
Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim1 Ross Daly� Jeremie Kim1 Chris Fallin� Ji Hye Lee1

Donghyuk Lee1 Chris Wilkerson2 Konrad Lai Onur Mutlu1

1Carnegie Mellon University 2Intel Labs

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology
scales down to smaller dimensions, it becomes more difficult
to prevent DRAM cells from electrically interacting with each
other. In this paper, we expose the vulnerability of commodity
DRAM chips to disturbance errors. By reading from the same
address in DRAM, we show that it is possible to corrupt data
in nearby addresses. More specifically, activating the same
row in DRAM corrupts data in nearby rows. We demonstrate
this phenomenon on Intel and AMD systems using a malicious
program that generates many DRAM accesses. We induce
errors in most DRAM modules (110 out of 129) from three
major DRAM manufacturers. From this we conclude that
many deployed systems are likely to be at risk. We identify
the root cause of disturbance errors as the repeated toggling
of a DRAM row’s wordline, which stresses inter-cell coupling
effects that accelerate charge leakage from nearby rows. We
provide an extensive characterization study of disturbance er-
rors and their behavior using an FPGA-based testing plat-
form. Among our key findings, we show that (i) it takes as
few as 139K accesses to induce an error and (ii) up to one in
every 1.7K cells is susceptible to errors. After examining var-
ious potential ways of addressing the problem, we propose a
low-overhead solution to prevent the errors.

1. Introduction
The continued scaling of DRAM process technology has

enabled smaller cells to be placed closer to each other. Cram-
ming more DRAM cells into the same area has the well-
known advantage of reducing the cost-per-bit of memory.
Increasing the cell density, however, also has a negative
impact on memory reliability due to three reasons. First,
a small cell can hold only a limited amount of charge,
which reduces its noise margin and renders it more vulner-
able to data loss [14, 47, 72]. Second, the close proximity
of cells introduces electromagnetic coupling effects between
them, causing them to interact with each other in undesirable
ways [14, 42, 47, 55]. Third, higher variation in process tech-
nology increases the number of outlier cells that are excep-
tionally susceptible to inter-cell crosstalk, exacerbating the
two effects described above.

As a result, high-density DRAM is more likely to suffer
from disturbance, a phenomenon in which different cells in-
terfere with each other’s operation. If a cell is disturbed
beyond its noise margin, it malfunctions and experiences a
disturbance error. Historically, DRAM manufacturers have
been aware of disturbance errors since as early as the Intel
1103, the first commercialized DRAM chip [58]. To mitigate

�Work done while at Carnegie Mellon University.

disturbance errors, DRAM manufacturers have been employ-
ing a two-pronged approach: (i) improving inter-cell isola-
tion through circuit-level techniques [22, 32, 49, 61, 73] and
(ii) screening for disturbance errors during post-production
testing [3, 4, 64]. We demonstrate that their efforts to contain
disturbance errors have not always been successful, and that
erroneous DRAM chips have been slipping into the field.1

In this paper, we expose the existence and the widespread
nature of disturbance errors in commodity DRAM chips sold
and used today. Among 129 DRAM modules we analyzed
(comprising 972 DRAM chips), we discovered disturbance
errors in 110 modules (836 chips). In particular, all modules
manufactured in the past two years (2012 and 2013) were vul-
nerable, which implies that the appearance of disturbance er-
rors in the field is a relatively recent phenomenon affecting
more advanced generations of process technology. We show
that it takes as few as 139K reads to a DRAM address (more
generally, to a DRAM row) to induce a disturbance error. As
a proof of concept, we construct a user-level program that
continuously accesses DRAM by issuing many loads to the
same address while flushing the cache-line in between. We
demonstrate that such a program induces many disturbance
errors when executed on Intel or AMD machines.

We identify the root cause of DRAM disturbance errors as
voltage fluctuations on an internal wire called the wordline.
DRAM comprises a two-dimensional array of cells, where
each row of cells has its own wordline. To access a cell within
a particular row, the row’s wordline must be enabled by rais-
ing its voltage — i.e., the row must be activated. When there
are many activations to the same row, they force the word-
line to toggle on and off repeatedly. According to our obser-
vations, such voltage fluctuations on a row’s wordline have
a disturbance effect on nearby rows, inducing some of their
cells to leak charge at an accelerated rate. If such a cell loses
too much charge before it is restored to its original value (i.e.,
refreshed), it experiences a disturbance error.

We comprehensively characterize DRAM disturbance er-
rors on an FPGA-based testing platform to understand their
behavior and symptoms. Based on our findings, we exam-
ine a number of potential solutions (e.g., error-correction and
frequent refreshes), which all have some limitations. We pro-
pose an effective and low-overhead solution, called PARA,
that prevents disturbance errors by probabilistically refresh-
ing only those rows that are likely to be at risk. In contrast to
other solutions, PARA does not require expensive hardware
structures or incur large performance penalties. This paper
makes the following contributions.

1The industry has been aware of this problem since at least 2012, which
is when a number of patent applications were filed by Intel regarding the
problem of “row hammer” [6, 7, 8, 9, 23, 24]. Our paper was under review
when the earliest of these patents was released to the public.

1
978-1-4799-4394-4/14/$31.00 c
 2014 IEEE

� To our knowledge, this is the first paper to expose the
widespread existence of disturbance errors in commodity
DRAM chips from recent years.
� We construct a user-level program that induces disturbance

errors on real systems (Intel/AMD). Simply by reading
from DRAM, we show that such a program could poten-
tially breach memory protection and corrupt data stored in
pages that it should not be allowed to access.
� We provide an extensive characterization of DRAM dis-

turbance errors using an FPGA-based testing platform and
129 DRAM modules. We identify the root cause of distur-
bance errors as the repeated toggling of a row’s wordline.
We observe that the resulting voltage fluctuation could dis-
turb cells in nearby rows, inducing them to lose charge at
an accelerated rate. Among our key findings, we show that
(i) disturbable cells exist in 110 out of 129 modules, (ii)
up to one in 1.7K cells is disturbable, and (iii) toggling the
wordline as few as 139K times causes a disturbance error.
� After examining a number of possible solutions, we pro-

pose PARA (probabilistic adjacent row activation), a low-
overhead way of preventing disturbance errors. Every time
a wordline is toggled, PARA refreshes the nearby rows
with a very small probability (p�1). As a wordline is tog-
gled many times, the increasing disturbance effects are off-
set by the higher likelihood of refreshing the nearby rows.

2. DRAM Background
In this section, we provide the necessary background on

DRAM organization and operation to understand the cause
and symptoms of disturbance errors.
2.1. High-Level Organization

DRAM chips are manufactured in a variety of configura-
tions [34], currently ranging in capacities of 1–8 Gbit and in
data-bus widths of 4–16 pins. (A particular capacity does not
imply a particular data-bus width.) By itself, an individual
DRAM chip has only a small capacity and a narrow data-bus.
That is why multiple DRAM chips are commonly ganged to-
gether to provide a large capacity and a wide data-bus (typi-
cally 64-bit). Such a “gang” of DRAM chips is referred to as
a DRAM rank. One or more ranks are soldered onto a circuit
board to form a DRAM module.
2.2. Low-Level Organization

As Figure 1a shows, DRAM comprises a two-dimensional
array of DRAM cells, each of which consists of a capacitor
and an access-transistor. Depending on whether its capaci-
tor is fully charged or fully discharged, a cell is in either the
charged state or the discharged state, respectively. These two
states are used to represent a binary data value.

As Figure 1b shows, every cell lies at the intersection of
two perpendicular wires: a horizontal wordline and a vertical
bitline. A wordline connects to all cells in the horizontal di-
rection (row) and a bitline connects to all cells in the vertical
direction (column). When a row’s wordline is raised to a high
voltage, it enables all of the access-transistors within the row,
which in turn connects all of the capacitors to their respective
bitlines. This allows the row’s data (in the form of charge) to
be transferred into the row-buffer shown in Figure 1a. Bet-
ter known as sense-amplifiers, the row-buffer reads out the
charge from the cells — a process that destroys the data in

cell
row 4
row 3
row 2
row 1
row 0

row-buffer

a. Rows of cells

wordline

b
it
lin
e

b. A single cell

Figure 1. DRAM consists of cells

the cells — and immediately writes the charge back into the
cells [38, 41, 43]. Subsequently, all accesses to the row are
served by the row-buffer on behalf of the row. When there
are no more accesses to the row, the wordline is lowered to
a low voltage, disconnecting the capacitors from the bitlines.
A group of rows is called a bank, each of which has its own
dedicated row-buffer. (The organization of a bank is simi-
lar to what was shown in Figure 1a.) Finally, multiple banks
come together to form a rank. For example, Figure 2 shows
a 2GB rank whose 256K rows are vertically partitioned into
eight banks of 32K rows, where each row is 8KB (D64Kb)
in size [34]. Having multiple banks increases parallelism be-
cause accesses to different banks can be served concurrently.

Processor

MemCtrl

data
cmd
addr Ch

ip
0

Ch
ip

7Bank7

•••

Bank0

Rank

64K cells

25
6

K

Figure 2. Memory controller, buses, rank, and banks

2.3. Accessing DRAM
An access to a rank occurs in three steps: (i) “opening” the

desired row within a desired bank, (ii) accessing the desired
columns from the row-buffer, and (iii) “closing” the row.

