
ISA: A Source Code Static Vulnerability Detection System
Based on Data Fusion

Deguang Kong, Quan Zheng, Chao Chen, Jianmei Shuai, Ming Zhu
School of Information Science and Technology
 University of Science & Technology of China

+86-551-3647002

{kdg, jackchen}@mail.ustc.edu.cn
ABSTRACT
 Static analysis is a kind of effective method to detect the
vulnerabilities in the software. Without running the programs,
static analysis tools can be used to automatically discover
unknown bugs. To cope with the problem of high false positives
and false negatives in source code static analysis methods, this
paper presents a source code static analysis technology for
vulnerability detection based on data fusion. By parsing and
making data fusion on the outcome of different static analysis
methods, this technology lets different results validate each other,
which greatly decreases the false positives and false negatives.
Brief explanations are given to support this method. A prototype
system of scalable source code analysis system (ISA for short) is
designed and implemented which also can automatically search
for the best result based on feedback of the user interaction. The
whole system is scalable and platform-independent. It is proved
by experiment that this method has a better performance with
lower false positives and false negatives and higher efficiency
compared with one single method.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and statistics–
Statistical computing;

D.2 [Software engineering]: Miscellaneous-Rapid prototyping,
reusable software

General Terms
Security, Design

Keywords
Static analysis, Vulnerability, Data fusion

1. INTRODUCTION
As the increasement of information society’s dependence on

software systems, software security becomes a problem attracting
more and more general concern. No matter in commercial
software or open source software, software vulnerabilities can be
found everywhere. Internet security threat research group X-force
declared that, nearly 5,000 vulnerabilities are traced at the end of
year 2005, and the figure rapidly increased to 7,000 at the end of
year 2006. As an important means of detecting software
vulnerabilities automatically, source code static analysis tools try
to find the potential vulnerabilities and security problems in
source code earlier by analyzing the source code before running
the application.

There are two important guide lines for evaluating static
analysis tools: (1) false negatives: the ratio of security problems
ignored by the tool; (2) false positives: the ratio of inexistent
security problems reported by the tool.

There have been heated researches on the static analysis
tools. Existed source code static analysis tools can be divided to
five kinds:
(1)tools based on annotation analysis, such as Splint/Lclint[5];
(2)tools based on lexical analysis, such as Its4[13], Rats[18],
Flawfinder[9],etc.;
(3)tools based on grammar analysis, such as Boon[8];
(4)tools based on model checking detection, such as Mops[12],
Verisoft[23], Codesurfer [16], etc.;
(5)tools based on type analysis, such as Cqual[3], etc.

However, nearly all these tools have a common weakness:
producing many false negatives and false positives. On one hand,
it is because of the limitation of static analysis tool itself, Rice
Theorem has proved that static analysis is undecidable in the
worst case, and some problems can not be solved just by static
analysis; on the other hand, most static analysis tools’ modeling is
not precise enough, thus there are lots of differences between
analysis model and practical program executive situation [2].
Moreover, many static analysis tools adopt the method of
conservative analysis, in a manner of flow-insensitive or context-
insensitive, which brings high false negatives and false positives.

How to reduce the false negatives and false positives of
static analysis tools has become a hot problem of software
vulnerability analysis. Although new source static analysis tools
are continuously released, such as FaultMiner[17], a tool
integrating data mining and static analysis; Oink[15], a C++ code
vulnerability detection tool based on type analysis, etc., these
tools still need to be improved to reduce false negatives and false
positives.

Aiming at source code static analysis tool’s weakness in high
false negatives and false positives, this paper provides a source
code static analysis method based on data fusion. This method
integrates existed static analysis tools, parses and then makes data
fusion on the result of different analysis, which lets different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Conference Infoscale, June 6–8, 2007, Suzhou, China
Copyright 2007 ACM-978-1-59593-757-5.

output result verify each other to enhance the ratio of identifying
real vulnerabilities and thus to attain better performance. This
system can be used to detect vulnerabilities in the software also
with higher efficiency.

Main contributions of this paper are:
(1) present a method based on data fusion to detect vulnerabilities
to incorporate advantages of different tools ;
(2) feedback is introduced to adjust the parameter to get better
result in the process of user interaction;
(3) design and implement a object-oriented system which is
easily extended and platform independent;
(4) XML format output can be easily parsed and shared.

