®©) NTT Enterprisepp’

Postgres-XC: Write-Scalable
PostgreSQL Cluster

NTT Open Source Software Center
EnterpriseDB Corp.

Mar.16th, 2010 Postgres-XC Write-Scalable Cluster

\A/Wh A+
al

,-n
vvilid rJ

(‘

S
U
GW

<)

stgre

Write-scalable PostgreSQL cluster

— More than 3.4 performance scalability with five
servers, compared with pure PostgreSQL (DBT-1)

Synchronous multi-master configuration

— Any update to any master is visible from other
masters immediately.

Table location transparent
— Can continue to use the same applications.
— No change in transaction handling.

Based upon PostgreSQL
Same API to Apps. as PostgreSQL

Q
=)

Iavs varvidn cralalrili+yv)
vvuy WTItE-SCalidDility r
* Many application could be write-traffic

bottleneck such as —
— Access log in BLOG/SNS

— Mission critical systems like internet shopping site,
telephone customer billing, call information and
securities trade

* Now application has to deal with such write-
bottleneck using multi-database.

— Not distribution-transparent.

* As applications grow

— |t is desirable to make database distribution
transparent for write operations too.

C
-t

)

D

R |

PG-XC Kerver PG-XC Server
Coordinator Coordinator Coordinator " E R NGB
Data Node Data Node Data Node Add PG-XC servers as
needed

\

Coordinator

Data Node

é\ Communication among PG-XC servers
Global Transaction
Manager GTM

Mar.16th, 2010 Postgres-XC Write-Scalable Cluster

n IFI"L\
rJ |

+Artrivra
CIHITLTULULUIC

torac XC A
SIBIresS-AL A

* Shared-nothing architecture
— No shared disk
— No shared memory
— Only communication infrastructure

* Three Components
— GTM (Global Transaction Manager)

* Provide global transaction information to each transaction
— Transaction ID
— Snapshot
* Provide other global data to statements
— Sequence
— Time/Sysdate (under plan)
— Coordinator
e Parse statements and determine location of involved data
* Transfer statements for each data node (if needed)

* Application I/F
— Data Node

e Store actual data
e Execute statements from Coordinators

Postgres-XC also has Pooler
to reuse coordinator and
data node connections.

\A/TlhAay Arnnl -|- ~ANnc)
vvilid LI‘\lJ}J adalliVullo.

* Short transaction applications (DBT-1/2 etc.)

— Transactions can be executed in parallel in
multiple data nodes.

 Complicated data warehouse (DBT-3 etc.)

— Statement can be divided into several pieces
which can be executed in parallel in multiple data
nodes.

e (Statement handling not available yet.)

Ll~Avas + ~ +rilniiyAa FAaRlAc)
1T1UVV L U LITUULC LdVICO.

S

O

* Tables can be partitioned or replicated over PG-XC servers
according to application needs.

— Can select partitioning key.

— Rows will be partitioned according to the key value.
* Hash
* Range (future)
* Others (future)

— Transaction tables may be partitioned so that each transaction

can be executed in limited number of data nodes.
— Master tables may be replicated so that each transaction can
read row values locally.

— Table partitioning/replication is defined in the global catalog
maintained by the coordinator.

(- TNAN: A Unvs CArmANA~
UJiVEi. A INTY CUILTTPYU on

r_-'l-

e Extracted essential of transaction management
feature of PostgreSQL

— Unique Transaction ID (GXID, Global Transaction ID)
assignment,

— Gather transaction status from all the coordinators
and maintain snapshot data,

— Provide snapshot data to each transaction/statement.
e Extract global value providing feature such as

— Sequence
— Time/sysdate

FrAarvarn~Aanannte imuuahad tn A FranmecacdiAanm
(A |||JU| ClILO 11IVUIVCU |11 d LidlisdlUlLliVll
Statements
Results
Request/TX state

Global

Coordinator

Catalog

GXID, Global Snapshot

Data Node Data Node

Local Local
DEIE: Data

Mar.16th, 2010 Postgres-XC Write-Scalable Cluster

)
5
—t

%
Q)
e
(_/')
O

~“VID AanAd
N\IU dlllU

9
)
o,

O
L

* GXID
— Unique Transaction ID in the system

* Global Snapshot

— Includes snapshot information of transactions in other
coordinators.

