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1. Introduction

Given a small category C and a C-diagram of spaces X, the colimit of the diagram
is a space colimX such that a map out of colimX corresponds to a collection of
maps, one from each space in the diagram, that “make all the triangles commute”.
The homotopy colimit hocolimX will be a space such that a map out of hocolimX
corresponds to a collection of maps, one from each space in the diagram, that
may not make any triangle commute, but which come along with homotopies be-
tween the maps which, if this were colimX, would actually commute, together with
“homotopies between the homotopies”, and “homotopies between the homotopies
between the homotopies”, etc.

Some simple examples of homotopy colimits:

• If C is the category · → · with two objects and a single non-identity map
that goes from the first object to the second, then a C-diagram in Top is
just a map f : X → Y , and the homotopy colimit of that diagram will be
the mapping cylinder of f , built from X × I and Y by gluing one end of
X×I to Y along f . If P is a space, then a map from that homotopy colimit
to P consists of a map αX : X → P , a map αY : Y → P , and a homotopy
from αX to the composition αY f .
• If C is the category · ← · → ·, then a C-diagram in Top is just a pair of

maps with the same domain,

Z X
f
//

g
oo Y

and the homotopy colimit of that diagram will be the union along X of
the mapping cylinders of f and g, built from X × I ∪X X × I (which is
homeomorphic to X× I), Y , and Z by gluing one end of X× I ∪XX× I to
Y along f and the other end to Z along g. If P is a space, then a map from
that homotopy colimit to P consists of maps αX : X → P , αY : Y → P ,
and αZ : Z → P together with a homotopy from αX to the composition
αY f and a homotopy from αX to the composition αZg.
• It gets more interesting when your small category C has two composable

maps neither of which is an identity map. If C is the category pictured as
· → · → ·, then there are three non-identity maps: the two pictured maps
plus their composition. A C-diagram in Top is a pair of composable maps

X
f
// Y

g
// Z

and the homotopy colimit of this diagram will have “higher dimension”
than the homotopy colimit of the previous examples: to build the homotopy
colimit, we start by taking the mapping cylinder of each of the three non-
identity maps f : X → Y , g : Y → Z, and gf : X → Z, and then, because
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gf is the composition of f and g, we add in X ×
∣∣∆[2]

∣∣, with each of the

three faces identified with the three cylinders X ×
∣∣∆[1]

∣∣, Y × ∣∣∆[1]
∣∣, and

X ×
∣∣∆[1]

∣∣ (where, for the second of those, we use the map f × 1|∆[1]| to

identify that face of X ×
∣∣∆[2]

∣∣ with Y ×
∣∣∆[1]

∣∣). If P is a space, then a
map from that homotopy colimit to P consists of

– maps αX : X → P , αY : Y → P , and αZ : Z → P together with
– a homotopy βf : X ×

∣∣∆[1]
∣∣→ P from αX to the composition αY f ,

– a homotopy βg : Y ×
∣∣∆[1]

∣∣→ P from αY to the composition αZg,

– a homotopy βgf : X×
∣∣∆[1]

∣∣→ P from αX to the composition αZ(gf),
and

– a homotopy γ : X×
∣∣∆[2]

∣∣→ P between homotopies whose restrictions
to the three faces equal βf , βg ◦ (f × 1|∆[1]|), and βgf .

The restriction of γ to one face is a homotopy from αX to αY f , and the
restriction to the next face is a homotopy from αY f to (αZg)f . The compo-
sition of those two homotopies is a homotopy from αX to (αZg)f , and the
restriction of γ to the third face is another homotopy from αX to αZ(gf);
the map γ is a homotopy between those two homotopies.
• As your small category C has longer strings of composable non-identity

maps, the homotopy colimit will be built of “higher dimensional” parts.

For example, if your diagram is of the form W
f−→ X

g−→ Y
h−→ Z, then

there will be a copy of W ×
∣∣∆[3]

∣∣ built into the homotopy colimit, with
its four faces identified with the 2-dimensional parts associated with each

of X
g−→ Y

h−→ Z, W
gf−→ Y

h−→ Z, W
f−→ X

hg−→ Z, and W
f−→ X

g−→ Y .

If C is a small category and X is a C-diagram of spaces, then hocolimX will
built from

• the space Xα for every object α of C,
• the space Xα×

∣∣∆[1]
∣∣ for every non-identity map α→ β in C with domain

α,
• the space Xα×

∣∣∆[2]
∣∣ for every pair of composable non-identity maps α→

β → γ in C starting at α, and, for all n > 0,
• the space Xα ×

∣∣∆[n]
∣∣ for every string of n composable non-identity maps

in C starting at α.

We keep track of all of these strings of composable arrows using (α ↓C)
op

, the
opposite of the category of objects of C under α (see Definition 2.3) and its nerve
N(α ↓C)

op
(see Example 2.4).

2. Nerves of overcategories and undercategories

Definition 2.1. If C is a small category, then the nerve of C is the simplicial set
NC in which an n-simplex σ is a diagram in C of the form

α0
σ0−→ α1

σ1−→ · · · σn−1−−−→ αn
Draft: November 23, 2014
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with the face and degeneracy maps defined by

diσ =


α1

σ1−→ α2
σ2−→ · · · σn−1−−−→ αn if i = 0

α0
σ0−→ · · · σi−2−−−→ αi−1

σiσi−1−−−−→ αi+1
σi+1−−−→ · · · σn−1−−−→ αn if 0 < i < n

α0
σ0−→ α1

σ1−→ · · · σn−2−−−→ αn−1 if i = n

(2.2)

siσ = α0
σ0−→ · · · σi−1−−−→ αi

1αi−−→ αi
σi−→ αi+1

σi+1−−−→ · · · σn−1−−−→ αn .

If F : C → D is a functor between small categories, then F induces a map of
simplicial sets NF : NC→ ND defined by

NF (α0
σ0−→ α1

σ1−→ · · · σn−1−−−→ αn) = Fα0
Fσ0−−→ Fα1

Fσ1−−→ · · · Fσn−1−−−−→ Fαn .

2.1. Undercategories and their nerves.

Definition 2.3. If C is a small category and α is an object of C, then the category
of of objects of C under α (α ↓C) is the category in which an object is a pair (β, σ)
where β is an object of C and σ is a map α → β in C, and a morphism from the
object (β, σ) to the object (β′, σ′) is a map τ : β → β′ that makes the triangle

α

σ

��

σ′

��

β
τ

// β′ .

commute.
The category (α ↓C)

op
is the opposite of the category of objects of C under α. An

object of (α ↓C)
op

is also a pair (β, σ) as above, but a morphism in (α ↓C)
op

from
the object (β, σ) to the object (β′, σ′) is a map τ : β′ → β that makes the triangle

α

σ

��

σ′

��

β β′ .
τ

oo

commute.

Example 2.4. Let C be a small category. If α is an object of C, then an n-simplex
of N(α ↓C) is a diagram of the form

α

vv }} �� ((
α0

// α1
// α2

// · · · // αn

and an n-simplex of N(a ↓C)
op

is a diagram of the form

α

vv }} ��

σ

((
α0 α1
oo α2

oo · · ·oo αn .oo

We will often denote such a simplex by the ordered pair
(
(α0 ← α1 ← · · · ← αn) ∈

C, σ : α→ αn
)
, since that pair determines the entire diagram.

Definition 2.5. Let C be a small category.
Draft: November 23, 2014
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(1) (−↓C)
op

is the the Cop-diagram of categories that on an object α of C

takes the value (α ↓C)
op

, and that takes the map σ : α→ α′ to the functor
σ∗ : (α′ ↓C)

op → (α ↓C)
op

that takes the object τ : α′ → β of (α′ ↓C)
op

to

the object of (α ↓C)
op

that is the composition α
σ−→ α′

τ−→ β.
(2) N(−↓C)

op
is the Cop-diagram of simplicial sets that on an object α of C

takes the value N(α ↓C)
op

, and that takes the map σ : α → α′ to the map
of simplicial sets σ∗ : N(α′ ↓C)

op → N(α ↓C)
op

.

Remark 2.6. Our definition of the homotopy colimit functor will use the Cop-
diagram of simplicial sets N(−↓C)

op
, rather than the Cop-diagram N(−↓C). It

might have been simpler to define a homotopy colimit functor using the diagram
N(−↓C), but there are technical advantages to using the nerve of the opposites of
undercategories (see Theorem 11.5).

Note also that both N(−↓C) and N(−↓C)
op

are Cop-diagrams of simplicial sets,
and not C-diagrams. It’s not the fact that we’re using N(−↓C)

op
, the nerve of the

opposites of the undercategories, that causes the diagram to be contravariant in C.

2.2. Undercategories of functors.

Definition 2.7. If F : C → D is a functor between small categories and β is an
object of D, then the category (β ↓F ) of objects of C under β is the category in which
an object is a pair (α, σ) where α is an object of C and σ is a map σ : β → Fα in
D, and a morphism from the object (α, σ) to the object (α′, σ′) is a map τ : α→ α′

in C that makes the triangle

β

σ

~~

σ′

  

Fα
Fτ

// Fα′ .

commute.
The category (β ↓F )

op
is the opposite of the category of objects of C under β.