Structure of this paper is arranged as follows. Section 2
introduces the principle of source code static analysis technology
based on data fusion. Section 3 introduces design and
implementation of prototype system based on the principle of data
fusion. Section 4 gives the result of experiment. Sections 5
introduces some related work. Finally it is conclusion and future
work.

2. PRINCIPLE OF SOURCE CODE STATIC
ANALYSIS TECHNOLOGY BASED ON
DATA FUSION

2.1 The Reason for this Method
Source code static analysis tools based on different

mechanisms employ different analysis methods, and even tools of
same kind based on similar mechanism have differences in design
and implementation detail. For instance, different rules in
vulnerability database, enlightening strategy in algorithm
implementation, definition of dangerous levels of vulnerability
entry each would influence the ratio of identifying real software
vulnerabilities.

Take most common tools with high efficiency (Its4, Rats,
Flawfinder) for example, David Pozza’s research indicated[6] that,
when being tested with the same software package, Flawfinder
found the most vulnerabilities, but did not totally cover those
found by Rats and Its4; numbers of vulnerabilities found by Rats
and Its4 are close, but many of them are not the same. Thus if
each static analysis tool’s advantages can be made full use of, and
output data of these tools’ analysis results can be fused in a proper
way, to let the vulnerabilities sets verify and complement each
other, and surely a better result comes out. On one hand, it would
reduce the ratio of false negatives of source code static analysis
and find more existed vulnerabilities. On the other hand, if the
level of the fusion’s result could be reasonably evaluated, the
false negatives would also be reduced. Based on these thoughts,
this paper presents a source code static analysis method based on
data fusion.

2.2 Formal Description and Explanation
Proposition:
(1)A vulnerability identified by most tools is highly

possible to be a real vulnerability;
(2) the possibility that a vulnerability would be falsely

reported by all tools is low.
Explanation: It is assumed that there are n static analysis

tools, and the true positives of the i-th static analysis tool is TP(i),
then the false positives is FP(i) = 1 - TP(i).

(1)From

 ∏
=

<
n

i

iTPiTP
1

)},(min{)(

it’s easily attained that the possibility that a vulnerability be
reported by n tools is reduced. It is reasonable, since most codes
are non vulnerable codes and the possibility of existed
vulnerability itself is low.

(2)The possibility that a vulnerability be falsely reported
by n tools is

 ,)}(min{)(
1

∏
=

<
n

i

iFPiFP

If ,
2
1)(<iFP

Then 。
nn

1i

)
2
1()i(FP∏

=

<

Obviously, the possibility that a vulnerability be falsely reported
by n tools will be reduced when n increases.

If different results of static analysis can be compared, namely,
be properly transformed to a general intermediate form, then a
random variable X is defined for score corresponding to each
vulnerability to evaluate and forecast the possibility that some
vulnerability be a real vulnerability. Since the vulnerability
reported by most tools is more likely to be a real vulnerability
than the vulnerability reported by less tools, rules for defining
random variable X for score corresponding to each vulnerability
are listed below:
(1)score of the vulnerability entry that is reported by multiple
tools should be raised;
(2)score of the vulnerability entry that belongs to a high
dangerous level should be raised;
(3)score of the vulnerability entry that belongs to a low dangerous
level or appears unusually should be reduced;
(4)the contribution to score from different tools’ analysis results
should be different, namely, it could be adjusted by the proportion
specified by user and adjusted to a proper proportion when
combining with feedback adaptive adjustment.

2.3 Detailed Introduction
As for vulnerability entry(vul for short), s(i) means the i-th

tool’s variable for score (1 <= i <= n), r(i) means the i-th tool’s
contribution to analysis result, rs(i) means the i-th tool’s real score,
vul(i) = 1 means the vulnerability vul is reported by the i-th tool
(1 <= i <=n), and it satisfy:

;1)(
1
∑

=

=
n

i
ir

⎩
⎨
⎧ =

= ;
0

1)()(
)(

other
ivulis

irs

.)()()(
1
∑

=

=
n

i
irirsXE

The variable for score s(i) maps the dangerous level of

vulnerability entry(vul) defined by tool i to the score defined by
tool i. Compared to the vulnerability entry belongs to lower
dangerous level, vulnerability entry belongs to higher dangerous
level is more likely to be real vulnerability, and it should have
higher priority level for output.

 For example, Its4 provides three classes of dangerous levels

of vulnerability entries: High; Medium; Default; if it needs to be
divided to five levels, the following mapping can be made:
f(High) = 5; f(Medium) = 3; f(Default) = 1.