1. Open Row. A row is opened by raising its wordline. This
connects the row to the bitlines, transferring all of its data
into the bank’s row-buffer.

2. Read/Write Columns. The row-buffer’s data is accessed
by reading or writing any of its columns as needed.

3. Close Row. Before a different row in the same bank can
be opened, the original row must be closed by lowering its
wordline. In addition, the row-buffer is cleared.

The memory controller, which typically resides in the pro-
cessor (Figure 2), guides the rank through the three steps by
issuing commands and addresses as summarized in Table 1.
After a rank accepts a command, some amount of delay is re-
quired before it becomes ready to accept another command.
This delay is referred to as a DRAM timing constraint [34].
For example, the timing constraint defined between a pair of
ACTIVATEs to the same row (in the same bank) is referred to
as tRC (row cycle time), whose typical value is �50 nanosec-
onds [34]. When trying to open and close the same row as
quickly as possible, tRC becomes the bottleneck — limiting
the maximum rate to once every tRC.

2

Operation Command Address(es)

1. Open Row ACTIVATE (ACT) Bank, Row
2. Read/Write Column READ/WRITE Bank, Column
3. Close Row PRECHARGE (PRE) Bank

Refresh (Section 2.4) REFRESH (REF) —

Table 1. DRAM commands and addresses [34]

2.4. Refreshing DRAM
The charge stored in a DRAM cell is not persistent. This is

due to various leakage mechanisms by which charge can dis-
perse: e.g., subthreshold leakage [56] and gate-induced drain
leakage [57]. Eventually, the cell’s charge-level would de-
viate beyond the noise margin, causing it to lose data — in
other words, a cell has only a limited retention time. Be-
fore this time expires, the cell’s charge must be restored (i.e.,
refreshed) to its original value: fully charged or fully dis-
charged. The DDR3 DRAM specifications [34] guarantee a
retention time of at least 64 milliseconds, meaning that all
cells within a rank need to be refreshed at least once during
this time window. Refreshing a cell can be accomplished by
opening the row to which the cell belongs. Not only does
the row-buffer read the cell’s altered charge value but, at the
same time, it restores the charge to full value (Section 2.2).
In fact, refreshing a row and opening a row are identical op-
erations from a circuits perspective. Therefore, one possible
way for the memory controller to refresh a rank is to issue an
ACT command to every row in succession. In practice, there
exists a separate REF command which refreshes many rows
at a time (Table 1). When a rank receives a REF, it automati-
cally refreshes several of its least-recently-refreshed rows by
internally generating ACT and PRE pairs to them. Within any
given 64ms time window, the memory controller issues a suf-
ficient number of REF commands to ensure that every row is
refreshed exactly once. For a DDR3 DRAM rank, the mem-
ory controller issues 8192 REF commands during 64ms, once
every 7.8us (D64ms/8192) [34].

3. Mechanics of Disturbance Errors
In general, disturbance errors occur whenever there is a

strong enough interaction between two circuit components
(e.g., capacitors, transistors, wires) that should be isolated
from each other. Depending on which component interacts
with which other component and also how they interact, many
different modes of disturbance are possible.

Among them, we identify one particular disturbance mode
that afflicts commodity DRAM chips from all three major
manufacturers. When a wordline’s voltage is toggled repeat-
edly, some cells in nearby rows leak charge at a much faster
rate. Such cells cannot retain charge for even 64ms, the time
interval at which they are refreshed. Ultimately, this leads to
the cells losing data and experiencing disturbance errors.

Without analyzing DRAM chips at the device-level, we
cannot make definitive claims about how a wordline interacts
with nearby cells to increase their leakiness. We hypothe-
size, based on past studies and findings, that there may be
three ways of interaction.2 First, changing the voltage of a
wordline could inject noise into an adjacent wordline through

2At least one major DRAM manufacturer has confirmed these hypothe-
ses as potential causes of disturbance errors.

electromagnetic coupling [15, 49, 55]. This partially enables
the adjacent row of access-transistors for a short amount of
time and facilitates the leakage of charge. Second, bridges
are a well-known class of DRAM faults in which conductive
channels are formed between unrelated wires and/or capaci-
tors [3, 4]. One study on embedded DRAM (eDRAM) found
that toggling a wordline could accelerate the flow of charge
between two bridged cells [29]. Third, it has been reported
that toggling a wordline for hundreds of hours can perma-
nently damage it by hot-carrier injection [17]. If some of the
hot-carriers are injected into the neighboring rows, this could
modify the amount of charge in their cells or alter the charac-
teristic of their access-transistors to increase their leakiness.

Disturbance errors occur only when the cumulative inter-
ference effects of a wordline become strong enough to disrupt
the state of nearby cells. In the next section, we demonstrate
a small piece of software that achieves this by continuously
reading from the same row in DRAM.

4. Real System Demonstration
We induce DRAM disturbance errors on Intel (Sandy

Bridge, Ivy Bridge, and Haswell) and AMD (Piledriver) sys-
tems using a 2GB DDR3 module. We do so by running
Code 1a, which is a program that generates a read to DRAM
on every data access. First, the two mov instructions read from
DRAM at address X and Y and install the data into a register
and also the cache. Second, the two clflush instructions
evict the data that was just installed into the cache. Third,
the mfence instruction ensures that the data is fully flushed
before any subsequent memory instruction is executed.3 Fi-
nally, the code jumps back to the first instruction for another
iteration of reading from DRAM. (Note that Code 1a does not
require elevated privileges to execute any of its instructions.)
1 code1a:
2 mov (X), %eax
3 mov (Y), %ebx
4 clflush (X)
5 clflush (Y)
6 mfence
7 jmp code1a

a. Induces errors

1 code1b:
2 mov (X), %eax
3 clflush (X)
4
5
6 mfence
7 jmp code1b

b. Does not induce errors

Code 1. Assembly code executed on Intel/AMD machines

On out-of-order processors, Code 1a generates multiple
DRAM read requests, all of which queue up in the mem-
ory controller before they are sent out to DRAM: (reqX, reqY,
reqX, reqY, � � �). Importantly, we chose the values of X and
Y so that they map to the same bank, but to different rows
within the bank.4 As we explained in Section 2.3, this forces
the memory controller to open and close the two rows repeat-
edly: (ACTX, READX, PREX, ACTY, READY, PREY, � � �). Using
the address-pair (X, Y), we then executed Code 1a for mil-
lions of iterations. Subsequently, we repeated this procedure

3Without the mfence instruction, there was a large number of hits in the
processor’s fill-buffer [30] as shown by hardware performance counters [31].

4Whereas AMD discloses which bits of the physical address are used and
how they are used to compute the DRAM bank address [5], Intel does not.
We partially reverse-engineered the addressing scheme for Intel processors
using a technique similar to prior work [46, 60] and determined that setting
Y to XC8M achieves our goal for all four processors. We ran Code 1a within
a customized Memtest86+ environment [1] to bypass address translation.

3

using many different address-pairs until every row in the 2GB
module was opened/closed millions of times. In the end, we
observed that Code 1a caused many bits to flip. For each pro-
cessor, Table 2 reports the total number of bit-flips induced
by Code 1a for two different initial states of the module: all
‘0’s or all ‘1’s.5;6 Since Code 1a does not write any data into
DRAM, we conclude that the bit-flips are the manifestation
of disturbance errors. We will show later in Section 6.1 that
this particular module — which we named A19 (Section 5) —
yields millions of errors under certain testing conditions.

Bit-Flip Sandy Bridge Ivy Bridge Haswell Piledriver

‘0’ � ‘1’ 7;992 10;273 11;404 47
‘1’ � ‘0’ 8;125 10;449 11;467 12

Table 2. Bit-flips induced by disturbance on a 2GB module

As a control experiment, we also ran Code 1b which reads
from only a single address. Code 1b did not induce any dis-
turbance errors as we expected. For Code 1b, all of its reads
are to the same row in DRAM: (reqX, reqX, reqX, � � �). In this
case, the memory controller minimizes the number of DRAM
commands by opening and closing the row just once, while is-
suing many column reads in between: (ACTX, READX, READX,
READX, � � � , PREX). As we explained in Section 3, DRAM
disturbance errors are caused by the repeated opening/clos-
ing of a row, not by column reads — which is precisely why
Code 1b does not induce any errors.

Disturbance errors violate two invariants that memory
should provide: (i) a read access should not modify data at
any address and (ii) a write access should modify data only
at the address being written to. As long as a row is repeatedly
opened, both read and write accesses can induce disturbance
errors (Section 6.2), all of which occur in rows other than
the one being accessed (Section 6.3). Since different DRAM
rows are mapped (by the memory controller) to different soft-
ware pages [35], Code 1a — just by accessing its own page
— could corrupt pages belonging to other programs. Left
unchecked, disturbance errors can be exploited by a malicious
program to breach memory protection and compromise the
system. With some engineering effort, we believe we can de-
velop Code 1a into a disturbance attack that injects errors into
other programs, crashes the system, or perhaps even hijacks
control of the system. We leave such research for the future
since the primary objective in this work is to understand and
prevent DRAM disturbance errors.

5. Experimental Methodology
To develop an understanding of disturbance errors, we

characterize 129 DRAM modules on an FPGA-based testing
platform. Our testing platform grants us precise control over
how and when DRAM is accessed on a cycle-by-cycle basis.
Also, it does not scramble the data it writes to DRAM.6

5The faster a processor accesses DRAM, the more bit-flips it has. Ex-
pressed in the unit of accesses-per-second, the four processors access DRAM
at the following rates: 11.6M, 11.7M, 12.3M, and 6.1M. (It is possible that
not all accesses open/close a row.)