An object of (β ↓F )
op

is also a pair (α, σ) as above, but a morphism in (β ↓F )
op

from the object (α, σ) to the object (α′, σ′) is a map τ : α′ → α that makes the
triangle

β

σ

~~

σ′

  

Fα Fα′ .
Fτ

oo

commute.

Example 2.8. Let F : C → D be a functor between small categories. If β is an
object of D, then an n-simplex of N(β ↓F )

op
is determined by an ordered pair(

(α0 ← α1 ← · · · ← αn) ∈ C, σ : β → Fαn
)
, and we will often use that notation for

such a simplex.

Lemma 2.9. If F : C→ D is a functor between small categories and α is an object
of C, then there is a map of simplicial sets F∗ : N(α ↓C)

op → N(Fα ↓F )
op

that takes
the simplex (

(α0
σ0←− α1

σ1←− · · · σn−1←−−− αn) ∈ C, τ : α→ αn
)
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of N(α ↓C)
op

to the simplex(
(α0

σ0←− α1
σ1←− · · · σn−1←−−− αn) ∈ C, F τ : Fα→ Fαn

)
of N(Fα ↓F )

op
.

Proof. This follows directly from the definitions. �

Definition 2.10. Let F : C→ D be a functor between small categories.

(1) (−↓F )
op

is the the Dop-diagram of categories that on an object β of D

takes the value (β ↓F )
op

, and that takes the map σ : β → β′ to the functor
σ∗ : (β′ ↓F )

op → (β ↓F )
op

that takes the object τ : β′ → Fα of (β′ ↓F )
op

to the object of (β ↓F )
op

that is the composition β
σ−→ β′

τ−→ Fα.
(2) N(−↓F )

op
is the Dop-diagram of simplicial sets that on an object β of D

takes the value N(β ↓F )
op

, and that takes the map σ : β → β′ to the map
of simplicial sets σ∗ : N(β′ ↓F )

op → N(β ↓F )
op

.

Example 2.11. Let F : C → D be a functor between small categories. If β is an
object of D, then there is a functor F∗ : (β ↓F ) → (β ↓D) that takes the object
(α, σ : β → Fα) to the object (Fα, σ : β → Fα). This induces a natural map of
simplicial sets F∗ : N(β ↓F )

op → N(β ↓D)
op

that takes the simplex(
(α0

σ0←− α1
σ1←− · · · σn−1←−−− αn) ∈ C, σ : β → Fαn

)
of N(β ↓F )

op
(see Example 2.8) to the simplex(

(Fα0
Fσ0←−− Fα1

Fσ1←−− · · · Fσn−1←−−−− Fαn) ∈ D, σ : β → Fαn
)

of N(β ↓D)
op

.

Example 2.12. If F : C→ D is a functor between small categories, then the map of
simplicial sets F∗ : N(β ↓F )

op → N(β ↓D)
op

of Example 2.11 for each object β of
D defines a map of Dop-diagrams of simplicial sets F∗ : N(−↓F )

op → N(−↓D)
op

.

2.3. Overcategories and their nerves.

Definition 2.13. If C is a small category and α is an object of C, then the category
of objects of C over α (C ↓α) is the category in which an object is a pair (β, σ)
where β is an object of C and σ is a map β → α in C, and a morphism from the
object (β, σ) to the object (β′, σ′) is a map τ : β → β′ that makes the triangle

β

σ
��

τ // β′

σ′
��

α

commute.

Example 2.14. Let C be a small category. If α is an object of C, then an n-simplex
of N(C ↓α) is a diagram of the form

α0
//

((

α1
//

!!

α2

��

// · · · // αn

σ

vv
α .

We will often denote such a simplex by the ordered pair
(
(α0 → α1 → · · · → αn) ∈

C, σ : αn → α
)
, since that pair determines the entire diagram.
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Definition 2.15. Let C be a small category.

(1) (C ↓−) is the the C-diagram of categories that on an object α of C takes the
value (C ↓α), and that takes the map σ : α→ α′ to the functor σ∗ : (C ↓α)→
(C ↓α′) that takes the object τ : β → α of (C ↓α) to the object of (C ↓α′)
that is the composition β

τ−→ α
σ−→ α′.

(2) N(C ↓−) is the C-diagram of simplicial sets that on an object α of C takes the
value N(C ↓α), and that takes the map σ : α→ α′ to the map of simplicial
sets σ∗ : N(C ↓α)→ N(C ↓α′).

2.4. Overcategories of functors.

Definition 2.16. If C and D are categories, F : C → D is a functor, and β is an
object of D, then the category of objects of C over β (F ↓β) is the category in which
an object is a pair (α, σ) where α is an object of C and σ is a map Fα → β in D,
and a morphism from the object (α, σ) to the object (α′, σ′) is a map τ : α→ α′ in
C such that the triangle

Fα
Fτ //

σ
  

Fα′

σ′
~~

β

commutes.

Example 2.17. Let F : C → D be a functor between small categories. If β is an
object of D, then an n-simplex of N(F ↓β) is determined by an ordered pair

(
(α0 →

α1 → · · · → αn) ∈ C, σ : Fαn → β
)
, and we will often use that notation for such a

simplex.

Example 2.18. Let F : C → D be a functor between small categories. If β is an
object of D, then there is a functor F∗ : (F ↓β) → (D ↓β) that takes the object
(α, σ : Fα → β) to the object (Fα, σ : Fα → β). This induces a map of simplicial
sets F∗ : N(F ↓β)→ N(D ↓β) that takes the simplex(

(α0
σ0−→ α1

σ1−→ · · · σn−1−−−→ αn) ∈ C, σ : Fαn → β
)

of N(F ↓β) to the simplex(
(Fα0

Fσ0−−→ Fα1
Fσ1−−→ · · · Fσn−1−−−−→ Fαn) ∈ D, σ : Fαn → β

)
of N(D ↓β).

Lemma 2.19. If F : C→ D is a functor between small categories and α is an object
of C, then there is a map of simplicial sets F∗ : N(C ↓α) → N(F ↓Fα) that takes
the simplex (

(α0
σ0−→ α1

σ1−→ · · · σn−1−−−→ αn) ∈ C, τ : αn → α
)

of N(C ↓α) to the simplex(
(α0

σ0−→ α1
σ1−→ · · · σn−1−−−→ αn) ∈ C, F τ : Fαn → Fα

)
of N(F ↓Fα).

Proof. This follows directly from the definitions. �

Definition 2.20. Let F : C→ D be a functor between small categories.
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(1) (F ↓−) is the the D-diagram of categories that on an object β of D takes the
value (F ↓β), and that takes the map σ : β → β′ to the functor σ∗ : (F ↓β)→
(F ↓β′) that takes the object τ : Fα→ β of (F ↓β) to the object of (F ↓β′)
that is the composition Fα

τ−→ β
σ−→ β′.

(2) N(F ↓−) is the D-diagram of simplicial sets that on an object β of D

takes the value N(F ↓β), and that takes the map σ : β → β′ to the map of
simplicial sets σ∗ : N(F ↓β)→ N(F ↓β′).

Example 2.21. If F : C → D is a functor between small categories, then the map
of simplicial sets F∗ : N(F ↓β)→ N(D ↓β) of Example 2.18 for each object β of D
defines a map of D-diagrams of simplicial sets F∗ : N(F ↓−)→ N(D ↓−).

2.5. Contractible nerves. The main results of this section are Corollary 2.27
and Corollary 2.29, which assert that if C is a small category and α is an object
of C, then the simplicial sets N(α ↓C)

op
and N(C ↓α) are contractible. These are

important because

• the definition of the homotopy colimit functor (see Definition 8.1) uses the
Cop-diagram of simplicial sets N(−↓C)

op
(see Definition 2.5) and

• the definition of the homotopy limit functor (see Definition 11.1) uses the
C-diagram of simplicial sets N(C ↓−) (see Definition 2.15).

The effect of Corollary 2.29 is that the map of Cop-diagrams from N(−↓C)
op

to
the constant diagram at a single point is an objectwise weak equivalence, and so
it is a weak equivalence in the model category of Cop-diagrams of simplicial sets
(see Theorem 5.1). We will show in Proposition 5.13 that the diagram N(−↓C)

op

is also a free cell complex (see Definition 5.7), which implies that N(−↓C)
op

is
a cofibrant object in the model category of Cop-diagrams of simplicial sets (see
Theorem 5.1). Thus, the diagram N(−↓C)

op
is a cofibrant approximation (see

[7, Def. 8.1.2]) to the constant diagram at a single point. Since any two cofibrant
approximations to the same object are weakly equivalent (see [7, Prop. 8.1.9]),
this explains why there are alternative possible definitions of the homotopy colimit
functor (using different cofibrant approximations to the constant diagram at a single
point) that are naturally weakly equivalent for objectwise cofibrant diagrams in a
model category.