Value of r(i) can be specified during the process of user
interaction, and feedback adjustment can be made to optimize it.
From previous definitions, it is known that E(X), the
mathematical expectations of variable for score X reflects n tools’
analysis results for a vulnerability entry, namely, evaluation value
to a vulnerability entry after data fusion.

2.4 An Instance
For the same vulnerability entry in software source code

package wu-ftpd-2:5:0, the analyzed results from Its4, Rats,
Flawfinder are indicated in figure 1 and figure 2 (Flawfinder
failed to find this vulnerability entry).During the course of data
fusion process , let r(1) = 0:3; r(2) = 0:3; r(3) = 0:4, and rs(1) =5;
rs(2) = 5; rs(3) = 0, then E(X) will be 3.5.

3. INTEGRATED SOFTWARE SOURCE
STATIC ANALYSIS BASED ON DATA
FUSION—ISA

Based on previous principle, an integrated software source
code analysis (ISA for short) is implemented .Features of this
prototype system contains:

(1)this system integrates advantages of many analysis tools
and let different result sets verify each other to reduces false
positives and false negatives;

(2)this system adds user interaction to data fusion and data
output procedure, import feedback mechanism when setting
parameter value to effectively instruct the vulnerability mining;

(3)this system adopts the object-oriented idea and method for
the design and implementation of the system, so it has good
extensibility and also is platform independent;

(4)output of the system can adopt the form of XML, thus it is
easy to describe, parse and share data.

Architecture design and implementation details of the system
will be given in the following part.

3.1 Architecture Design of the System

It consists of 6 major parts:
(1)After analysis on the program source code by static

analysis tools in this static analysis tool stack, output results from
different analysis tools can be attained. Static analysis tool stack
is a framework integrating multiple analysis tools like TCP/IP
protocol stack, each of which is independent and will not
influence each other. Considering that the output results of Rats,
Its4, Flawfinder are easy to compare and they are commonly and
frequently used, this paper first implements the comparison and
parsing of these three analysis tools. New static analysis tools can
be easily added to the stack on demand, and the principle is
similar.

(2)Main task of output result parsing module is to pick up
valid vulnerability information from specific format of analysis
result of the tools by using the lexical analysis method in order to
fit the need of data fusion module. In the design of output result
parsing module, inherited pattern is adopted to optimize the
realization process. Namely, the unified parent class Process deals
with operations of different tools output which may be the same,
the child classes inherited from parent class (such as Rats process,
Its4 process, etc.) parse specific tools output result. It is
convenient to extend new static analysis tools.

(3)After previous analysis module, a unified format of data
structure form is acquired, a six-tuple sequence: (name of file
which contains the vulnerability, number of line the vulnerability
locates at, dangerous level, vulnerability type, function causes the
vulnerability, score for vulnerability threat).

wu-ftpd-2.5.0/src/extensions.c:183: High: fprintf

Check to be sure that the non-constant format string passed as
argument 2 to this function call does not come from an
untrusted source that could have added formatting characters
that the code is not prepared to handle.

Fig.1. the tool of Rats’s analysis result

wu-ftpd-2.5.0/src/extensions.c:183:(Urgent) fprintf

Non-constant format strings can often be attacked.

Use a constant format string.

Fig.2. the tool of Its4’s analysis result Fig.3. the architecture of the system

(4)Fuse the data of analysis results from multiple tools,
according to the principles introduced in Section 2. For example,
if tool i does not find the vulnerability entry, then the score of
entry in this tool rs(i) = 0. It is easy to calculate the score of a
vulnerability entry.

(5) After data fusion process, the sorting module of c
corresponding vulnerability sets is called and all vulnerability
entries will be arranged from high score to low score. The
threshold (confidence value) can be attainted from user
interaction, and all vulnerabilities are printed out in format
reserving vulnerabilities of higher scores. The default value is
also set if there is no user interaction. A possible alternative
format is XML format, which is easy to read, parse and transfer in
the Internet.

(6)Compare the result of previous analysis with practical
vulnerability analysis result, find the difference of vulnerability
distribution, feedback the information representing differences to
data fusion module through parameter training module, adjust the
weight of r(i), and fuse the data of n result sets again. Repeat
these procedures until parameter r(i) is trained to a comparatively
proper proportion to attain optimal result.
3.2 Detailed Design of the System

The following part will give some detailed information about
the realization of the system in 3 respects.