6We initialize the module by making the processor write out all ‘0’s or
all ‘1’s to memory. But before this data is actually sent to the module, it
is scrambled by the memory controller to avoid electrical resonance on the
DRAM data-bus [31]. In other words, we do not know the exact “data” that
is received by the module. We examine the significance of this in Section 6.4.

Testing Platform. We programmed eight Xilinx FPGA
boards [70] with a DDR3-800 DRAM memory con-
troller [71], a PCIe 2.0 core [69], and a customized test en-
gine. After equipping each FPGA board with a DRAM mod-
ule, we connected them to two host computers using PCIe
extender cables. We then enclosed the FPGA boards inside a
heat chamber along with a thermocouple and a heater that are
connected to an external temperature controller. Unless oth-
erwise specified, all tests were run at 50˙2.0ıC (ambient).

Tests. We define a test as a sequence of DRAM accesses
specifically designed to induce disturbance errors in a mod-
ule. Most of our tests are derived from two snippets of pseu-
docode listed above (Code 2): TestBulk and TestEach. The
goal of TestBulk is to quickly identify the union of all cells
that were disturbed after toggling every row many times. On
the other hand, TestEach identifies which specific cells are
disturbed when each row is toggled many times. Both tests
take three input parameters: AI (activation interval), RI (re-
fresh interval), and DP (data pattern). First, AI determines
how frequently a row is toggled — i.e., the time it takes to
execute one iteration of the inner for-loop. Second, RI de-
termines how frequently the module is refreshed during the
test. Third, DP determines the initial data values with which
the module is populated before errors are induced. TestBulk
(Code 2a) starts by writing DP to the entire module. It then
toggles a row at the rate of AI for the full duration of RI —
i.e., the row is toggled N D .2 � RI/=AI times.7 This pro-
cedure is then repeated for every row in the module. Finally,
TestBulk reads out the entire module and identifies all of the
disturbed cells. TestEach (Code 2b) is similar except that
lines 6, 12, and 13 are moved inside the outer for-loop. Af-
ter toggling just one row, TestEach reads out the module and
identifies the cells that were disturbed by the row.

1 TestBulk(AI; RI; DP)
2 setAI(AI)
3 setRI(RI)
4 N � .2 � RI/=AI
5
6 writeAll(DP)
7 for r � 0 � � �ROWMAX
8 for i � 0 � � �N
9 ACT r th row
10 READ 0th col.
11 PRE r th row
12 readAll()
13 findErrors()

a. Test all rows at once

1 TestEach(AI; RI; DP)
2 setAI(AI)
3 setRI(RI)
4 N � .2 � RI/=AI
5
6 for r � 0 � � �ROWMAX
7 writeAll(DP)
8 for i � 0 � � �N
9 ACT r th row
10 READ 0th col.
11 PRE r th row
12 readAll()
13 findErrors()

b. Test one row at a time

Code 2. Two types of tests synthesized on the FPGA

Test Parameters. In most of our tests, we set AI=55ns
and RI=64ms, for which the corresponding value of N is
2:33 � 106. We chose 55ns for AI since it approaches the
maximum rate of toggling a row without violating the tRC
timing constraint (Section 2.3). In some tests, we also sweep
AI up to 500ns. We chose 64ms for RI since it is the default
refresh interval specified by the DDR3 DRAM standard (Sec-
tion 2.4). In some tests, we also sweep RI down to 10ms and
up to 128ms. For DP, we primarily use two data patterns [65]:

7Refresh intervals for different rows are not aligned with each other
(Section 2.4). Therefore, we toggle a row for twice the duration of RI to
ensure that we fully overlap with at least one refresh interval for the row.

4

Manufacturer Module
Date� Timing� Organization Chip Victims-per-Module RIth (ms)

(yy-ww) Freq (MT/s) tRC (ns) Size (GB) Chips Size (Gb)� Pins DieVersion� Average Minimum Maximum Min

A1 10-08 1066 50.625 0.5 4 1 �16 B 0 0 0 –
A2 10-20 1066 50.625 1 8 1 �8 F 0 0 0 –
A3-5 10-20 1066 50.625 0.5 4 1 �16 B 0 0 0 –
A6-7 11-24 1066 49.125 1 4 2 �16 D 7:8� 101 5:2� 101 1:0� 102 21:3
A8-12 11-26 1066 49.125 1 4 2 �16 D 2:4� 102 5:4� 101 4:4� 102 16:4
A13-14 11-50 1066 49.125 1 4 2 �16 D 8:8� 101 1:7� 101 1:6� 102 26:2
A15-16 12-22 1600 50.625 1 4 2 �16 D 9:5 9 1:0� 101 34:4
A17-18 12-26 1600 49.125 2 8 2 �8 M 1:2� 102 3:7� 101 2:0� 102 21:3
A19-30 12-40 1600 48.125 2 8 2 �8 K 8:6� 106 7:0� 106 1:0 � 107 8:2
A31-34 13-02 1600 48.125 2 8 2 �8 – 1:8� 106 1:0� 106 3:5� 106 11:5
A35-36 13-14 1600 48.125 2 8 2 �8 – 4:0� 101 1:9� 101 6:1� 101 21:3
A37-38 13-20 1600 48.125 2 8 2 �8 K 1:7� 106 1:4� 106 2:0� 106 9:8
A39-40 13-28 1600 48.125 2 8 2 �8 K 5:7� 104 5:4� 104 6:0� 104 16:4
A41 14-04 1600 49.125 2 8 2 �8 – 2:7� 105 2:7� 105 2:7� 105 18:0

A
Total of

43 Modules

A42-43 14-04 1600 48.125 2 8 2 �8 K 0:5 0 1 62:3

B1 08-49 1066 50.625 1 8 1 �8 D 0 0 0 –
B2 09-49 1066 50.625 1 8 1 �8 E 0 0 0 –
B3 10-19 1066 50.625 1 8 1 �8 F 0 0 0 –
B4 10-31 1333 49.125 2 8 2 �8 C 0 0 0 –
B5 11-13 1333 49.125 2 8 2 �8 C 0 0 0 –
B6 11-16 1066 50.625 1 8 1 �8 F 0 0 0 –
B7 11-19 1066 50.625 1 8 1 �8 F 0 0 0 –
B8 11-25 1333 49.125 2 8 2 �8 C 0 0 0 –
B9 11-37 1333 49.125 2 8 2 �8 D 1:9� 106 1:9� 106 1:9� 106 11:5
B10-12 11-46 1333 49.125 2 8 2 �8 D 2:2� 106 1:5� 106 2:7 � 106 11:5
B13 11-49 1333 49.125 2 8 2 �8 C 0 0 0 –
B14 12-01 1866 47.125 2 8 2 �8 D 9:1� 105 9:1� 105 9:1� 105 9:8
B15-31 12-10 1866 47.125 2 8 2 �8 D 9:8� 105 7:8� 105 1:2� 106 11:5
B32 12-25 1600 48.125 2 8 2 �8 E 7:4� 105 7:4� 105 7:4� 105 11:5
B33-42 12-28 1600 48.125 2 8 2 �8 E 5:2� 105 1:9� 105 7:3� 105 11:5
B43-47 12-31 1600 48.125 2 8 2 �8 E 4:0� 105 2:9� 105 5:5� 105 13:1
B48-51 13-19 1600 48.125 2 8 2 �8 E 1:1� 105 7:4� 104 1:4� 105 14:7
B52-53 13-40 1333 49.125 2 8 2 �8 D 2:6� 104 2:3� 104 2:9� 104 21:3

B
Total of

54 Modules

B54 14-07 1333 49.125 2 8 2 �8 D 7:5� 103 7:5� 103 7:5� 103 26:2

C1 10-18 1333 49.125 2 8 2 �8 A 0 0 0 –
C2 10-20 1066 50.625 2 8 2 �8 A 0 0 0 –
C3 10-22 1066 50.625 2 8 2 �8 A 0 0 0 –
C4-5 10-26 1333 49.125 2 8 2 �8 B 8:9� 102 6:0� 102 1:2� 103 29:5
C6 10-43 1333 49.125 1 8 1 �8 T 0 0 0 –
C7 10-51 1333 49.125 2 8 2 �8 B 4:0� 102 4:0� 102 4:0� 102 29:5
C8 11-12 1333 46.25 2 8 2 �8 B 6:9� 102 6:9� 102 6:9� 102 21:3
C9 11-19 1333 46.25 2 8 2 �8 B 9:2� 102 9:2� 102 9:2� 102 27:9
C10 11-31 1333 49.125 2 8 2 �8 B 3 3 3 39:3
C11 11-42 1333 49.125 2 8 2 �8 B 1:6� 102 1:6� 102 1:6� 102 39:3
C12 11-48 1600 48.125 2 8 2 �8 C 7:1� 104 7:1� 104 7:1� 104 19:7
C13 12-08 1333 49.125 2 8 2 �8 C 3:9� 104 3:9� 104 3:9� 104 21:3
C14-15 12-12 1333 49.125 2 8 2 �8 C 3:7� 104 2:1� 104 5:4� 104 21:3
C16-18 12-20 1600 48.125 2 8 2 �8 C 3:5� 103 1:2� 103 7:0� 103 27:9
C19 12-23 1600 48.125 2 8 2 �8 E 1:4� 105 1:4� 105 1:4� 105 18:0
C20 12-24 1600 48.125 2 8 2 �8 C 6:5� 104 6:5� 104 6:5� 104 21:3
C21 12-26 1600 48.125 2 8 2 �8 C 2:3� 104 2:3� 104 2:3� 104 24:6
C22 12-32 1600 48.125 2 8 2 �8 C 1:7� 104 1:7� 104 1:7� 104 22:9
C23-24 12-37 1600 48.125 2 8 2 �8 C 2:3� 104 1:1� 104 3:4� 104 18:0
C25-30 12-41 1600 48.125 2 8 2 �8 C 2:0� 104 1:1� 104 3:2� 104 19:7
C31 13-11 1600 48.125 2 8 2 �8 C 3:3� 105 3:3� 105 3:3 � 105 14:7

C
Total of

32 Modules

C32 13-35 1600 48.125 2 8 2 �8 C 3:7� 104 3:7� 104 3:7� 104 21:3

�We report the manufacture date marked on the chip packages, which is more accurate than other dates that can be gleaned from a module.
� We report timing constraints stored in the module’s on-board ROM [33], which is read by the system BIOS to calibrate the memory controller.