Similarly, the effect of Corollary 2.27 is that the map of C-diagrams from N(C ↓−)
to the constant diagram at a single point is an objectwise weak equivalence, and so
it is a weak equivalence in the model category of C-diagrams of simplicial sets (see
Theorem 5.1). We will show in Proposition 5.13 that the diagram N(C ↓−) is also
a free cell complex (see Definition 5.7), which implies that N(C ↓−) is a cofibrant
object in the model category of C-diagrams of simplicial sets (see Theorem 5.1).
Thus, the diagram N(C ↓−) is a cofibrant approximation (see [7, Def. 8.1.2]) to the
constant diagram at a single point. Since any two cofibrant approximations to the
same object are weakly equivalent (see [7, Prop. 8.1.9]), this explains why there are
alternative possible definitions of the homotopy limit functor (using different cofi-
brant approximations to the constant diagram at a single point) that are naturally
weakly equivalent for objectwise fibrant diagrams in a model category.

Lemma 2.22. If C and D are small categories, then there is a natural isomorphism
of simplicial sets N(C×D) ≈ NC×ND.

Proof. This follows directly from the definitions. �
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Lemma 2.23. If [1] is the category 0→ 1, then for every small category C there is
a natural isomorphism of simplicial sets N(C× [1]) ≈ NC×∆[1].

Proof. Since N [1] ≈ ∆[1], this follows from Lemma 2.22. �

Proposition 2.24. Let C and D be small categories. If F,G : C→ D are functors,
then there exists a natural transformation φ : F → G if and only if there is a functor
Φ: C × [1] → D such that the restriction of Φ to C × {0} is F and the restriction
of Φ to C× {1} is G (where {0} is the category with one object 0 and its identity
map, and {1} is the category with one object 1 and its identity map).

Proof. If φ : F → G is a natural transformation, then we can define a functor
Φ: C× [1]→ D by letting

• Φ(α, 0) = F (α) and Φ(α, 1) = G(α) for every object α of C, and
• Φ(σ, 10) = F (σ), Φ(σ, 11) = G(σ), and Φ(σ, 0 → 1) = φ(σ) for every

morphism σ of C.

Conversely, if Φ: C× [1]→ D is a functor whose restriction to C× {0} is F and
whose restriction to C×{1} is G, we can define a natural transformation φ : F → G
by letting φ(α) = Φ(α, 0→ 1) for every object α of C. �

Proposition 2.25. Let C and D be small categories, and let F,G : C → D be
functors from C to D. If there is a natural transformation from F to G, then the
induced maps of nerves NF,NG : NC→ ND are homotopic.

Proof. Proposition 2.24 implies that there is a functor Φ: C × [1] → D whose
restrictions to C×{0} and C×{1} are F andG. Lemma 2.22 implies that N(C×[1]) ≈
NC×N[1] ≈ NC× I, and so NΦ: NC× I → ND is a homotopy from NF to NG. �

Theorem 2.26. Let C be a small category. If C has either an initial object or a
terminal object, then the nerve of C is a contractible simplicial set.

Proof. If C has an initial object α, then there is a natural transformation from the
constant functor at the object α to the identity functor of C, and so Proposition 2.25
implies that the identity map of NC is homotopic to a constant map. Similarly, if
C has a terminal object β, then there is a natural transformation from the identity
functor of C to the constant functor at the object β, and so the identity map of NC

is homotopic to a constant map. �

Corollary 2.27. If C is a small category, then for every object α of C the simplicial
sets N(α ↓C) (see Definition 2.3) and N(C ↓α) (see Definition 2.16) are contractible.

Proof. The identity map 1α : α → α is an initial object of (α ↓C) and a terminal
object of (C ↓α), and so the result follows from Theorem 2.26. �

Lemma 2.28. If C is a small category, then there is a natural homeomorphism of
topological spaces

∣∣NC
∣∣ ≈ ∣∣NCop

∣∣.
Proof. The homeomorphism takes the realization of the simplex α0 → α1 → · · · →
αn of NC to the realization of the simplex αn ← αn−1 ← · · · ← α0 of NCop. �

Corollary 2.29. If C is a small category, then for every object α of C the simplicial
set N(α ↓C)

op
(see Definition 2.3) is contractible.
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Proof. Corollary 2.27 implies that N(α ↓C) is contractible, and Lemma 2.28 implies
that the geometric realization of N(α ↓C) is homeomorphic to that of N(α ↓C)

op
.
�

3. Decomposing simplicial sets

Definition 3.1 (The cosimplicial and simplicial indexing categories). If n is a
nonnegative integer, we let [n] denote the ordered set (0, 1, 2, . . . , n).

(1) The cosimplicial indexing category ∆ is the category with objects the [n]
for n ≥ 0 and with morphisms ∆([n], [k]) the weakly monotone functions
[n]→ [k], i.e., the functions σ : [n]→ [k] such that σ(i) ≤ σ(j) for 0 ≤ i ≤
j ≤ n.

(2) A cosimplicial object in a category M is a functor from ∆ to M.
(3) The simplicial indexing category is the category ∆op.
(4) A simplicial object in a category M is a functor from ∆op to M.

Definition 3.2. If n ≥ 0, then the standard n-simplex ∆[n] is the simplicial set
that has as k-simplices the weakly monotone functions [k] → [n], i.e., (∆[n])k =
∆([k], [n]) = ∆op([n], [k]).

Definition 3.3. The cosimplicial standard simplex is the cosimplicial simplicial set
∆: ∆ → SS that takes the object [n] of ∆ to the standard n-simplex ∆[n]. This
can be viewed as either a ∆-diagram of simplicial sets (i.e., a covariant functor of
∆) or as a (∆op)op-diagram of simplicial sets (i.e., a contravariant functor of ∆op).

Proposition 3.4. If K is a simplicial set and n ≥ 0, there is a natural isomorphism
between the set of n-simplices of K and the set of maps of simplicial sets ∆[n]→ K,
under which an n-simplex σ of K corresponds to the map ∆[n]→ K that takes the
nondegenerate n-simplex of ∆[n] to σ.

Proof. A simplicial set is a functor ∆op → Sets, and a map of simplicial sets is
a natural transformation of functors. Since

(
∆[n]

)
k

= ∆
(
[k], [n]

)
= ∆op

(
[n], [k]

)
,

the simplicial set ∆[n] is the representable functor on ∆op with representing object
[n], and the unique nondegenerate n-simplex of ∆[n] is the identity map of [n].
Thus, this is exactly the Yoneda lemma (see, e.g., [9, Lemma 4.2.1], [8, p. 61], or
[1, Thm. 1.3.3]). �

Definition 3.5. If K is a simplicial set, then the category of simplices of K is the
category ∆K that is the overcategory (∆ ↓K), where ∆: ∆→ SS is the cosimpli-
cial standard simplex (see Definition 3.3). That is, an object of ∆K is a map of
simplicial sets ∆[n] → K for some n ≥ 0, and a morphism from σ : ∆[n] → K to
τ : ∆[k]→ K is a commutative triangle

∆[n]
γ

//

σ
!!

∆[k]

τ
}}

K

for some morphism γ : [n]→ [k] in ∆.
Equivalently (see Proposition 3.4), if K is a simplicial set, then the category of

simplices of K is the category ∆K such that

• the objects of ∆K are the simplices of K and
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• if σ and τ are simplices of K, then a morphism from σ to τ in ∆K is a
simplicial operator that takes τ to σ. (Note the reversal of direction; if
∂kτ = σ, then ∂k corresponds to a morphism from σ to τ .)

Proposition 3.6. If K is a simplicial set and G : ∆K → SS is the ∆K-diagram
(see Definition 3.5) of simplicial sets that takes the object σ : ∆[n] → K to the
standard simplex ∆[n], then there is a natural isomorphism colim∆K G ≈ K.

Proof. The objects σ : ∆[n]→ K of ∆K define natural maps G(σ)→ K that com-
mute with the structure maps ofG, and these define a natural map colim∆K G→ K.
Every n-simplex σ : ∆[n]→ K (for n ≥ 0) is an object of ∆K for which the image
of the natural map G(σ) = ∆[n] → K contains the simplex corresponding to σ,
and so the natural map colim∆K G→ K is surjective.