(1) The whole implementation of the system adopts the
object-oriented method, uses design pattern like object factory,
singleton, policy,template and so on, has good extensibility and
robustness, and also is implemented by language C/C++ for easier
cross-platform use. Figure 4 presents a part of class diagram of
the system. Main control is the main control class of system
processing flow, controls the processing flow of ISA. Broken line
stands for dependence relation. Main control class creates two
parent classes, class ResFactory and class Process. ResFactory is
the parent class of object factory, and the three child classes
Its4Factory, Rats Factory, Flaw Factory take charge of
corresponding object creation separately. For example, Its Factory
takes charge of creating instance of Its4process. Class Process is
the parent class for output result parsing, offers interface for
unified call and encapsulation of same operations and the three
child classes Its4process, Rats process, Flaw process take charge
of the parsing of corresponding tools output result separately.

(2)The final result of static analysis adopts outputs of

multiple description languages including XML format to satisfy
different user demand. Being a general description language in
the Internet age, data in XML format makes it convenient to
describe, parse and share vulnerabilities. Fig 5 displays a sketch
map of a vulnerability entry after a DTD (Document Type Define)
is given.

(3)The whole system front-end depends on specific tools in
static analysis tool stack, and the manner of parsing will change
when the tools change. Other parts become the back-end. Compile
ISA’s code to the form of executable files, and the whole system
can be executed both in Linux and Windows platform by the drive
of the running scripts.

Fig.4.class diagram of ISA (partly)

Fig.5 a XML description of one vulnerability entry

4. ANALYSIS AND COMPARITION OF
THE EXPERIMENT RESULT
4.1 Experiment Result
Three software packages (wu-ftpd, Net-tools, Pure-ftpd) are
employed for test. They are practical tools in the real world and
thus have some representative, and they are related to network
application. Some kinds of vulnerabilities including buffer
overflow kinds have been found in these software packages, and
also relative information can be found in database like CVE
(Common Vulnerabilities and Exposure)[4],etc. Experiment
environment for test is: Pentium 1.6G CPU, 256M RAM, Linux
(Red Hat 9.0). Chosen source code static analysis tools are the
prototype system ISA, Rats, Its4, Flawfinder.

Detailed test data are given below:
Table 1 lists signature comparison of different source code

package (Ver stands for the version number of software, LOC
stands for the number of source code package code lines
excluding blank lines and commented lines, LOE stands for the
number of lines of real vulnerabilities).

Table 2 gives the comparison of false positives of different

tools (the threshold of ISA is set to 0.21).
Table 3 gives the comparison of false negatives of different

tools (the threshold of ISA is set to 0.21).
Table 4 gives the comparison of work efficiency of different

tools.

TP represents the number of real vulnerability entries detected

by tools, NUM represents the number of output result entries
detected by tools, TP* represents the number of real vulnerability
entries detected by tools after assigning the threshold of ISA,
NUM* represents the number of output result entries after
assigning the threshold of ISA, RTP represents the number of real
vulnerability entries detected by first (NUM*ratio) entries after
assigning tools ratio.

Let

;1
LOE
TPnegativesfalse −=

;1
NUM

TPpositivesfalse −=

for tools such as Its4,etc. But for ISA,

 .1
*

*

NUM
TPpositivesfalse −=

As for the execution efficiencies of tools, for ISA it should be
the number of vulnerabilities found by progressive scan the output
result analysis after assigning the threshold, namely, for ISA,

.
*

*

NUM
TPefficiency =

 For other tools, since the output set of vulnerabilities is large
and there is no corresponding sorting for vulnerability priority,
the possibility of finding vulnerabilities by progressive scan is
low. Let

 ;30.0=ratio

.
*ratioNUM

RTPefficiency =

Through training and adjustment procedure during user
interaction, the threshold of ISA is set to 0.21.
4.2 Brief Analysis of the Experiment Result

After analyzing the previous data, it is found that the false
negatives and false positives of ISA is reduced, except for Pure-
ftpd. Since its source code package has only one vulnerability
entry, none of the three origin tools found it, this vulnerability is
still ignored through the corresponding algorithm of data fusion,
so the false negatives and false positive are both 100%.

The comparison of efficiency embodies the sorting of
vulnerability priority, so it takes user less time to mine more real
vulnerabilities. In conclusion, three advantages of the tool are:

(1) by fusing the data of result sets of multiple tools, increase
the number of detected vulnerabilities and reduce false negatives.