� The maximum DRAM chip size supported by our testing platform is 2Gb.
� We report DRAM die versions marked on the chip packages, which typically progress in the following manner: M � A � B � C � � � � .

Table 3. Sample population of 129 DDR3 DRAM modules, categorized by manufacturer and sorted by manufacture date

5

RowStripe (even/odd rows populated with ‘0’s/‘1’s) and its in-
verse �RowStripe. As Section 6.4 will show, these two data
patterns induce the most errors. In some tests, we also use
Solid, ColStripe, Checkered, as well as their inverses [65].

DRAM Modules. As listed in Table 3, we tested for distur-
bance errors in a total of 129 DDR3 DRAM modules. They
comprise 972 DRAM chips from three manufacturers whose
names have been anonymized to A, B, and C.8 The three man-
ufacturers represent a large share of the global DRAM mar-
ket [20]. We use the following notation to reference the mod-
ules: Myyww

i (M for the manufacturer, i for the numerical iden-
tifier, and yyww for the manufacture date in year and week).9
Some of the modules are indistinguishable from each other in
terms of the manufacturer, manufacture date, and chip type
(e.g., A3-5). We collectively refer to such a group of modules
as a family. For multi-rank modules, only the first rank is re-
flected in Table 3, which is also the only rank that we test. We
will use the terms module and rank interchangeably.

6. Characterization Results
We now present the results from our characterization study.

Section 6.1 explains how the number of disturbance errors in
a module varies greatly depending on its manufacturer and
manufacture date. Section 6.2 confirms that repeatedly acti-
vating a row is indeed the source of disturbance errors. In ad-
dition, we also measure the minimum number of times a row
must be activated before errors start to appear. Section 6.3
shows that the errors induced by such a row (i.e., the aggres-
sor row) are predominantly localized to two other rows (i.e.,
the victim rows). We then provide arguments for why the vic-
tim rows are likely to be the immediate neighbors. Section 6.4
demonstrates that disturbance errors affect only the charged
cells, causing them to lose data by becoming discharged.

6.1. Disturbance Errors are Widespread
For every module in Table 3, we tried to induce disturbance

errors by subjecting them to two runs of TestBulk:
1. TestBulk(55ns, 64ms, RowStripe)
2. TestBulk(55ns, 64ms, �RowStripe)

If a cell experienced an error in either of the runs, we refer to
it as a victim cell for that module. Interestingly, virtually no
cell in any module had errors in both runs — meaning that the
number of errors summed across the two runs is equal to the
number of unique victims for a module.10 (This is an impor-
tant observation that will be examined further in Section 6.4.)

For each family of modules, three right columns in Table 3
report the avg/min/max number of victims among the mod-
ules belonging to the family. As shown in the table, we were
able to induce errors in all but 19 modules, most of which
are also the oldest modules from each manufacturer. In fact,
there exist date boundaries that separate the modules with er-
rors from those without. For A, B, and C, their respective date

8We tried to avoid third-party modules since they sometimes obfuscate
the modules, making it difficult to determine the actual chip manufacturer or
the exact manufacture date. Modules B14-31 are engineering samples.

9Manufacturers do not explicitly provide the technology node of the
chips. Instead, we interpret recent manufacture dates and higher die versions
as rough indications of more advanced process technology.

10In some of the B modules, there were some rare victim cells (�15) that
had errors in both runs. We will revisit these cells in Section 6.3.

boundaries are 2011-24, 2011-37, and 2010-26. Except for
A42, B13, and C6, every module manufactured on or after these
dates exhibits errors. These date boundaries are likely to in-
dicate process upgrades since they also coincide with die ver-
sion upgrades. Using manufacturer B as an example, 2Gb�8
chips before the boundary have a die version of C, whereas
the chips after the boundary (except B13) have die versions of
either D or E . Therefore, we conclude that disturbance er-
rors are a relatively recent phenomenon, affecting almost all
modules manufactured within the past 3 years.

Using the data from Table 3, Figure 3 plots the normal-
ized number of errors for each family of modules versus their
manufacture date. The error bars denote the minimum and
maximum for each family. From the figure, we see that mod-
ules from 2012 to 2013 are particularly vulnerable. For each
manufacturer, the number of victims per 109 cells can reach
up to 5:9 � 105, 1:5 � 105, and 1:9 � 104. Interestingly, Fig-
ure 3 reveals a jigsaw-like trend in which sudden jumps in the
number of errors are followed by gradual descents. This may
occur when a manufacturer migrates away from an old-but-
reliable process to a new-but-unreliable process. By making
adjustments over time, the new process may eventually again
become reliable — which could explain why the most recent
modules from manufacturer A (A42-43) have little to no errors.

2008 2009 2010 2011 2012 2013 2014
Module Manufacture Date

0

100

101

102

103

104

105

106

E
rr

or
s

pe
r1

09
C

el
ls

A Modules B Modules C Modules

Figure 3. Normalized number of errors vs. manufacture date

6.2. Access Pattern Dependence
So far, we have demonstrated disturbance errors by repeat-

edly opening, reading, and closing the same row. We express
this access pattern using the following notation, where N is a
large number: (open–read–close)N. However, this is not the
only access pattern to induce errors. Table 4 lists a total of
four different access patterns, among which two induced er-
rors on the modules that we tested: A23, B11, and C19. These
three modules were chosen because they had the most errors
(A23 and B11) or the second most errors (C19) among all mod-
ules from the same manufacturer. What is in common be-
tween the first two access patterns is that they open and close
the same row repeatedly. The other two, in contrast, do so just
once and did not induce any errors. From this we conclude
that the repeated toggling of the same wordline is indeed the
cause of disturbance errors.11

11For write accesses, a row cannot be opened and closed once every tRC
due to an extra timing constraint called tWR (write recovery time) [34]. As a
result, the second access pattern in Table 4 induces fewer errors.

6

Access Pattern Disturbance Errors?

1. (open–read–close)N Yes
2. (open–write–close)N Yes
3. open–readN –close No
4. open–writeN –close No

Table 4. Access patterns that induce disturbance errors

Refresh Interval (RI). As explained in Section 5, our tests
open a row once every 55ns. For each row, we sustain this
rate for the full duration of an RI (default: 64ms). This is
so that the row can maximize its disturbance effect on other
cells, causing them to leak the most charge before they are
next refreshed. As the RI is varied between 10–128ms, Fig-
ure 4 plots the numbers of errors in the three modules. Due
to time limitations, we tested only the first bank. For shorter
RIs, there are fewer errors due to two reasons: (i) a victim cell
has less time to leak charge between refreshes; (ii) a row is
opened fewer times between those refreshes, diminishing the
disturbance effect it has on the victim cells. At a sufficiently
short RI — which we refer to as the threshold refresh inter-
val (RIth) — errors are completely eliminated not in just the
first bank, but for the entire module. For each family of mod-
ules, the rightmost column in Table 3 reports the minimum
RIth among the modules belonging to the family. The family
with the most victims at RI D 64ms is also likely to have the
lowest RIth: 8.2ms, 9.8ms, and 14.7ms. This translates into
7.8�, 6.5�, and 4.3� increase in the frequency of refreshes.