To see that the natural map colim∆K G→ K is injective, assume that there are
objects σ : ∆[m] → K and τ : ∆[n] → K of ∆K together with a k-simplex η of
∆[m] and a k-simplex µ of ∆[n] such that the image in K of η under G(σ) → K
equals the image in K of µ under G(τ)→ K. Proposition 3.4 implies that there is
then a commutative diagram of simplicial sets

∆[k]
µ
//

η

��

∆[n]

τ

��

∆[m]
σ
// K

which we can regard as a diagram in ∆K. The relation that this diagram imposes
on colim∆K G implies that the image of η in colim∆K G equals the image of µ in
colim∆K G, and so the natural map colim∆K G→ K is injective. �

Proposition 3.7. If K is a simplicial set, then K is naturally isomorphic to the
coequalizer of the maps

(3.8)
( ∐
n>0

0≤i≤n
∆[n]→K

∆[n− 1]
)
q

( ∐
n≥0

0≤i≤n
∆[n]→K

∆[n+ 1]
) φ

//

ψ
//

∐
n≥0

∆[n]→K

∆[n]

where, on the first summand,

• φ takes the summand ∆[n − 1] indexed by (n, i, σ : ∆[n] → K) by the
identity map to the ∆[n−1] indexed by (n−1) and the composition ∆[n−
1]

di−→ ∆[n]
σ−→ K, composed with the injection into the coproduct, and

• ψ takes that same summand to the ∆[n] indexed by (n, σ) by the map
di : ∆[n− 1]→ ∆[n], composed with the injection into the coproduct

and, on the second summand,

• φ takes the summand ∆[n + 1] indexed by (n, i, σ : ∆[n] → K) by the
identity map to the ∆[n+ 1] indexed by (n+ 1) and the composition ∆[n+

1]
si−→ ∆[n]

σ−→ K, composed with the injection into the coproduct, and
• ψ takes that same summand to the ∆[n] indexed by (n, σ) by the map
si : ∆[n+ 1]→ ∆[n], composed with the injection into the coproduct.

Proof. Proposition 3.6 implies that K is isomorphic to the quotient of the coproduct
of standard simplices, one for each simplex of K, in which the various standard
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simplices are identified according to the action of the simplicial operators on the
simplices of K. Since every simplicial operator is a finite composition of face and
degeneracy operators, it is sufficient to identify along the relations that come from
the face and degeneracy operators. Coequalizing φ and ψ on the first summand
applies the relations from the face operators, and coequalizing them on the second
summand applies the relations from the degeneracy operators. �

Remark 3.9. Proposition 3.7 can also be obtained as a corollary of Proposition 7.24
(see Example 7.25).

3.1. Degenerate simplices.

Lemma 3.10. If M is a category and X is a simplicial object in M, then every
iterated degeneracy operator Xn → Xn+k in X has a unique expression in the
form si1si2 · · · sik with i1 > i2 > · · · > ik.

Proof. Such an iterated degeneracy operator corresponds to an epimorphism α : [n+
k] → [n] in ∆ (see Definition 3.1), and the set {i1, i2, . . . , ik} is the set of integers
i in [n+ k] such that α(i+ 1) = α(i). �

Lemma 3.11. Let X be a simplicial set, let n ≥ 0, and let σ and τ be n-simplices
of X for which there is an integer k and iterated degeneracy operators si1si2 · · · sik
and sj1sj2 · · · sjk such that si1si2 · · · sik(σ) = sj1sj2 · · · sjk(τ). If σ is nondegenerate,
then so is τ .

Proof. If τ is degenerate, then τ = smν for some 0 ≤ m ≤ n− 1, and so

σ = dik · · · di2di1si1si2 · · · sikσ
= dik · · · di2di1sj1sj2 · · · sjkτ
= dik · · · di2di1sj1sj2 · · · sjksmν ,

and this last expression for σ has k face operators and (k + 1)-degeneracy opera-
tors. The simplicial identities would then imply that σ was degenerate, which was
assumed not to be the case. �

Proposition 3.12. If X is a simplicial set and µ is a degenerate simplex of X, then
there is a unique nondegenerate simplex ν of X and a unique iterated degeneracy
operator α such that α(ν) = µ.

Proof. For every degenerate simplex µ we can choose a simplex ν of lowest possible
degree of which it is a degeneracy; that simplex ν will necessarily be nondegenerate.
Lemma 3.11 implies that there is no simplex of degree different from that of ν of
which µ is a degeneracy, and so it is sufficient to show that

(1) if n ≥ 0 and σ and τ are nondegenerate n-simplices such that some degen-
eracy of σ equals some (possibly different) degeneracy of τ , then σ = τ ,
and

(2) if σ is a nondegenerate simplex and α and β are iterated degeneracy oper-
ators such that α(σ) = β(τ), then α = β.

For assertion 1, let k be the smallest positive integer for which there are iterated
degeneracy operators si1si2 · · · sik with i1 > i2 > · · · > ik and sj1sj2 · · · sjk with
j1 > j2 > · · · > jk (see Lemma 3.10) such that si1si2 · · · sik(σ) = sj1sj2 · · · sjk(τ).
If we apply the face operator di1 to both sides of this equation, we obtain

si2si3 · · · sik(σ) = di1sj1sj2 · · · sjk(τ) ,
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and the simplicial identities imply that the right hand side is either a (k − 1)-fold
iterated degeneracy of τ or a k-fold iterated degeneracy of a face of τ . Lemma 3.11
implies that it cannot be the latter, and so our assumption that k was the smallest
positive integer of its type implies that k = 1, i.e., si1σ = sj1τ . If i1 > j1, then
σ = di1+1si1σ = di1+1sjτ = sjdi1τ , which is impossible because σ is nondegenerate.
Similarly, we cannot have i1 < j1. Thus, i1 = j1, and so σ = τ (because degeneracy
operators have left inverses).

For assertion 2, let k be the smallest positive integer for which there are iterated
degeneracy operators si1si2 · · · sik with i1 > i2 > · · · > ik and sj1sj2 · · · sjk with
j1 > j2 > · · · > jk such that si1si2 · · · sik(σ) = sj1sj2 · · · sjk(σ) (see Lemma 3.10).
Because k is the smallest such integer and degeneracy operators have left inverses,
we must have i1 6= j1. If i1 > j1, then we can apply di1+1 to obtain

si2si3 · · · sik(σ) = di1+1sj1sj2 · · · sjk(σ)

= sj1sj2 · · · sjkdi1+1−k(σ)

which contradicts Lemma 3.11. Similarly, we cannot have i1 < j1. Thus, i1 = j1,
and so si2si3 · · · sik(σ) = sj2sj3 · · · sjk(σ), which implies that k = 1 (or else we have
contradicted our assumption that k is the smallest positive integer of its type). �

Definition 3.13. If K is a simplicial set and σ is a simplex of K, then the non-
degenerate root of σ is the unique nondegenerate simplex τ of K for which there
is an iterated degeneracy operator D (which will be the identity operator, if σ is
nondegenerate) such that D(τ) = σ.

3.2. Nondegenerate simplices.

Corollary 3.14. If K is a simplicial set, then K is naturally isomorphic to the
coequalizer of the maps

(3.15)
∐
n>0

0≤i≤n
σ : ∆[n]→K

σ nondegenerate

∆[n− 1]
φ
//

ψ
//

∐
n≥0

σ : ∆[n]→K
σ nondegenerate

∆[n]

where, on the summand ∆[n−1] indexed by (n, i, σ : ∆[n]→ K), for which the non-
degenerate root (see Definition 3.13) of ∂iσ is τ of dimension k and sj1sj2 · · · sj(n−1−k)

(τ) =
∂iσ with j1 > j2 > · · · > j(n−1−k),

• φ is the map

sj(n−1−k) · · · sj2sj1 : ∆[n− 1] −→ ∆[k]

composed with the injection into the coproduct of the ∆[k] indexed by
(k, τ), where τ is the composition

∆[k]
dj1dj2 ···dj(n−1−k)

−−−−−−−−−−−−→ ∆[n− 1]
di−→ ∆[n]

σ−→ K ,

and
• ψ is the map di : ∆[n − 1] → ∆[n] composed with the injection into the

coproduct of the summand indexed by (n, σ).

Proof. Fixme: Fill this in! This follows from Proposition 3.7. �

Draft: November 23, 2014



14 PHILIP S. HIRSCHHORN

4. Simplicial model categories

If M is a model category, i : A → B is a cofibration, p : X → Y is a fibration,
and at least one of i and p is a weak equivalence, then one of the model category
axioms (the lifting extension axiom) requires that the dotted arrow exists in every
solid arrow diagram of the form

A //

i

��

X

p

��

B //

>>

Y .

Such a solid arrow diagram is an element of the set

M(A,X)×M(A,Y ) M(B, Y )

and that model category axiom is exactly the requirement that the natural map of
sets

M(B,X)
i∗×p∗−−−−→M(A,X)×M(A,Y ) M(B, Y )

be a surjection. If M is a simplicial model category, then for every two objects X
and Y we have a simplicial set Map(X,Y ), and one of the axioms (the homotopy
lifting extension axiom) requires that if i : A → B is a cofibration and p : X → Y
is a fibration, then the natural map of simplicial sets

Map(B,X)
i∗×p∗−−−−→ Map(A,X)×Map(A,Y ) Map(B, Y )

be a fibration that is also a weak equivalence if at least one of i and p is a weak
equivalence.

Proposition 4.1. Let M be a simplicial model category.

(1) If X and Y are objects of M and K is a simplicial set, then there exist
• a simplicial set Map(X,Y ), natural in X and Y , and a natural iso-

morphism
(
Map(X,Y )

)
0
≈M(X,Y ), and

• objects X ⊗ K and XK of M, natural in X and K, together with
natural isomorphisms of simplicial sets

Map(X ⊗K,Y ) ≈ Map
(
K,Map(X,Y )

)
≈ Map(X,Y K)

and, thus, also natural isomorphisms of sets

M(X ⊗K,Y ) ≈M
(
K,Map(X,Y )

)
≈M(X,Y K) .