(2) Through setting threshold by manual interaction and
feedback adjustment, find more vulnerabilities in less time,
namely, raise the mining efficiency.

(3) In the condition of having proper threshold, increase the
correct rate and reduce false negatives.

Program Ver. LOC LOE LOE/LOC

wu-ftpd 2.5.0 13582 64 0.47%

Net-tools 1.46 4146 50 1.21%

Pure-ftpd 1.0.17a 25230 1 3.96E-5

Program ISA Rats Its4 Flawfinder

wu-ftpd 76.10% 93.12% 94.28% 90%

Net-tools 74.07% 94.25% 94.37% 88.18%

Pure-ftpd 100% 100% 100% 100%

program ISA Rats Its4 Flawfinder

wu-ftpd 28.1% 39.1% 39.1% 29.6%

Net-tools 6% 26% 20% 14%

Pure-ftpd 100% 100% 100% 100%

program ISA Rats Its4 Flawfinder

wu-ftpd 23.9% 0 2.5％ 17.0%

Net-tools 25.9% 0 1.7% 18.4%

Pure-ftpd 0 0 0 0

Table 1.Signature comparison of different source code package

Table 2.The comparison of false positives of different tools

Table 3.The comparison of false negatives of different tools

Table 4.The comparison of work efficiency of different tools

5. RELATED WORK
As static analysis is important in eliminating security

vulnerabilities in the programs, thus there has been lots of
research relevant to static analysis for vulnerability detection.
LCLint [5] is a kind of static program analysis tools which need
programmer to annotate the source code extensively, but it is not
accurate enough. Lexical tools such as Rats[18], Its4[13],
Flawfinder[9] are commonly used to find misuse of dangerous
function calls in source files. Their design and implementation is
not so difficult as the other kinds of static analysis tools, but they
nearly failed to understand the language semantics; thus these
several tools are high in false positives and false negatives.
Boon[8] is a kind of static analysis tool based on grammar
analysis, and it builds a model of the program execution and tries
to reduce the program to a simpler system to check buffer
overflow vulnerability as a set of integer constraint problem. Its
analysis is not accurate enough for it ignores the the execution
order of programs statement and fails to handle the pointer alias
problem, and generates huge false positives and negatives. Static
analysis tools based on model checking detection, such as Mops
[12], Verisoft[23] depend greatly on the specification the model
needs to check, and also these tools are often bothered with too
large state space. Take Mops for example ,the Push Down
Automation(PDA) model is used to model the problem execution
which ignores the dataflow analysis leading to inaccuracy of
result. Also the specifications must be expressed to check one by
one, which is also a source of errors. Tools based on type
analysis, such as Cqual[3], etc. use type inference to categorize
the data into trusted and untrusted data for detecting format string
vulnerabilities, and also bring out false positives and negatives.

Recently static analysis tool such as FaultMiner[17] combines
data mining technology to detect the vulnerabilities in the
software package especially for the unknown invariant. As the
data sets are very small, the mining result is not so credible, and
inevitably it produces false positives and negatives. Oink[15] is
also a static analysis tool based on type inferences to detect
vulnerabilities especially for C++ language, which also has
defects.

There have also been some work in dealing with the result
sets of static analysis tools. Ted Kremenek’s group [19] try to
decrease the false positives and false negatives by analyzing the
correlation between the output of one specific static analysis tool.
They make cluster analysis to find the corrections and
dependencies in the analysis outcome, and baysian network model
is employed to train the data sets and get the better result. But
different with this papers’ idea, it is just based on one specific
static analysis tool, and the training process could not guarantee
the better result, and it is also inaccurate, besides this static
analysis tool itself is likely in high false positives and false
negatives. T. Kremenek’s group [22] have presented a Z-ranking
technique to rank error reports emitted by static program checking
analysis tools. As a statistic method, the large data sets are
required and also the experience of handling data is important ,
both of which may lead to inaccuracy.

Liusheng Huang and his team[20][21]present a common
vulnerability markup language for easily realization of
vulnerability detection. This paper gives a XML description of
vulnerability entry for the use of vulnerability detection process to
attain better result for scalability which is different from their
method in [20][21].

6. CONCLUSION AND FUTURE WORK
This paper advances a source code static analysis method

based on data fusion for vulnerability detection, designs and
implements a prototype source code static integrated analysis
system (ISA), by fusing the data of results of multiple static
analysis tools, integrate advantages of the tools and acquire better
performance.