0 16 32 48 64 80 96 112 128
Refresh Interval (ms)

0
100
101
102
103
104
105
106
107
108

E
rr

or
s

A1240
23 B1146

11 C1223
19

yA = 4.39e-6× x6.23

yB = 1.23e-8× x7.3

yC = 8.11e-10× x7.3

Figure 4. Number of errors as the refresh interval is varied

Activation Interval (AI). As the AI is varied between 55–
500ns, Figure 5 plots the numbers of errors in the three mod-
ules. (Only the first bank is tested, and the RI is kept constant
at 64ms.) For longer AIs, there are fewer errors because a row
is opened less often, thereby diminishing its disturbance ef-
fect. When the AI is sufficiently long, the three modules have
no errors: �500ns,�450ns, and�250ns. At the shortest AIs,
however, there is a notable reversal in the trend: B11 and C19
have fewer errors at 60ns than at 65ns. How can there be
fewer errors when a row is opened more often? This anomaly
can be explained only if the disturbance effect of opening a
row is weaker at 60ns than at 65ns. In general, row-coupling
effects are known to be weakened if the wordline voltage is
not raised quickly while the row is being opened [55]. The
wordline voltage, in turn, is raised by a circuit called the
wordline charge-pump [38], which becomes sluggish if not

given enough time to “recover” after performing its job.12
When a wordline is raised every 60ns, we hypothesize that
the charge-pump is unable to regain its full strength by the
end of each interval, which leads to a slow voltage transition
on the wordline and, ultimately, a weak disturbance effect.
In contrast, an AI of 55ns appears to be immune to this phe-
nomenon, since there is a large jump in the number of errors.
We believe this to be an artifact of how our memory controller
schedules refresh commands. At 55ns, our memory controller
happens to run at 100% utilization, meaning that it always has
a DRAM request queued in its buffer. In an attempt to min-
imize the latency of the request, the memory controller de-
prioritizes a pending refresh command by �64us. This tech-
nique is fully compliant with the DDR3 DRAM standard [34]
and is widely employed in general-purpose processors [31].
As a result, the effective refresh interval is slightly length-
ened, which again increases the number of errors.

0 50 100 150 200 250 300 350 400 450 500
Activation Interval (ns)

0

100

101

102

103

104

105

106

107

E
rr

or
s

A1240
23 B1146

11 C1223
19

yA = 5.63e6×1.04-x

yB = 1.06e6×1.04-x

yC = 1.90e5×1.05-x

Figure 5. Number of errors as the activation interval is varied

Number of Activations. We have seen that disturbance
errors are heavily influenced by the lengths of RI and AI. In
Figure 6, we compare their effects by superimposing the two
previous figures on top of each other. Both figures have been
normalized onto the same x-axis whose values correspond to
the number of activations per refresh interval: RI=AI.13 (Only
the left-half is shown for Figure 4, where RI � 64ms.) In
Figure 6, the number of activations reaches a maximum of
1:14� 106 (D64ms/55ns) when RI and AI are set to their de-
fault lengths. At this particular point, the numbers of errors
between the two studies degenerate to the same value. It is
clear from the figure that fewer activations induce fewer er-
rors. For the same number of activations, having a long RI
and a long AI is likely to induce more errors than having a
short RI and a short AI. We define the threshold number of
activations (Nth) as the minimum number of activations that
is required to induce an error when RID64ms. The three mod-
ules (for only their first banks) have the following values for
Nth: 139K, 155K, and 284K.

12The charge-pump “up-converts” the DRAM chip’s supply voltage into
an even higher voltage to ensure that the wordline’s access-transistors are
completely switched on. A charge-pump is essentially a large reservoir of
charge which is slowly refilled after being tapped into.

13The actual formula we used is (RI � 8192 � tRFC/=AI, where tRFC
(refresh cycle time) is the timing constraint between a REF and a subsequent
ACT to the same module [34]. Our testing platform sets tRFC to 160ns, which
is a sufficient amount of time for all of our modules.

7

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Activations per RI (millions)

0

100

101

102

103

104

105

106

107

E
rr

or
s

Variable RI:
Variable AI:

A1240
23

A1240
23

B1146
11

B1146
11

C1223
19

C1223
19

Shorter RI←−−−−−−− 64ms
Longer AI←−−−−−−− 55ns

Figure 6. Number of errors vs. number of activations

6.3. Address Correlation: Aggressor & Victim

Most rows in A23, B11, and C19 have at least one cell that
experienced an error: 100%, 99.96%, and 41.54%. We ana-
lyzed the addresses of such victim cells to determine whether
they exhibit any spatial locality. We were unable to identify
any distinct pattern or skew. By chance, however, some vic-
tim cells could still end up being located near each other. For
the three modules, Table 5 shows how many 64-bit words
in their full address-space (0–2GB) contain 1, 2, 3, or 4
victim cells. While most words have just a single victim,
there are also some words with multiple victims. This has
an important consequence for error-correction codes (ECC).
For example, SECDED (single error-correction, double error-
detection) can correct only a single-bit error within a 64-bit
word. If a word contains two victims, however, SECDED
cannot correct the resulting double-bit error. And for three or
more victims, SECDED cannot even detect the multi-bit er-
ror, leading to silent data corruption. Therefore, we conclude
that SECDED is not failsafe against disturbance errors.

Module
Number of 64-bit words with X errors

X D 1 X D 2 X D 3 X D 4

A23 9;709;721 181;856 2;248 18
B11 2;632;280 13;638 47 0
C19 141;821 42 0 0

Table 5. Uncorrectable multi-bit errors (in bold)

Most rows in A23, B11, and C19 cause errors when they are
repeatedly opened. We refer to such rows as aggressor rows.
We exposed the aggressor rows in the modules by subjecting
them to two runs of TestEach for only the first bank:

1. TestEach(55ns, 64ms, RowStripe)
2. TestEach(55ns, 64ms, �RowStripe)

The three modules had the following numbers of aggressor
rows: 32768, 32754, and 15414. Considering that a bank in
the modules has 32K rows, we conclude that large fractions
of the rows are aggressors: 100%, 99.96%, and 47.04%.

Each aggressor row can be associated with a set of victim
cells that were disturbed by the aggressor during either of the
two tests. Figure 7 plots the size distribution of this set for

the three modules. Aggressor rows in A23 are the most potent,
disturbing as many as 110 cells at once. (We cannot explain
the two peaks in the graph.) On the other hand, aggressors in
B11 and C19 can disturb up to 28 and 5 cells, respectively.

0 10 20 30 40 50 60 70 80 90 100 110 120
Victim Cells per Aggressor Row

0
100
101
102
103
104
105

C
ou

nt

A1240
23 B1146

11 C1223
19

Figure 7. How many cells are affected by an aggressor row?

Similarly, we can associate each aggressor row with a set
of victim rows to which the victim cells belong. Figure 8 plots
the size distribution of this set. We see that the victim cells
of an aggressor row are predominantly localized to two rows
or less. In fact, only a small fraction of aggressor rows affect
three rows or more: 2.53%, 0.0122%, and 0.00649%.

1 2 3 4 5 6 7 8 9 10
Victim Rows per Aggressor Row

0
100
101
102
103
104
105

C
ou

nt
A1240

23 B1146
11 C1223

19

Figure 8. How many rows are affected by an aggressor row?

To see whether any correlation exists between the ad-
dress of an aggressor row and those of its victim rows, we
formed every possible pair between them. For each such
pair, we then computed the row-address difference as fol-
lows: VictimRowaddr � AggressorRowaddr: The histogram of
these differences is shown in Figure 9. It is clear from the
figure that an aggressor causes errors in rows only other than
itself. This is understandable since every time an aggressor is
opened and closed, it also serves to replenish the charge in all
of its own cells (Section 2.4). Since the aggressor’s cells are
continuously being refreshed, it is highly unlikely that they
could leak enough charge to lose their data.

≤-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8≤
Row Address Difference

0
100
101
102
103
104
105
106

C
ou

nt

A1240
23 B1146

11 C1223
19

Figure 9. Which rows are affected by an aggressor row?

8

For all three modules, Figure 9 shows strong peaks at ˙1,
suggesting that an aggressor and its victims are likely to have
consecutive row-addresses, i.e., they are logically adjacent.
Being logically adjacent, however, does not always imply
that the rows are placed next to each other on the silicon die,
i.e., physically adjacent. Although every logical row must be
mapped to some physical row, it is entirely up to the DRAM
manufacturer to decide how they are mapped [65]. In spite
of this, we hypothesize that aggressors cause errors in their
physically adjacent rows due to three reasons.

� Reason 1. Wordline voltage fluctuations are likely to place
the greatest electrical stress on the immediately neighbor-
ing rows [49, 55].
� Reason 2. By definition, a row has only two immediate

neighbors, which may explain why disturbance errors are
localized mostly to two rows.
� Reason 3. Logical adjacency may highly correlate with

physical adjacency, which we infer from the strong peaks
at˙1 in Figure 9.

However, we also see discrepancies in Figures 8 and 9,
whereby an aggressor row appears to cause errors in non-
adjacent rows. We hypothesize that this is due to two reasons.