(2) If i : A → B is a cofibration in M and p : X → Y is a fibration in M, then
the map of simplicial sets

Map(B,X)
i∗×p∗−−−−→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration that is a weak equivalence if either i or p is a weak equivalence.

Proof. This is part of the definition of a simplicial model category (see, e.g., [7,
Def. 9.1.6]). �

Lemma 4.2. Let M be a simplicial model category.

(1) If ∅ is an initial object of M and K is a simplicial set, then ∅ ⊗ K is an
initial object of M.

(2) If ∗ is an terminal object of M and K is a simplicial sets, then ∗K is a
terminal object of M.
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Proof. We will prove part 1; the proof of part 2 is similar.
If X is an object of M, then M(∅ ⊗ K,X) ≈ M(∅, XK) (see Proposition 4.1),

and M(∅, XK) has exactly one element. �

Proposition 4.3. If M is a simplicial model category, X is an object of M, and
K is a simplicial set, then X ⊗K is naturally isomorphic to the coequalizer of the
maps( ∐

n>0
0≤i≤n

∆[n]→K

X ⊗∆[n− 1]
)
q

( ∐
n≥0

0≤i≤n
∆[n]→K

X ⊗∆[n+ 1]
) φ

//

ψ
//

∐
n≥0

∆[n]→K

X ⊗∆[n]

where, on the first summand,

• φ takes the summand X ⊗∆[n− 1] indexed by (n, i, σ : ∆[n]→ K) by the
identity map to the X ⊗∆[n− 1] indexed by (n− 1) and the composition

∆[n − 1]
di−→ ∆[n]

σ−→ K, composed with the injection into the coproduct,
and
• ψ takes that same summand to the X ⊗∆[n] indexed by (n, σ) by the map

1X ⊗ di : ∆[n− 1]→ ∆[n], composed with the injection into the coproduct

and, on the second summand,

• φ takes the summand X ⊗∆[n+ 1] indexed by (n, i, σ : ∆[n]→ K) by the
identity map to the X ⊗∆[n+ 1] indexed by (n+ 1) and the composition

∆[n + 1]
si−→ ∆[n]

σ−→ K, composed with the injection into the coproduct,
and
• ψ takes that same summand to the X ⊗∆[n] indexed by (n, σ) by the map

1X ⊗ si : ∆[n+ 1]→ ∆[n], composed with the injection into the coproduct.

Proof. Since the functor that takes a simplicial set K to X⊗K is a left adjoint (see
Proposition 4.1) and thus preserves colimits, the result follows from Proposition 3.7.

�

Proposition 4.4. If M is a simplicial model category, X is an object of M, and K
is a simplicial set, then XK is naturally isomorphic to the equalizer of the maps

∏
n≥0

∆[n]→K

X∆[n]
φ
//

ψ
//

( ∏
n>0

0≤i≤n
∆[n]→K

X∆[n−1]
)
×
( ∏
n≥0

0≤i≤n
∆[n]→K

X∆[n+1]
)

where

• the projection of φ onto the factor X∆[n−1] indexed by (n, i, σ : ∆[n]→ K)

is the projection onto the X∆[n−1] indexed by the composition ∆[n−1]
di−→

∆[n]
σ−→ K, and

• the projection of ψ onto that same factor is the composition of the pro-

jection onto the factor X∆[n] indexed by σ with the map X∆[n] (1X)d
i

−−−−→
X∆[n−1]

and
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• the projection of φ onto the factor X∆[n+1] indexed by (n, i, σ : ∆[n]→ K)

is the projection onto the X∆[n+1] indexed by the composition ∆[n+ 1]
si−→

∆[n]→ K, and
• the projection of ψ onto that same factor is the composition of the projec-

tion onto the X∆[n] indexed by σ with the map X∆[n] (1X)s
i

−−−−→ X∆[n+1].

Proof. The functor that takes the simplicial set K to the object XK of Mop is a
left adjoint (see Proposition 4.1), and thus preserves colimits. Thus, as a functor to
M it converts colimits to limits, and so the result follows from Proposition 3.7. �

5. The model category of diagrams of simplicial sets

If C is a small category, then there is a model category structure on the category
of C-diagrams of simplicial sets that is important for studying homotopy colimits
and homotopy limits of diagrams in any simplicial model category M, because if
f : X → Y is a map of C-diagrams in M and Z is an object of M, then

• the induced map f∗ : Map(Y , Z) → Map(X, Z) is a map of Cop-diagrams
of simplicial sets and
• the induced map f∗ : Map(Z,X)→ Map(Z,Y ) is a map of C-diagrams of

simplicial sets.

In addition, if X is a C-diagram in M, then

• the homotopy colimit hocolimX is defined to be the coend X⊗CN(−↓C)
op

(see Definition 8.1), where N(−↓C)
op

is a Cop-diagram of simplicial sets
(see Definition 2.5), and the fact that the Cop-diagram N(−↓C)

op
is a free

cell complex (see Proposition 5.13) (and, thus, a cofibrant Cop-diagram
of simplicial sets; see Theorem 5.1) will be used to prove the homotopy
invariance of the homotopy colimit functor (see Theorem 8.4), and

• the homotopy limit holimX is defined to be the end homC(N(C ↓−),X)
(see Definition 11.1), where N(C ↓−) is a C-diagram of simplicial sets (see
Definition 2.15), and the fact that the C-diagram N(C ↓−) is a free cell com-
plex (see Proposition 5.13) (and, thus, a cofibrant C-diagram of simplicial
sets; see Theorem 5.1) will be used to prove the homotopy invariance of the
homotopy limit functor (see Theorem 11.4).

In fact, the above is true even for model categories M that may not be simplicial,
although to define the homotopy colimit and homotopy limit functors for diagrams
in such a model category we must first choose a framing (see [7, Def. 16.6.21]) of
the model category M, after which the model category of diagrams of simplicial
sets plays the same role that it plays here (see [7, Chap. 19]).

There is more than one model category structure on the category of C-diagrams
of simplicial sets. The one that is important here is the Bousfield-Kan structure
[3, p. 314], which is sometimes also called the projective model category structure.

Theorem 5.1. If C is a small category, then there is a model category structure
on the category of C-diagrams of simplicial sets in which

• the weak equivalences are the objectwise weak equivalences,
• the fibrations are the objectwise fibrations, and
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• the cofibrations are the relative free cell complexes (see Definition 5.7) and
their retracts (and so the cofibrant objects are the free cell complexes and
their retracts).

Proof. See [7, Thm. 11.6.1]. �

5.1. Relative free cell complexes. In this section we describe relative free cell
complexes, which are maps of diagrams of simplicial sets that can be constructed by
repeatedly attaching free cells to a diagram of simplicial sets (see Definition 5.7).
Special cases of attaching a free cell to a diagram of simplicial sets are

• attaching a cell to a simplicial set and
• attaching a free cell to a simplicial set acted upon by a discrete group,

and we begin by describing these familiar special cases in a way that leads to the
description of the general case in Definition 5.5.

5.1.1. Attaching a cell to a simplicial set. If X is a simplicial set and n ≥ 0, we
attach an n-cell to X by choosing an attaching map f : ∂∆[n]→ X and taking the
pushout Y of

∆[n]←− ∂∆[n]
f−−→ X .

The simplices of Y−X are the nondegenerate n-simplex of ∆[n] and its degeneracies.

5.1.2. Attaching a free cell to a simplicial set with G-action. Let G be a (discrete)
group and let X be a G-simplicial set, i.e., a simplicial set with an action of G. If
we view G as a category with a single object, then this is a G-diagram of simplicial
sets. If n ≥ 0, we will attach a free n-cell to X to build a G-simplicial set Y ,
containing X, such that G acts freely on the simplices of Y −X.

We begin by choosing an attaching map f : ∂∆[n] → X, and then attach one
n-cell to X for each element of G, as follows: for each element g of G, we attach an
n-cell to X using the attaching map g · f , which is defined as the composition

∂∆[n]
f
// X

g
// X

(where that second map is the automorphism of X defined by the action of g).
Thus, we have a pushout of G-simplicial sets∐

g∈G
∂∆[n] //

��

X

��∐
g∈G

∆[n] // Y .

The simplices of Y −X are the nondegenerate n-simplices of the ∆[n]’s in the lower
left corner and their degeneracies. The map X → Y is an example of a relative
free cell complex, and the set of simplices of Y −X that come from the summand
indexed by the identity element of G are the elements of a basis of the relative free
cell complex (see Definition 5.9). A basis has the following properties:

• A basis is closed under degeneracy operators.
• For every simplex σ of Y −X there are

– a basis element τ of Y −X and
– an element g of G such that g · τ = σ,
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and the pair (τ, g) is unique.

Note that there is only one nondegenerate element of the basis (the nondegenerate
n-simplex of the ∆[n] from the summand indexed by the identity element of G),
and by looking at its faces we can recover the attaching map of the free n-cell.