The emphasis of future research will be how to integrate
more vulnerability analysis tools to this prototype system, and
developing data fusion algorithm with higher efficiency to
continuously reduce false negatives and false positives produced
in vulnerability analysis. The utilization of feedback control
principle combined with the linear system model may be
effectively improving the initial analysis output and leads to a
much better result.

7. ACKNOWLEDGEMENT
 First of all, the authors would thank a friend from Italy,

whose name is Ashish Aggarwal. Due to his help for providing
the important information about the data sets concerning about the
vulnerabilities of the tested software above. The authors would
like to thank Xin Gan, Zuochun Tang for their useful
suggestions; also thank Jianfeng Pan for his kind help and sharing
developing experience in “IceSword” software with us. This work
have been supported by the National 863 high technology
research and developing project (2006AA01Z449).

8. REFERENCES
[1] Alan Shalloway, James R.Trott. Design patterns explaineda
new perspective on object-oriented design,China Machine Press,
p101-143, 2006
[2] Brian Chess, Gray McGraw, Static Analysis for Security:IEEE
Security & Privacy 04,2004, pp. 32-36
[3] Cqual: http://www.cs.umd.edu/ jfoster/cqual/
[4] CVE: Common Vulnerabilities and Exposure.
http://cve.mitre.org/
[5] David Evans, John Guttag, Jim Horning. LCLint: A Tool for
Using Specifications to Check Code. SIGSOFT Symposium on
the Foundations of Software Engineering. December, 1994.
[6] David Pozza,Riccardo Sisto.Comparing Lexical Analysis Tool
for Buffer Overflow Detection in Network Software.
Communication System Software and Middleware First
International Conference, Jan.2006
[7] D. Wagner. Static Analysis and Computer SecurityNew
technique for Software Assurance. Ph.D Dissertation,Fall 2000.
[8] D.Wagner, J. Foster, E. Brewer and A. Aiken. A first step
towards automated detection of buffer overrun vulnerabilities.
In The 2000 Network and Distributed Systems Security
Conference. February,2000.
[9] Flawfinder: http://www.dwheeler.com/flawfinder
[10] Giacomo Della Riccia, Hanz-Joachim Lenz, Rudolf Kruse
Wien. Data fusion and perception, Springer,p67-85, c2001
[11] G. McGraw, Software Security, IEEE Security & Privacy,
vol. 2, no.2, 2004, pp. 80-83.
[12] H. Chen, D. Wagner. MOPS:An Infrastructure for
Examining Security Properties of Software, Proc. 9th ACM Conf.
Computer and Communications Security (CCS2002),ACM Press,
2002,pp.235-244.
[13] John Viega, J. T. Bloch, Tadayoshi Kohno. ITS4: A Static
Vulnerability Scanner for C and C + + Code. Annual Computer
Security Applications Conference. December 2000.

[14] Kelly Carey and Stanko Blatnik. XML: content and data,p46-
76, Prentice Hall, 2002.
[15] Oink(Cqual++): http://oink.me.uk/
[16] Paul Anderson ,Mark Zarins. the CodeSurfer Software
Understanding Platform, Proceedings of the 13th International
Workshop on Program Comprehension(IWPC 05)
[17] Rajeev Gopalakrishna, Eugene H.Spafford, Jan Vitek. Fault-
Miner: Discovering Unknown Software Defects using Static
Analysis and Data Mining, CERIAS TR 2006-07
[18] Rough Auditing Tool for Security:
http://www.scans.org./top20.html
[19] Ted Kremenek, Ken Ashcraft, Junfeng Yang ,Dawson
Engler.
Correlation Exploitation in Error Ranking. SIGSOFT04/FSE12,

Nov, 2004
 [20] Tian HT, Huang LS, Shan JL, et al. Automated vulnerability
management through web services, LECTURE NOTES IN
COMPUTER SCIENCE 3032: 1067-1070 2004
[21] Tian HT, Huang LS, Zhou Z, et al. Common vulnerability
markup language LECTURE NOTES IN COMPUTER
SCIENCE 2846: 228-240 2003
[22] T. Kremenek ,D. Engler. Z-Ranking: Using statistical
analysis
to counter the impact of static analysis approximations. In SAS
2003.
[23] Verisoft: http://cm.bell-labs.com/who/god/verisoft/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