� Reason 1. In Figure 8, some aggressors affect more than
just two rows. This may be an irregularity caused by re-
mapped rows. Referring back to Figure 2 (Section 2.1),
the i th “row” of a rank is formed by taking the i th row
in each chip and concatenating them. But if the row in
one of the chips is faulty, the manufacturer re-maps it to a
spare row (e.g., i�j) [28]. In this case, the i th “row” has
four immediate neighbors: i˙1th rows in seven chips and
j˙1th rows in the re-mapped chip.
� Reason 2. In Figure 9, some aggressors affect rows that

are not logically-adjacent: e.g., side peaks at ˙3 and ˙7.
This may be an artifact of manufacturer-dependent map-
ping, where some physically-adjacent rows have logical
row-addresses that differ by ˙3 or ˙7 — for example,
when the addresses are gray-encoded [65]. Alternatively,
it could be that aggressors affect rows farther away than
the immediate neighbors — a possibility that we cannot
completely rule out. However, if that were the case, then
it would be unlikely for the peaks to be separated by gaps
at˙2,˙4, and˙6.14

Double Aggressor Rows. Most victim cells are disturbed
by only a single aggressor row. However, there are some vic-
tim cells that are disturbed by two different aggressor rows. In
the first bank of the three modules, the numbers of such vic-
tim cells were 83, 2, and 0. In module A23, for example, the
victim cell at (row 1464, column 50466) had a ‘1’�‘0’ error
when either row 1463 or row 1465 was toggled. In mod-
ule B11, the victim cell at (row 5907, column 32087) had a
‘0’�‘1’ error when row 5906 was toggled, whereas it had
a ‘1’�‘0’ error when row 5908 was toggled. Within these
two modules respectively, the same trend applies to the other
victim cells with two aggressor rows. Interestingly, the two

14Figure 9 presents further indications of re-mapping, where some mod-
ules have non-zero values for˙8 or beyond. Such large differences — which
in some cases reach into the thousands — may be caused when a faulty row
is re-mapped to a spare row that is far away, which is typically the case [28].

victim cells in module B11 with two aggressor rows were also
the same cells that had errors for both runs of the test pair
described in Section 6.1. These cells were the only cases in
which we observed both ‘0’�‘1’ and ‘1’�‘0’ errors in the
same cell. Except for such rare exceptions found only in B
modules, every other victim cell had an error in just a single
preferred direction, for reasons we next explain.

6.4. Data Pattern Dependence
Until now, we have treated all errors equally without mak-

ing any distinction between the two different directions of
errors: ‘0’�‘1’. When we categorized the errors in Ta-
ble 3 based on their direction, an interesting trend emerged.
Whereas A modules did not favor one direction over the other,
B and C modules heavily favored ‘1’�‘0’ errors. Averaged
on a module-by-module basis, the relative fraction of ‘1’�‘0’
errors is 49.9%, 92.8%, and 97.1% for A, B, and C.15

The seemingly asymmetric nature of disturbance errors is
related to an intrinsic property of DRAM cells called orien-
tation. Depending on the implementation, some cells repre-
sent a logical value of ‘1’ using the charged state, while other
cells do so using the discharged state — these cells are re-
ferred to as true-cells and anti-cells, respectively [44]. If a
true-cell loses charge, it experiences a ‘1’�‘0’ error. When
we profiled two modules (B11 and C19), we discovered that
they consist mostly of true-cells by a ratio of 1000s-to-1.16
For these two modules, the dominance of true-cells and their
‘1’�‘0’ errors imply that victim cells are most likely to lose
charge when they are disturbed. The same conclusion also ap-
plies to A23, whose address-space is divided into large swaths
of true- and anti-cells that alternate every 512 rows. For this
module, we found that ‘1’�‘0’ errors are dominant (>99.8%)
in rows where true-cells are dominant: rows 0–511, 1024–
1535, 2048–2559, � � � . In contrast, ‘0’�‘1’ errors are domi-
nant (>99.7%) in the remainder of the rows where anti-cells
are dominant. Regardless of its orientation, a cell can lose
charge only if it was initially charged — explaining why a
given cell did not have errors in both runs of the test in Sec-
tion 6.1. Since the two runs populate the module with inverse
data patterns, a cell cannot be charged for both runs.

Table 6 reports the numbers of errors that were induced in
three modules using four different data patterns and their in-
verses: Solid, RowStripe, ColStripe, and Checkered. Among
them, RowStripe (even/odd rows ‘0’s/‘1’s) induces the most
errors for A23 and B11, as well as the second most errors for
C19. In contrast, Solid (all ‘0’s) has the fewest errors for all
three modules by an order of magnitude or more. Such a large
difference cannot be explained if the requirements for a dis-
turbance error are only two-fold: (i) a victim cell is in the
charged state, and (ii) its aggressor row is toggled. This is
because the same two requirements are satisfied by all four
pairs of data patterns. Instead, there must be other factors at
play than just the coupling of a victim cell with an aggressor
wordline. In fact, we discovered that the behavior of most

15For manufacturer C, we excluded modules with a die version of B.
Unlike other modules from the same manufacturer, these modules had errors
that were evenly split between the two directions.

16At 70ıC, we wrote all ‘0’s to the module, disabled refreshes for six
hours and read out the module. We then repeated the procedure with all ‘1’s.
A cell was deemed to be true (or anti) if its outcome was ‘0’ (or ‘1’) for both
experiments. We could not resolve the orientation of every cell.

9

victim cells is correlated with the data stored in some other
cells.17 A victim cell may have aggressor cell(s) — typically
residing in the aggressor row — that must be discharged for
the victim to have an error. A victim cell may also have pro-
tector cell(s) — typically residing in either the aggressor row
or the victim row — that must be charged or discharged for
the victim to have a lower probability of having an error. In
its generalized form, disturbance errors appear to be a com-
plicated “N-body” phenomenon involving the interaction of
multiple cells, the net result of which would only explain the
differences in Table 6.

Module
TestBulk(DP)C TestBulk(�DP)

Solid RowStripe ColStripe Checkered

A23 112;123 1;318;603 763;763 934;536
B11 12;050 320;095 9;610 302;306
C19 57 20;770 130 29;283

Table 6. Number of errors for different data patterns

7. Sensitivity Results
Errors are Mostly Repeatable. We subjected three mod-

ules to ten iterations of testing, where each iteration consists
of the test pair described in Section 6.1. Across the ten itera-
tions, the average numbers of errors (for only the first bank)
were the following: 1.31M, 339K, and 21.0K. There were
no iterations that deviated by more than ˙0:25% from the
average for all three modules. The ten iterations revealed
the following numbers of unique victim cells: 1.48M, 392K,
and 24.4K. Most victim cells were repeat offenders, meaning
that they had an error in every iteration: 78.3%, 74.4%, and
73.2%. However, some victim cells had an error in just a sin-
gle iteration: 3.14%, 4.86%, and 4.76%. This implies that
an exhaustive search for every possible victim cell would re-
quire a large number of iterations, necessitating several days
(or more) of continuous testing. One possible way to reduce
the testing time is to increase the RI beyond the standardized
value of 64ms as we did in Figure 4 (Section 6.2). However,
multiple iterations could still be required since a single itera-
tion at RID128ms does not provide 100% coverage of all the
victim cells at RID64ms: 99.77%, 99.87%, and 99.90%.

Victim Cells ¤Weak Cells. Although the retention time
of every DRAM cell is required to be greater than the 64ms
minimum, different cells have different retention times. In
this context, the cells with the shortest retention times are re-
ferred to as weak cells [45]. Intuitively, it would appear that
the weak cells are especially vulnerable to disturbance errors
since they are already leakier than others. On the contrary,
we did not find any strong correlation between weak cells and
victim cells. We searched for a module’s weak cells by nei-
ther accessing nor refreshing a module for a generous amount
of time (10 seconds) after having populated it with either all
‘0’s or all ‘1’s. If a cell was corrupted during this procedure,
we considered it to be a weak cell [45]. In total, we were able
to identify �1M weak cells for each module (984K, 993K,
and 1.22M), which is on par with the number of victim cells.

17We comprehensively tested the first 32 rows in module A19 using hun-
dreds of different random data patterns. Through statistical analysis on the
experimental results, we were able to identify almost certain correlations be-
tween a victim cell and the data stored in some other cells.

However, only a few weak cells were also victim cells: 700,
220, and 19. Therefore, we conclude that the coupling path-
way responsible for disturbance errors may be independent of
the process variation responsible for weak cells.

Not Strongly Affected by Temperature. When temper-
ature increases by 10ıC, the retention time for each cell is
known to decrease by almost a factor of two [39, 45]. To
see whether this would drastically increase the number of er-
rors, we ran a single iteration of the test pair for the three
modules at 70˙2.0ıC, which is 20ıC higher than our default
ambient temperature. Compared to an iteration at 50ıC, the
number of errors did not change greatly: C10.2%, �0.553%,
andC1.32%. We also ran a single iteration of the test pair for
the three modules at 30˙2.0ıC with similar results: �14.5%,
C2.71%, and �5.11%. From this we conclude that distur-
bance errors are not strongly influenced by temperature.

8. Solutions to Disturbance Errors
We examine seven solutions to tolerate, prevent, or mit-

igate disturbance errors. Each solution makes a different
trade-off between feasibility, cost, performance, power, and
reliability. Among them, we believe our seventh and last solu-
tion, called PARA, to be the most efficient and low-overhead.
Section 8.1 discusses each of the first six solutions. Sec-
tion 8.2 analyzes our seventh solution (PARA) in detail.

8.1. Six Potential Solutions
1. Make better chips. Manufacturers could fix the problem

at the chip-level by improving circuit design. However, the
problem could resurface when the process technology is up-
graded. In addition, this may get worse in the future as cells
become smaller and more vulnerable.

2. Correct errors. Server-grade systems employ ECC mod-
ules with extra DRAM chips, incurring a 12.5% capacity
overhead. However, even such modules cannot correct multi-
bit disturbance errors (Section 6.3). Due to their high cost,
ECC modules are rarely used in consumer-grade systems.

3. Refresh all rows frequently. Disturbance errors can be
eliminated for sufficiently short refresh intervals (RI � RIth)
as we saw in Section 6.2. However, frequent refreshes also
degrade performance and energy-efficiency. Today’s mod-
ules already spend 1.4–4.5% of their time just performing
refreshes [34]. This number would increase to 11.0–35.0%
if the refresh interval is shortened to 8.2ms, which is required
by A20 (Table 3). Such a high overhead is unlikely to be ac-
ceptable for many systems.

