eight-
fold. Tt is therefore the relative position of "probit" and "logit" that counts.
By 1970 logit reaches parity, and thereafter soars ahead.

2Finney (1947) traces the invention of the probability grid to a French artilleryman of
the late 1890’s.

3 A nomogram is a graph from which one can read off a transformations, as from a table;
sophisticated nomograms may permit the quick solution of more complicated equations.
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Table 1. Number of articles in statistical journals
containing the word ’probit’ or ’logit’.

probit  logit

1935 - 39 6 -

1940 — 44 3 1

1945 — 49 22 6

1950 — 54 50 15
1955 - 59 93 23
1960 — 64 41 27
1965 — 69 43 41
1970 — 74 48 61
1975 - 79 45 72
1980 — 84 93 147
1985 — 89 98 215
1990 — 94 127 311

Both probit and logit were also adopted beyond bio-assay, in economics,
in epidemiology and in the social sciences. The close link to tolerance levels
or threshold values was dissolved and less stringent interpretations were ad-
mitted; the elegant but quite abstract model of the latent regression equation
was probably first explicitly formulated by McKelvey and Zavoina (1975) for
an ordered probit model of the voting behaviour of U.S. Congressmen, far
removed from bio-assay. Analyses linking binary discrete responses to several
covariates became known as logistic regression. This wider acceptance was
greatly helped by the advent of the computer and by the introduction of pack-
age routines for the maximum likelihood estimation of both logit and probit
models from individual data. The BMDP or BIOMEDICAL DATA PROCESSING
computer package of 1977 was probably the first to offer this facility, which
soon became a standard feature of most statistical packages. By the time
the first comprehensive textbook of Hosmer and Lemeshow (1989) appeared
the use of such routines was taken for granted.

Of the two causes Berkson advocated, minimum chi-squared was thus
overtaken by the computer revolution, but the logit was there to stay. Its
multinomial generalization was first mooted by Cox (1966) and then, inde-
pendently, by Theil (1969) who immediately saw its potential as a general
approach to the modelling of shares. The simple algebra of this generalisa-
tion opened up a very wide field of applications in economics and other social
sciences, and interest in an interpretation in terms of an underlying process
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waned. But in 1973 McFadden, working as a consultant for a Californian
public transportation project, first linked the multinomial logit to the theory
of discrete choice from mathematical psychology. This provided a theoretical
foundation of the logit model that is much more profound than any theory
put forward for the use of the probit in bio-assay. It earned McFadden a
Nobel prize in 2000.
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