-

e Data node can handle transactions from different
coordinators without consistency problem.

* Visibility is maintained as standalone PostgreSQL.

Mar.16th, 2010 Postgres-XC Write-Scalable Cluster 10

Typica

Coordinztor

Begin Trabsaction c e |

SOL Statement =

{(Global Tmmnn Manager)

i

(>-Snapshot Bag.

-k

G-Snapshot

Data Node
(1 —mn)

Term
GHID: Global Transaction ID
-Snapshot: Global Snapshot

*] GHID 15 obtammed only in the case of

*2 If isclation level 15 senalizable, G-

Snapshot 15 taken only once at the
beginming of the ransaction.

*3 Global Schema has an information to

SQL Fesult

Compouat

SO for each Data Node
with &-Snapshot

map global table name to local table name.

*4 Begin 15 155ued only to the datz node

mvolved 1 updates.

SQL Fesult

Prepare Comumit

*5 Plan can be sent to the Data Mode, not
statements. However, thus may not be
practical because Plam it=elf 1= lng and
considerable amount of code has to be

written.

Prepare Fesponse

*5 If onlyv one data node 1= involved m the

update, 2PC will not be usad.

Comrentional Comouit protocol will be

Comrnit

usad.

Comumit Response

Commit Report

Commit Response lf——

Mar.16th, 2010

Postgres-XC Write-Scalable Cluster

11

CAnild -
CUUIU

|\

 Depending on implementation
— Current Implementation

GTM

PG-2 Server

I

Snapshot Data

GTM Threads (1)

|

F 3

Lock

Coordinator Backends

]

0

Internet
domain
Socket

Y

F 3
Invoke | Terminate

| GTM Main Thread |

ry

Client Libra

Call

»

Coordinator

o

Applicable up to
five PG-2 servers
(DBT-1)

— Large snapshot size and number
— Too many interaction between GTM and Coordinators

Mar.16th, 2010

Postgres-XC Write-Scalable Cluster

12

CAanlld TR W
U | N

COUU UJ11Vi

* Proxy Implementation

N ClICTU

A ++41
C d LLI

o

F Iﬁ
O \C

PG-2 Server
GTM |
GTM Worker Threads (1} |
1 Proxy Worker Threads (*2) — Coordinator Backends
O |
] O]
- | O '
= g 5 © |3 5 <
: 5| =| § 3 > s EEW
a b 3| & & 3T c = =
=] e Internet Socket = ® ‘@ S S 5
2 - > 2 e |4 N ES 5 g
a Lock g & I] = -E B
5 = | |z £ 15 13 £9 z 8
© = & &} g5 S
E [P 2T P
w & @
— | £z
- L —_—
i
F 3 — L_| .
Invoke | Terminate :
Invoke Connection E
GTM Main Thread Terminate| assignment ‘
Connection !
Proxy Main Thread [#============s=scc=cc== -

* \ery good potential

#1 GTM Server Worker Thread is created when new connection from the proxy is accepted,
#2 Number of Proxy Worker Thread is specified when Proxy Main Thread is invoked.

— Request/Response grouping
— Single representative snapshot applied to multiple transactions
 Maybe applicable for more than ten PG-2 servers

Mar.16th, 2010

Postgres-XC Write-Scalable Cluster

13

nld TN
U Jilivli

O

("~ n v QCDNED
\ 0 cdorvuil.

* Simple to implement GTM standby

Checkpoint next starting
point (GXID and Sequence)

————>

GTM Master GTM Standby

Standby can failover the
master without referring to
GTM master information.

Mar.16th, 2010 Postgres-XC Write-Scalable Cluster 14

DBT-1 Performance Benchmark

DBT-1 schema change manually for partitioning
— DDL not yet unavailable

— Utilize key dependence

— Added joins to WHERE clauses if needed
* Could be handled automatically when DDL is supported

Three replicated tables

Seven partitioned tables

— Three partitioning keys

Item table is divided into item and inventory
— As found in new TPC-W spec.