5.1.3. Attaching a free cell to a diagram of simplicial sets. If C is a small category,
X is a C-diagram of simplicial sets, n ≥ 0, and α is an object of C, we will describe
how to attach a free n-cell to X at the object α. A special case of this is when
the category C is obtained by choosing a (discrete) group G and viewing G as a
category with a single object, as in Section 5.1.2. In that special case, there was no
need to choose an object α because the category only had one object.

To attach a free n-cell at α, we choose an attaching map f : ∂∆[n]→Xα, and we
will attach one n-cell for each map in C whose domain is α, that cell being attached
to the simplicial set at the target of that map. (Note that in Example 5.1.2 we
attached an n-cell for every map, because every map had the unique object as its
domain.) That is, for every map γ : α → β in C we will attach an n-cell to Xβ

using the attaching map γ∗ ◦ f , i.e., the composition

∂∆[n]
f
// Xα

γ∗ // Xβ .

If we call the newly created diagram Y , then the simplices of Y α −Xα that were
simplices of the cell attached for the identity map of α are the elements of a basis of
the relative free cell complex X → Y (see Definition 5.9). A basis has the following
properties:

• The basis is closed under degeneracy operators.
• For every object β of C and every simplex σ of Y β −Xβ there are

– an object α of C,
– a basis element τ of Y α −Xα, and
– a map γ : α→ β in C such that γ∗(τ) = σ,

and the triple (α, τ, γ) is unique.

Note that there is only one nondegenerate element of the basis (the nondegenerate
n-simplex of the ∆[n] attached for the identity map of α), and by looking at its
faces we can recover the attaching map of the free n-cell.

Example 5.2. Let C be the category b
γ←− a δ−→ c with three objects {a, b, c} and two

non-identity maps γ : a → b and δ : a → c. If X is a C-diagram of simplicial sets,
n ≥ 0, and we want to attach a free n-cell at a, then we choose an attaching map
f : ∂∆[n]→Xa, and we will be attaching three cells, one for each map in C whose
domain is a:

(1) We attach an n-cell to Xa for the map 1a, using the attaching map that is

the composition ∂∆[n]
f−→Xa

1Xa−−−→Xa.
(2) We attach an n-cell to Xb for the map γ, using the attaching map that is

the composition ∂∆[n]
f−→Xa

γ∗−→Xb.
(3) We attach an n-cell to Xc for the map δ, using the attaching map that is

the composition ∂∆[n]
f−→Xa

δ∗−→Xc.

We call the newly created diagram Y ; the map γ∗ : Y a → Y b takes the simplices
newly attached at Xa to the corresponding ones attached at Xb, and the map
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δ∗ : Y a → Y c takes the simplices newly attached at Xa to the corresponding ones
attached at Xc.

The map X → Y is a relative free cell complex. A basis consists of the nondegen-
erate n-simplex that was attached to Xa and its degeneracies (see Definition 5.9).
There is only one nondegenerate simplex in the basis, and by looking at its faces
we can recover the attaching map of the free cell.

Example 5.3. If we start with C and Y as in Example 5.2, and we want to attach a
k-cell to Y at the object b, then we must choose an attaching map g : ∂∆[k]→ Y b,
and we will be attaching only one k-cell, because there is only one map in C with
domain b: the identity map of b. After we do that, and call the resulting diagram
Z, the map Y → Z will be a relative free cell complex, and the map X → Z will
also be a relative free cell complex. A basis for X → Z will consist of

• the nondegenerate n-simplex of the n-cell attached to Xa, and its degen-
eracies, and
• the nondegenerate k-simplex of the k-cell attached to Y b, and its degen-

eracies

(see Definition 5.9). Note that there are only two nondegenerate simplices in the
basis, and by looking at their faces we can recover the attaching maps of the free
cells.

Example 5.4. Let D be the category

α
γ
//

δ
// β

with two objects {α, β} and two non-identity maps γ : α→ β and δ : α→ β. If X
is a D-diagram of simplicial sets, n ≥ 0, and we want to attach a free n-cell to X
at α, then we choose an attaching map f : ∂∆[n] → Xα and we will be attaching
three n-cells, one for each of the maps whose domain is α:

• We attach an n-cell to Xα for the map 1α, using the attaching map that

is the composition ∂∆[n]
f−→Xα

1Xα−−−→Xα.
• We attach an n-cell to Xβ for the map γ, using the attaching map that is

the composition ∂∆[n]
f−→Xα

γ∗−→Xβ .
• We attach a second n-cell to Xβ for the map δ, using the attaching map

that is the composition ∂∆[n]
f−→Xα

δ∗−→Xβ .

If we call the new diagram Y , then we have pushout diagrams∐
1α

∂∆[n] //

��

Xα

��∐
1α

∆[n] // Y α

and

∐
γ,δ

∂∆[n] //

��

Xβ

��∐
γ,δ

∆[n] // Y β

where the map ∐
γ,δ

∂∆[n]→Xβ
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on the summand indexed by γ is the composition

∂∆[n]
f
// Xα

γ∗ // Xβ

and on the summand indexed by δ is the composition

∂∆[n]
f
// Xα

δ∗ // Xβ .

A basis for the relative free cell complex consists of the nondegenerate n-simplex
attached to Xα, and its degeneracies (see Definition 5.9). There is only one non-
degenerate simplex in the basis, and by looking at its faces we can recover the
attaching map of the free cell.

5.1.4. Attaching a free cell: general case.

Definition 5.5. Let C be a small category and let X be a C-diagram of simplicial
sets. If n ≥ 0, α is an object of C, and f : ∂∆[n]→Xα is a map, then the result of
attaching a free n-cell at α along f is the C-diagram of simplicial sets Y such that

• for an object β of C the simplicial set Y β is the pushout∐
(σ : α→β)∈C

∂∆[n] //

��

Xβ

��∐
(σ : α→β)∈C

∆[n] // Y β

where the upper horizontal map on the summand indexed by (σ : α→ β) ∈
C is the composition

∂∆[n]
f
// Xα

σ∗ // Xβ ,

and
• for a map τ : β → γ in C the map τ∗ : Y β → Y γ is defined by sending the

summands indexed by σ : α → β in the pushout that defines Y β to the
summands indexed by the composition

σ
σ // β

τ // γ

in the pushout that defines Y γ .

A basis for the relative free cell complex constructed in Definition 5.5 consists of
the nondegenerate n-simplex of the ∆[n] attached for the identity map of α and its
degeneracies (see Definition 5.9). There is only one nondegenerate simplex in the
basis, and by looking at its faces we can recover the attaching map of the free cell.

Remark 5.6. The process of attaching a free cell to a C-diagram of simplicial sets
can also be described by defining free diagrams, and then taking a pushout in the
category of C-diagrams of simplicial sets (see [7, Section 11.5.29]). If α is an object
of C and K is a simplicial set, then the free C-diagram of simplicial sets on K at α
is the C-diagram FαK such that, for every object β of C, FαK(β) =

∐
C(α,β)K, with

the obvious structure maps. If X is a C-diagram of simplicial sets, then maps of
diagrams FαK → X correspond to maps of simplicial sets K → Xα (i.e., there is a
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natural isomorphism SSC(FαK ,X) ≈ SS(K,Xα)), and we can attach a free n-cell
to X at α by forming the pushout in the category of C-diagrams of simplicial sets

Fα∂∆[n]
//

��

X

��

Fα∆[n]
// Y

where the upper horizontal map corresponds to the chosen attaching map f : ∂∆[n]→
Xα.

Definition 5.7. If C is a small category, then

• a relative free cell complex is a map of C-diagrams of simplicial sets that can
be constructed by a (possibly transfinite) well ordered process of attaching
free cells of various dimensions (see Definition 5.5), and
• a free cell complex is a C-diagram of simplicial sets for which the map from

the constant C-diagram at the empty simplicial set is a relative free cell
complex.

5.2. Basis of a relative free cell complex. In this section, we show how to
identify a relative free cell complex (see Theorem 5.10).

Definition 5.8. If C is a category, then Cdisc will denote the discrete category
associated with C, i.e., the category with the same objects as C but containing only
the identity maps of C. Thus, a Cdisc-diagram of sets S consists of a set Sα for each
object α of C.

Definition 5.9. If C is a small category and f : X → Y is an objectwise inclusion
of C-diagrams of simplicial sets, then a basis of the map f is a sequence S =
{S0,S1,S2, . . .} of Cdisc-diagrams of sets (see Definition 5.8) such that

(1) for each n ≥ 0 and object α of C, the set Snα is a subset of the set of
n-simplices of Y α that are not in Xα,

(2) for 0 ≤ i ≤ n and object α of C, we have si(S
n
α) ⊂ Sn+1

α (i.e., S is closed
under degeneracies), and

(3) if n ≥ 0, β is an object of C, and τ is an n-simplex of Y β that is not in
Xβ , then there exist
• an object α of C,
• an element σ of Snα, and
• a map γ : α→ β in C such that Y γ(σ) = τ ,

and such a triple (α, σ, γ) is unique.