4. Retire cells (manufacturer). Before DRAM chips are
sold, the manufacturer could identify victim cells and re-map
them to spare cells [28]. However, an exhaustive search for
all victim cells could take several days or more (Section 7).
In addition, if there are many victim cells, there may not be
enough spare cells for all of them.

5. Retire cells (end-user). The end-users themselves could
test the modules and employ system-level techniques for
handling DRAM reliability problems: disable faulty ad-
dresses [2, 27, 62, 67], re-map faulty addresses to reserved
addresses [52, 53], or refresh faulty addresses more fre-
quently [44, 67]. However, the first/second approaches are in-
effective when every row in the module is a victim row (Sec-
tion 6.3). On the other hand, the third approach is inefficient
since it always refreshes the victim rows more frequently —

10

even when the module is not being accessed at all. In all three
approaches, the end-user pays for the cost of identifying and
storing the addresses of the aggressor/victim rows.

6. Identify “hot” rows and refresh neighbors. Perhaps the
most intuitive solution is to identify frequently opened rows
and refresh only their neighbors. The challenge lies in mini-
mizing the hardware cost to identify the “hot” rows. For ex-
ample, having a counter for each row would be too expensive
when there are millions of rows in a system.18 The gener-
alized problem of identifying frequent items (from a stream
of items) has been extensively studied in other domains. We
applied a well-known method [37] and found that while it re-
duces the number of counters, it also requires expensive oper-
ations to query the counters (e.g., highly-associative search).
We also analyzed approximate methods which further reduce
the storage requirement: Bloom Filters [11], Morris Coun-
ters [50], and variants thereof [18, 21, 66]. These approaches,
however, rely heavily on hash functions and, therefore, in-
troduce hash collisions. Whenever one counter exceeds the
threshold value, many rows are falsely flagged as being “hot,”
leading to a torrent of refreshes to all of their neighbors.

8.2. Seventh Solution: PARA
Our main proposal to prevent DRAM disturbance errors is

a low-overhead mechanism called PARA (probabilistic adja-
cent row activation). The key idea of PARA is simple: every
time a row is opened and closed, one of its adjacent rows is
also opened (i.e., refreshed) with some low probability. If
one particular row happens to be opened and closed repeat-
edly, then it is statistically certain that the row’s adjacent rows
will eventually be opened as well. The main advantage of
PARA is that it is stateless. PARA does not require expen-
sive hardware data-structures to count the number of times
that rows have been opened or to store the addresses of the
aggressor/victim rows.

Implementation. PARA is implemented in the memory
controller as follows. Whenever a row is closed, the con-
troller flips a biased coin with a probability p of turning up
heads, where p � 1. If the coin turns up heads, the controller
opens one of its adjacent rows where either of the two adja-
cent rows are chosen with equal probability (p=2). Due to its
probabilistic nature, PARA does not guarantee that the adja-
cent will always be refreshed in time. Hence, PARA cannot
prevent disturbance errors with absolute certainty. However,
its parameter p can be set so that disturbance errors occur at
an extremely low probability — many orders of magnitude
lower than the failure rates of other system components (e.g.,
more than 1% of hard-disk drives fail every year [54, 59]).

Error Rate. We analyze PARA’s error probability by con-
sidering an adversarial access pattern that opens and closes a
row just enough times (Nth) during a refresh interval but no
more. Every time the row is closed, PARA flips a coin and
refreshes a given adjacent row with probability p=2. Since the
coin-flips are independent events, the number of refreshes to
one particular adjacent row can be modeled as a random vari-
able X that is binomially-distributed with parameters B(Nth,

18Several patent applications propose to maintain an array of counters
(“detection logic”) in either the memory controller [7, 8, 24] or in the DRAM
chips themselves [6, 9, 23]. If the counters are tagged with the addresses
of only the most recently activated rows, their number can be significantly
reduced [24].

p=2). An error occurs in the adjacent row only if it is never
refreshed during any of the Nth coin-flips (i.e., XD0). Such an
event has the following probability of occurring: .1�p=2/Nth .
When pD0.001, we evaluate this probability in Table 7 for
different values of Nth. The table shows two error probabili-
ties: one in which the adversarial access pattern is sustained
for 64ms and the other for one year. Recall from Section 6.2
that realistic values for Nth in our modules are in the range of
139K–284K. For pD0.001 and NthD100K, the probability of
experiencing an error in one year is negligible at 9:4� 10�14.

Duration NthD50K NthD100K NthD200K

64ms 1:4 � 10�11 1:9 � 10�22 3:6 � 10�44

1 year 6:8 � 10�3 9:4 � 10�14 1:8 � 10�35

Table 7. Error probabilities for PARA when pD0.001

Adjacency Information. For PARA to work, the memory
controller must know which rows are physically adjacent to
each other. This is also true for alternative solutions based on
“hot” row detection (Section 8.1). Without this information,
rows cannot be selectively refreshed, and the only safe resort
is to blindly refresh all rows in the same bank, incurring a
large performance penalty. To enable low-overhead solutions,
we argue for the manufacturers to disclose how they map logi-
cal rows onto physical rows.19 Such a mapping function could
possibly be as simple as specifying the bit-offset within the
logical row-address that is used as the least-significant-bit of
the physical row-address. Along with other metadata about
the module (e.g., capacity, and bus frequency), the mapping
function could be stored in a small ROM (called the SPD)
that exists on every DRAM module [33]. The manufacturers
should also disclose how they re-map faulty physical rows
(Section 6.3). When a faulty physical row is re-mapped, the
logical row that had mapped to it acquires a new set of phys-
ical neighbors. The SPD could also store the re-mapping
function, which specifies how the logical row-addresses of
those new physical neighbors can be computed. To account
for the possibility of re-mapping, PARA can be configured
to (i) have a higher value of p and (ii) choose a row to re-
fresh from a wider pool of candidates, which includes the re-
mapped neighbors in addition to the original neighbors.

Performance Overhead. Using a cycle-accurate DRAM
simulator, we evaluate PARA’s performance impact on 29
single-threaded workloads from SPEC CPU2006, TPC, and
memory-intensive microbenchmarks (We assume a reason-
able system setup [41] with a 4GHz out-of-order core and
dual-channel DDR3-1600.) Due to re-mapping, we conser-
vatively assume that a row can have up to ten different rows
as neighbors, not just two. Correspondingly, we increase the
value of p by five-fold to 0:005.20 Averaged across all 29
benchmarks, there was only a 0.197% degradation in instruc-
tion throughput during the simulated duration of 100ms. In
addition, the largest degradation in instruction throughput for
any single benchmark was 0.745%. From this, we conclude

19Bains et al. [6] make the same argument. As an alternative, Bains et
al. [7, 8] propose a new DRAM command called “targeted refresh”. When
the memory controller sends this command along with the target row address,
the DRAM chip is responsible for refreshing the row and its neighbors.

20We do not make any special considerations for victim cells with two
aggressor rows (Section 6.3). Although they could be disturbed by either
aggressor row, they could also be refreshed by either aggressor row.

11

that PARA has a small impact on performance, which we be-
lieve is justified by the (i) strong reliability guarantee and (ii)
low design complexity resulting from its stateless nature.

9. Other Related Work
Disturbance errors are a general class of reliability problem

that afflicts not only DRAM, but also other memory and stor-
age technologies: SRAM [16, 26, 40], flash [10, 12, 13, 19,
25], and hard-disk [36, 63, 68]. Van de Goor and de Neef [64]
present a collection of production tests that can be employed
by DRAM manufacturers to screen faulty chips. One such
test is the “hammer,” where each cell is written a thousand
times to verify that it does not disturb nearby cells. In 2013,
one test equipment company mentioned the “row hammer”
phenomenon in the context of DDR4 DRAM [48], the next
generation of commodity DRAM. To our knowledge, no pre-
vious work demonstrated and characterized the phenomenon
of disturbance errors in DRAM chips from the field.

10. Conclusion
We have demonstrated, characterized, and analyzed the

phenomenon of disturbance errors in modern commodity
DRAM chips. These errors happen when repeated accesses to
a DRAM row corrupts data stored in other rows. Based on our
experimental characterization, we conclude that disturbance
errors are an emerging problem likely to affect current and
future computing systems. We propose several solutions, in-
cluding a new stateless mechanism that provides a strong sta-
tistical guarantee against disturbance errors by probabilisti-
cally refreshing rows adjacent to an accessed row. As DRAM
process technology scales down to smaller feature sizes, we
hope that our findings will enable new system-level [51] ap-
proaches to enhance DRAM reliability.

Acknowledgments
We thank the reviewers and SAFARI members for their

feedback. We acknowledge the support of IBM, Intel, and
Qualcomm. This research was partially supported by ISTC-
CC, NSF (CCF 0953246, CCF 1212962, and CNS 1065112),
and SRC. Yoongu Kim is supported by an Intel fellowship.

References
[1] Memtest86+ v4.20. http://www.memtest.org.
[2] The GNU GRUB Manual. http://www.gnu.org/software/grub.
[3] Z. Al-Ars. DRAM Fault Analaysis and Test Generation. PhD thesis, TU Delft,

2005.
[4] Z. Al-Ars et al. DRAM-Specific Space of Memory Tests. In ITC, 2006.
[5] AMD. BKDG for AMD Family 15h Models 10h-1Fh Processors, 2013.
[6] K. Bains et al. Method, Apparatus and System for Providing a Memory Refresh.