DBT-1 Performance Benchmark (cont.1)

CUSTOMER ORDERS
o.ID —
c_ID _
C_UNAME [Lypfo_cp
C_PASSWD O_DATE
C_FNAME O_SUB_TOTAL
C_LIAME g_-]lf-'g);'AL
C_ADDR_ID -« 2 "
C_PHONE 7] O_SHIP_TYPE i
C EMALL O_SHIP_DATE Y
C_SINCE P it
C_LAST —> ¥
C_ LGN | E
/ “EXPIRATION—A | t
. c_DIS '
Partitioned - g
~BALANCE ¥
with ~_—| Cymo_puT >
C BIRTH |:
customer C_DATA :.
ID .
ADDRESS .
COUNTRY
ADDR_ID
ADDR_STREET1 co_Ip
ADDR_STREET2 CO_NAME
ADDR_CITY CO_CURRENCY
ADDR_STATE CO_EXCHANGE
ADDR_ZIP
ADDR CO_ID |-

Mar.16th, 2010

replicated

ORDER_LINE ITEM
oL_ID I_ID
oL_0_ID I_TITLE
oL_IID I_A_ID -
OL_QTY |_PUB_DATE
OL_DISCOUNT I_PUBLISHER
OL_COMMENT I_SUBJECT
|_DESC
I_RELATED[1-5]
|_THUMBNAIL
I_IMAGE
CC_XACTS I SRP
|_COST
CX_0_ID
CX_TYPE < sToCK €
CX_CC_NUM |_ISBN
CX_CC_NAME I|_PAGE
CX_EXPIRY I_BACKING
CX_AUTH_ID |_DIMENSION
CX_XACT_AMT
CX_XACT_DATE
s e AUTHOR
A_ID _
A_FNAME
A_LNAME
A_MNAME
A_DOB
A_BIO

Postgres-XC Write-Scalable Cluster

Partitioned
with Item
ID

16

DBT-1 Performance Benchmark (cont.?2)

* Shopping cart and Shopping cart line
— Partitioned using shopping cart ID

Performance Measurement Environment

Outside connection

Loader

192.168.16.76

192.168.16.77

192.168.16.78

192.168.16.79

Didn't use
Infiniband in the
measurement

1Gbps Ethernet
192.168.16.*

192.168.16.70

192.168.16.71

192.168.16.72

192.168.16.73

192.168.16.74

192.168.16.75

GTM

192.168.246.70

192.168.246.11

192.168.246.72

192.168.246.73

192.168.246.74

192.168.246.75

Coordinator

0

Mar.16th, 2010

Postgres-XC Write-Scalable Cluster

Infiniband
192 168.246 *

18

Throughput

Configuration Performance Relative to Relative to single
PostgreSQL node PG-2

Pure PostgreSQL 2500 TPS 1.32 or worse*
Single Node PG-2 1740 TPS 0.76 or better* 1
Five Node PG-2 8140 TPS 3.4 or better* 4.4 or better*

* Very good performance
e Scale factor is excellent
— May scale up to ten nodes.
* Nosignificant performance drop in single node PG-2.
* Does not scale linearly from single node to five nodes

— Additional communication among PG-2 servers
— Additional overhead by 2PC (maybe very small)

*Above score is the worst one, when original PostgreSQL setting consumes almost 100% CPU.
If original setting consumes less, scalability is better.

Current Implementation

Minimum feature to run DBT-1
— No backup/recovery
— Minimum error handling
— Use timeout to detect cross-node deadlocks

— Minimum SQL feature

* NoDDL
— Global catalog setup manually
— Manual table creation in each node

* Hash partitioning only
— Range partitioning not available yet
* No cross-node join (not necessary in DBT-1)
* No aggregate functions
* No "copy"
e Partitioning keys cannot be updated
— Need to relocate tuples.
* No consistent update of replicated tables

— DBT-1 does not update replicated tables
— Pgpool-ll methodology can be applied.

— 2PCimprovement

e Saved writes to state files

— Writes to state files occur if a transaction is left prepared and not committed or aborted at
checkpoints.

Ciidr1vr CcolINC
I ULuUl SOUCTO

e

Stabilize the code

— Continue to run with full load for days/weeks
Coordinator enhancement
Open the code

— Can GTM be used in other projects to harmonize multi-master
synchronously?

Integration with future PostgreSQL releases
— APIs?

— Hooks?

— Can reuse PostgreSQL binaries?