Theorem 5.10. If C is a small category and f : X → Y is a map of C-diagrams of
simplicial sets that is an objectwise inclusion of simplicial sets, then f is a relative
free cell complex if and only if there exists a basis S of f (see Definition 5.9).

Proof. If f is a relative free cell complex, then Y is constructed, starting from X,
by a well ordered sequence of attaching free cells. As we saw in the examples in
Section 5.1, each time that we attach a new free cell we enlarge the basis to obtain
a basis of the enlarged relative free cell complex.

Conversely, suppose that we have an objectwise inclusion f : X → Y of C-
diagrams of simplicial sets and a basis S of the inclusion; we will show how to
construct Y from X by attaching free cells.
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Each nondegenerate basis element corresponds to a free cell to be attached, but
we must ensure that the attaching map of each cell factors through the part of Y
that has been constructed so far. To ensure that this is the case, we will attach
the cells in order of their dimensions. Thus, for each n we choose a well ordering
of the nondegenerate elements of Sn, and then we order the entire collection of
nondegenerate basis elements by ordering them first by dimension and second by
the chosen well orderings. If we now proceed to attach all of those cells, in order,
then each time that we want to attach an n-cell the entire (n − 1)-skeleton of Y
will already exist, and so the attaching map will factor as needed. �

Corollary 5.11. Let C be a small category and let Y be a C-diagram of simplicial
sets. If S = {S0,S1,S2, . . .} is a sequence of Cdisc-diagrams of sets, then Y is a
free cell complex with basis S if and only if:

(1) for n ≥ 0 and α an object of C, the set Snα is a subset of the set of n-simplices
of Y α,

(2) for 0 ≤ i ≤ n and α an object of C, we have si(S
n
α) ⊂ Sn+1

α (i.e., S is closed
under degeneracies), and

(3) if n ≥ 0, β is an object of C, and τ is an n-simplex of Y β , then there exist
• an object α of C,
• an element σ of Snα, and
• a map γ : α→ β in C such that Xγ(σ) = τ ,

and such a triple (α, σ, γ) is unique.

Proof. This is the case of Theorem 5.10 in which X is the diagram of empty sim-
plicial sets. �

Proposition 5.12. Let C be a small category and let K : C→ SS and L : C→ SS
be C-diagrams of simplicial sets. If K is a free cell complex with basis S, L is a
free cell complex with basis S′, and f : K → L is a map of diagrams that is an
objectwise inclusion of simplicial sets and takes every element of S to an element
of S′, then the map f is a relative free cell complex.

Proof. Let S′′ be the elements of S′ that are not the image of an element of S.
For every object β of C and every simplex t of Lβ there is a unique triple (α, σ, s)
where α is an object of C, σ : α → β is a map in C, and s is a simplex in S′α such
that σ∗(s) = t, and such a simplex t is in the image of f if and only if s ∈ Sα.
Thus, for every object β of C and every simplex t of Lβ that is not in the image of
f there is a unique triple (α, σ, s) where α is an object of C, σ : α→ β is a map in
C, and s is a simplex of S′′α such that σ∗(s) = t, and so f : K → L is a relative free
cell complex with basis S′′. �

Proposition 5.13. Let C be a small category.

(1) The Cop-diagram of simplicial sets N(−↓C)
op

is a free cell complex with
basis the set of simplices of the form

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn →

αn
)
.

(2) The C-diagram of simplicial sets N(C ↓−) is a free cell complex with basis
the set of simplices of the form

(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

)
.

Proof. This follows from Corollary 5.11. For part 1, if τ =
(
(α0 ← α1 ← · · · ←

αn) ∈ C, γ : β → αn
)

is a simplex of N(β ↓C)
op

, then σ =
(
(α0 ← α1 ← · · · ← αn) ∈

C, 1: αn → αn
)

is a basis element, N(γ ↓C)
op

(σ) = τ , and the triple (αn, σ, γ) is
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unique. For part 2, if τ =
(
(α0 → α1 → · · · → αn) ∈ C, γ : αn → β

)
is a simplex of

N(C ↓β), then σ =
(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

)
is a basis element,

N(C ↓ γ)(σ) = τ , and the triple (αn, σ, γ) is unique. �

The following proposition will be used in Theorem 10.8 to show that a homotopy
right cofinal functor (see Definition 10.6) induces a weak equivalence of homotopy
colimits for objectwise cofibrant diagrams, and in Theorem 13.7 to show that a
homotopy left cofinal functor (see Definition 13.6) induces a weak equivalence of
homotopy limits for objectwise fibrant diagrams.

Proposition 5.14. Let F : C→ D be a functor between small categories.

(1) The Dop-diagram of simplicial sets N(−↓F )
op

is a free cell complex with ba-
sis the set of simplices of the form

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: Fαn →

Fαn
)
.

(2) The D-diagram of simplicial sets N(F ↓−) is a free cell complex with basis
the set of simplices of the form

(
(α0 → α1 → · · · → αn) ∈ C, 1: Fαn →

Fαn
)
.

Proof. This follows from Corollary 5.11. For part 1, if τ =
(
(α0 ← α1 ← · · · ←

αn) ∈ C, γ : β → Fαn
)

is a simplex of N(β ↓F )
op

, then σ =
(
(α0 ← α1 ← · · · ←

αn) ∈ C, 1: Fαn → Fαn
)

is a basis element, N(γ ↓F )
op

(σ) = τ , and the triple

(Fαn, σ, γ) is unique. For part 2, if τ =
(
(α0 → α1 → · · · → αn) ∈ C, γ : Fαn → β

)
is a simplex of N(F ↓β), then σ =

(
(α0 → α1 → · · · → αn) ∈ C, 1: Fαn → Fαn

)
is

a basis element, N(F ↓ γ)(σ) = τ , and the triple (Fαn, σ, γ) is unique. �

The following proposition will be used in Proposition 10.9 to show that certain
maps of homotopy colimits are cofibrations and in Proposition 13.8 to show that
certain maps of homotopy limits are fibrations.

Proposition 5.15. Let C and D be small categories and let F : C→ D be a functor.
If F is the inclusion of a subcategory, then

(1) the map of Dop-diagrams of simplicial sets N(−↓F )
op → N(−↓D)

op
is a

relative free cell complex, and
(2) the map of D-diagrams of simplicial sets N(F ↓−)→ N(D ↓−) is a relative

free cell complex.

Proof. For part 1, the Dop-diagram N(−↓F )
op

is a free cell complex with basis
consisting of the simplices

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: Fαn → Fαn

)
and the

Dop-diagram N(−↓D)
op

is a free cell complex with basis consisting of the simplices(
(β0 ← β1 ← · · · ← βn) ∈ D, 1: βn → βn

)
. The induced map of diagrams takes that

basis element of N(−↓F )
op

to the basis element
(
(Fα0 ← Fα1 ← · · · ← Fαn) ∈

D, 1: Fαn → Fαn
)

of N(−↓D)
op

, and so the result follows from Proposition 5.12.
For part 2, the D-diagram N(F ↓−) is a free cell complex with basis consisting

of the simplices
(
(α0 → α1 → · · · → αn) ∈ C, 1: Fα0 → Fα0

)
and the D-diagram

N(D ↓−) is a free cell complex with basis consisting of the simplices
(
(β0 → β1 →

· · · → βn) ∈ D, 1: β0 → β0

)
. The induced map of diagrams takes that basis element

of N(F ↓−) to the basis elements
(
(Fα0 → Fα1 → · · · → Fαn) ∈ D, 1: Fα0 →

Fα0

)
of N(D ↓−), and so the result follows from Proposition 5.12. �

6. Free diagrams
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6.1. The free diagram on an object. Let C be a small category and let α be
an object of C. if M is a category and X is an object of M, we want to define FαX ,
the free C-diagram in M generated by X at α. This will be a C-diagram that starts
with a “generating copy” of X at α, and then adds, as freely as possible, what else
is needed in order to have a diagram. Thus, for every map σ : α → β in C with
domain α, we add in another copy of X at β, and we let σ∗ take the generating copy
of X, by the identity map, to this new copy. Since we will do this for every map
with domain α, we will let FαX(β) be the coproduct, indexed by the set of maps
from α to β, of copies of X. Each map σ : α → β in C from α to β will take the
generating copy of X at α to the injection into the coproduct FαX(β) =

∐
C(α,β)X

indexed by the element σ of C(α, β).
Note that FαX(α) will generally consists of more than just a single copy of X. It

will be a coproduct, indexed by C(α, α), of copies of X; the generating copy of X
is the summand of FαX(α) =

∐
C(α,α)X indexed by the identity map of α.

Suppose, now, that there is a map τ : β → γ in C; that must induce a map
τ∗ : FαX(β) → FαX(γ). Since FαX(β) =

∐
C(α,β)X, we will describe what τ∗ does to

each summand. If σ : α → β is an element of C(α, β), then τ∗ on the summand
indexed by σ is the injection into the coproduct FαX(γ) =

∐
C(α,γ)X of the summand

indexed by the composition τ ◦ σ : α→ γ.