US Patent App. 13/625,741, Mar. 27 2014.
[7] K. Bains et al. Row Hammer Refresh Command. US Patent App. 13/539,415,

Jan. 2 2014.
[8] K. Bains et al. Row Hammer Refresh Command. US Patent App. 14/068,677,

Feb. 27 2014.
[9] K. Bains and J. Halbert. Distributed Row Hammer Tracking. US Patent App.

13/631,781, Apr. 3 2014.
[10] R. Bez et al. Introduction to Flash Memory. Proc. of the IEEE, 91(4), 2003.
[11] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the ACM, 13(7), 1970.
[12] Y. Cai et al. Error Patterns in MLC NAND Flash Memory: Measurement, Char-

acterization, and Analysis. In DATE, 2012.
[13] Y. Cai et al. Program Interference in MLC NAND Flash Memory: Characteriza-

tion, Modeling and Mitigation. In ICCD, 2013.
[14] S. Y. Cha. DRAM and Future Commodity Memories. In VLSI Technology Short

Course, 2011.
[15] M.-T. Chao et al. Fault Models for Embedded-DRAM Macros. In DAC, 2009.
[16] Q. Chen et al. Modeling and Testing of SRAM for New Failure Mechanisms Due

to Process Variations in Nanoscale CMOS. In VLSI Test Symposium, 2005.
[17] P.-F. Chia et al. New DRAM HCI Qualification Method Emphasizing on Repeated

Memory Access. In Integrated Reliability Workshop, 2010.
[18] S. Cohen and Y. Matias. Spectral Bloom Filters. In SIGMOD, 2003.
[19] J. Cooke. The Inconvenient Truths of NAND Flash Memory. In Flash Memory

Summit, 2007.

[20] DRAMeXchange. TrendForce: 3Q13 Global DRAM Revenue Rises by 9%, Sam-
sung Shows Most Noticeable Growth, Nov. 12, 2013.

[21] L. Fan et al. Summary Cache: A Scalable Wide-Area Web Cache Sharing Proto-
col. Transactions on Networking, 8(3), 2000.

[22] J. A. Fifield and H. L. Kalter. Crosstalk-Shielded-Bit-Line DRAM. US Patent
5,010,524, Apr. 23, 1991.

[23] Z. Greenfield et al. Method, Apparatus and System for Determining a Count of
Accesses to a Row of Memory. US Patent App. 13/626,479, Mar. 27 2014.

[24] Z. Greenfield et al. Row Hammer Condition Monitoring. US Patent
App. 13/539,417, Jan. 2, 2014.

[25] L. M. Grupp et al. Characterizing Flash Memory: Anomalies, Observations, and
Applications. In MICRO, 2009.

[26] Z. Guo et al. Large-Scale SRAM Variability Characterization in 45 nm CMOS.
JSSC, 44(11), 2009.

[27] D. Henderson and J. Mitchell. IBM POWER7 System RAS, Dec. 2012.
[28] M. Horiguchi and K. Itoh. Nanoscale Memory Repair. Springer, 2011.
[29] R.-F. Huang et al. Alternate Hammering Test for Application-Specific DRAMs

and an Industrial Case Study. In DAC, 2012.
[30] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2012.
[31] Intel. 4th Generation Intel Core Processor Family Desktop Datasheet, 2013.
[32] K. Itoh. Semiconductor Memory. US Patent 4,044,340, Apr. 23, 1977.
[33] JEDEC. Standard No. 21C. Annex K: Serial Presence Detect (SPD) for DDR3

SDRAM Modules, Aug. 2012.
[34] JEDEC. Standard No. 79-3F. DDR3 SDRAM Specification, July 2012.
[35] M. K. Jeong et al. Balancing DRAM Locality and Parallelism in Shared Memory

CMP Systems. In HPCA, 2012.
[36] W. Jiang et al. Cross-Track Noise Profile Measurement for Adjacent-Track Inter-

ference Study and Write-Current Optimization in Perpendicular Recording. Jour-
nal of Applied Physics, 93(10), 2003.

[37] R. M. Karp et al. A Simple Algorithm for Finding Frequent Elements in Streams
and Bags. Transactions on Database Systems, 28(1), 2003.

[38] B. Keeth et al. DRAM Circuit Design. Fundamental and High-Speed Topics.
Wiley-IEEE Press, 2007.

[39] S. Khan et al. The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study. In SIGMETRICS, 2014.

[40] D. Kim et al. Variation-Aware Static and Dynamic Writability Analysis for
Voltage-Scaled Bit-Interleaved 8-T SRAMs. In ISLPED, 2011.

[41] Y. Kim et al. A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM. In ISCA, 2012.

[42] Y. Konishi et al. Analysis of Coupling Noise between Adjacent Bit Lines in
Megabit DRAMs. JSSC, 24(1), 1989.

[43] D. Lee et al. Tiered-Latency DRAM: A Low Latency and Low Cost DRAM
Architecture. In HPCA, 2013.

[44] J. Liu et al. RAIDR: Retention-Aware Intelligent DRAM Refresh. In ISCA, 2012.
[45] J. Liu et al. An Experimental Study of Data Retention Behavior in Modern DRAM

Devices: Implications for Retention Time Profiling Mechanisms. In ISCA, 2013.
[46] L. Liu et al. A Software Memory Partition Approach for Eliminating Bank-level

Interference in Multicore Systems. In PACT, 2012.
[47] J. A. Mandelman et al. Challenges and Future Directions for the Scaling of Dy-

namic Random-Access Memory (DRAM). IBM Journal of R&D, 46(2.3), 2002.
[48] M. Micheletti. Tuning DDR4 for Power and Performance. In MemCon, 2013.
[49] D.-S. Min et al. Wordline Coupling Noise Reduction Techniques for Scaled

DRAMs. In Symposium on VLSI Circuits, 1990.
[50] R. Morris. Counting Large Numbers of Events in Small Registers. Communica-

tions of the ACM, 21(10), 1978.
[51] O. Mutlu. Memory Scaling: A Systems Architecture Perspective. In MemCon,

2013.
[52] P. J. Nair et al. ArchShield: Architectural Framework for Assisting DRAM Scal-

ing by Tolerating High Error Rates. In ISCA, 2013.
[53] C. Nibby et al. Remap Method and Apparatus for a Memory System Which Uses

Partially Good Memory Devices. US Patent 4,527,251, July 2 1985.
[54] E. Pinheiro et al. Failure Trends in a Large Disk Drive Population. In FAST, 2007.
[55] M. Redeker et al. An Investigation into Crosstalk Noise in DRAM Structures. In

MTDT, 2002.
[56] K. Roy et al. Leakage Current Mechanisms and Leakage Reduction Techniques

in Deep-Submicrometer CMOS Circuits. Proc. of the IEEE, 91(2), 2003.
[57] K. Saino et al. Impact of Gate-Induced Drain Leakage Current on the Tail Distri-

bution of DRAM Data Retention Time. In IEDM, 2000.
[58] J. H. Saltzer and M. F. Kaashoek. Principles of Computer Design: An Introduc-

tion. Chapter 8, p. 58. Morgan Kaufmann, 2009.
[59] B. Schroeder and G. A. Gibson. Disk Failures in the Real World: What Does an

MTTF of 1,000,000 Hours Mean to You? In FAST, 2007.
[60] N. Suzuki et al. Coordinated Bank and Cache Coloring for Temporal Protection

of Memory Accesses. In ICESS, 2013.
[61] A. Tanabe et al. A 30-ns 64-Mb DRAM with Built-In Self-Test and Self-Repair

Function. JSSC, 27(11), 1992.
[62] D. Tang et al. Assessment of the Effect of Memory Page Retirement on System

RAS Against Hardware Faults. In DSN, 2006.
[63] Y. Tang et al. Understanding Adjacent Track Erasure in Discrete Track Media.

Transactions on Magnetics, 44(12), 2008.
[64] A. J. van de Goor and J. de Neef. Industrial Evaluation of DRAM Tests. In DATE,

1999.
[65] A. J. van de Goor and I. Schanstra. Address and Data Scrambling: Causes and

Impact on Memory Tests. In DELTA, 2002.
[66] B. Van Durme and A. Lall. Probabilistic Counting with Randomized Storage. In

IJCAI, 2009.
[67] R. Venkatesan et al. Retention-Aware Placement in DRAM (RAPID): Software

Methods for Quasi-Non-Volatile DRAM. In HPCA, 2006.
[68] R. Wood et al. The Feasibility of Magnetic Recording at 10 Terabits Per Square

Inch on Conventional Media. Transactions on Magnetics, 45(2), 2009.
[69] Xilinx. Virtex-6 FPGA Integrated Block for PCI Express, Mar. 2011.
[70] Xilinx. ML605 Hardware User Guide, Oct. 2012.
[71] Xilinx. Virtex-6 FPGA Memory Interface Solutions, Mar. 2013.
[72] J. H. Yoon et al. Flash & DRAM Si Scaling Challenges, Emerging Non-Volatile

Memory Technology Enablement. In Flash Memory Summit, 2013.
[73] T. Yoshihara et al. A Twisted Bit Line Technique for Multi-Mb DRAMs. In

ISSCC, 1988.

12