Definition 6.1. Let C be a small category and let α be an object of C. If M is a
category and X is an object of M, the free C-diagram in M generated by X at α is
the diagram FαX such that for every object β of C

FαX(β) =
∐

C(α,β)

X

and such that if σ : β → γ is a map in C, then

FαX(σ) = σ∗ : FαX(β) =
∐

C(α,β)

X −→ FαX(γ) =
∐

C(α,γ)

X

is the map that, on the summand of FαX(β) indexed by τ : α → β, is the injection
into the coproduct FαX(γ) of the summand indexed by the composition σ◦τ : α→ γ.

Example 6.2. Let C be the category b
γ←− a δ−→ c with three objects {a, b, c} and two

non-identity maps γ : a → b and δ : a → c. If M is a category and X is an object

of M, then FaX is the diagram X
γ∗←− X

δ∗−→ X, in which both γ∗ and δ∗ are the
identity map. This is because there are three maps in C with domain a: γ, δ, and
1a, and so there are a total of three copies of X in the entire diagram.

Example 6.3. Let C be the category b
γ←− a δ−→ c with three objects {a, b, c} and two

non-identity maps γ : a → b and δ : a → c. If M is a category and X is an object

of M, then FbX is the diagram X
γ∗←− ∅ δ∗−→ ∅, where ∅ is the initial object of M.

This is because there is only one map in C with domain b, namely 1b, and so there
is only one copy of X in the entire diagram.

Example 6.4. Let G be a discrete group, which we view as a category with a single
object, which we will call α. If M is a category and X is an object of M, then FαX
is the object

∐
GX, the coproduct of one copy of X for each element of G, because

the maps in our indexing category are the elements of the group G, and they all
have the object α as their domain. The elements of G act by permuting the copies
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of X: the element g of G takes the summand indexed by an element h of G to the
injection into the coproduct of the summand indexed by gh.

Example 6.5. Let D be the category

α
γ
//

δ
// β

with two objects {α, β} and two non-identity maps γ : α→ β and δ : α→ β. If M
is a category and X is an object of M, then FαX is the diagram

X
γ∗ //

δ∗

// X qX

in which γ∗ is the injection of the first summand and δ∗ is the injection of the
second summand.

6.2. Free diagrams.

Definition 6.6. Let C be a small category. If M is a category, then a free C-diagram
in M is a diagram that is isomorphic to a coproduct of free diagrams generated by
an object (see Definition 6.1).

Remark 6.7. A free C-diagram in M may be isomorphic to a coproduct of free
diagrams generated by an object in more then one way. For example, if A and
B are disjoint sets, C is a small category, and α is an object of C, then FαA∪B is
isomorphic to FαA q FαB .

Example 6.8. The diagram of sets A → B is free if and only if the map A → B is
an inclusion.

Example 6.9. The diagram of sets A → C ← B is free if and only if the maps
A→ C and B → C are inclusions with disjoint images in C.

Example 6.10. The diagram of sets A1 → A2 → A3 → · · · is free if and only if all
of the maps in the diagram are inclusions.

Example 6.11. The diagram of sets A1 ← A2 ← A3 ← · · · is free if and only if all
of the maps are inclusions and the inverse limit of the diagram is empty.

Example 6.12. If G is a discrete group viewed as a category with a single object,
then a G-diagram of sets is free if and only if it is what is classically called a free
G-set.

Example 6.13. If C is a small category and P is the constant diagram of sets at a
single point, then P is free if and only if each connected component of C has an
initial object.

6.3. Mapping properties of free diagrams. Let C be a small category and let
α be an object of C. If M is a category and X is an object of M, then FαX , the free
C-diagram generated by X at α, was constructed as “the freest diagram having a
copy of X at α” (see Definition 6.1); in this section, we explain exactly what that
means.

Suppose that Y is another C-diagram in M, and suppose that we have a map
g : X → Y α. We will show that this extends uniquely to a map of diagrams
ĝ : FαX → Y . We will refer to the summand of FαX =

∐
C(α,α)X indexed by the
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identity map 1α as the generating copy of X. Thus, we will be showing that every
map g : X → Y α determines a unique map of diagrams FαX → Y that on the
generating copy of X is the map g.

We begin by showing that there is at most one such extension ĝ. For each object
β of C we have FαX(β) =

∐
C(α,β)X. Thus, each summand of FαX(β) is indexed by

a map σ : α → β, and FαX(σ) = σ∗ : FαX(α) → FαX(β) takes the generating copy of
X isomorphically to that summand; thus, since the square

FαX(α)
ĝα //

σ∗

��

Y α

σ∗

��

F α
X(β)

ĝβ

// Y β

must commute, the map ĝ : FαX(β) → Y β on that summand must equal the com-

position X
g−→ Y α

σ∗−→ Y β .
To see that this definition does define ĝ as a map of diagrams, let τ : β → γ be

a map in C; we must show that the diagram

FαX(β) =
∐

C(α,β)

X
ĝβ
//

τ∗

��

Y β

τ∗

��

FαX(γ) =
∐

C(α,γ)

X
ĝγ

// Y γ

commutes. If σ : α→ β is a map in C, then on the summand of FαX(β) indexed by
σ,

• τ∗ is the injection into FαX(γ) of the summand indexed by the composition

τσ, and ĝγ on that summand is the composition X
g−→ Y α

(τσ)∗−−−→ Y γ , while

• ĝβ on that summand is the composition X
g−→ Y α

σ∗−→ Y β , and the compo-

sition of that with τ∗ is the composition X
g−→ Y α

σ∗−→ Y β
τ∗−→ Y γ .

Since Y is a functor, (τσ)∗ = τ∗σ∗ : Y α → Y γ , and so the square commutes.
Thus, we have proved the following theorem:

Theorem 6.14. Let C be a small category and let α be an object of C. If M is
a category and X is an object of M, then for every C-diagram Y in M there is a
natural isomorphism

φ : MC(FαX ,Y ) −→M(X,Y α)

that takes a map of diagrams ĝ : FαX → Y to the map g : X → Y α that is the
composition

X
i(1α)−−−−−→ FαX(α) =

∐
C(α,α)

X
ĝα−−−→ Y α

(where i(1α) is the injection into the coproduct of the summand indexed by the
identity map 1α).

Proof. The map φ is the inverse of the map ψ : M(X,Y α) → MC(FαX ,Y ) that
takes a map g : X → Y α to the map ĝ : FαX → Y such that, for each object β of C,
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ĝβ : FαX(β) =
∐

C(α,β)X → Y β is the map that on the summand of FαX(β) indexed

by σ : α→ β is the composition X
g−→ Y α

σ∗−→ Y β . �

6.4. Generating cofibrations and free cell complexes. Part of the structure of
a cofibrantly generated model category M is a set I of maps called the generating
cofibrations. These maps are cofibrations in M, and every cofibration in M is a
retract of a map constructed by using the generating cofibrations to “enlarge” a
given object by creating a “relative cell complex”.

If M is a cofibrantly generated model category and C is a small category, then
there is a cofibrantly generated model category structure on MC, the category
of C-diagrams in M, and the generating cofibrations for MC are the maps of free
diagrams constructed from the generating cofibrations of M. These are cofibrations
in MC, and every cofibration in MC is a retract of a map constructed by using these
to “enlarge” a given diagram by creating a “relative free cell complex”. Note that,
strictly speaking, since MC is itself a cofibrantly generated model category, the
maps of free diagrams constructed using the generating cofibrations of M are the
generating cofibrations of MC, and so we could call these maps plain old “relative
cell complexes”, but we use the phrase “relative free cell complexes” to emphasize
that we’ve just passed from a cofibrantly generated model category M to some
category of diagrams MC over M.

Definition 6.15. If M is a cofibrantly generated model category with generating
cofibrations I, then attaching a cell to an object X is defined as

• choosing an element i : A→ B of I,
• choosing a map f : A→ X, and
• constructing the pushout

A
f
//

i

��

X

��

B // Y .

The object Y is then said to be obtained from X by attaching a cell. The ter-
minology comes from the category of topological spaces, in which the generating
cofibrations are the inclusions Sn−1 → Dn for n ≥ 0; in this case, “attaching a cell”
has exactly the classical meaning of that phrase.

Example 6.16. The usual model category structure on Top, the category of topo-
logical spaces, has as generating cofibrations the maps {Sn−1 → Dn}n≥0. Thus,
“attaching a cell” as defined above is exactly what is classically meant by attaching
a cell. Note that a relative cell complex in our case is not exactly what is classically
called a relative CW-complex, because when we attach multiple cells, there is no
restriction that the attaching map of a cell factor through lower dimensional cells.

Example 6.17. The usual model category structure on SS, the category of simplicial
sets, has as generating cofibrations the maps {∂∆[n]→ ∆[n]}n≥0. Thus, “attaching
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a cell” to a simplicial set X consists of constructing a pushout diagram

∂∆[n] //

��

X

��

∆[n] // Y

and the simplicial set Y is then said to be obtained from X by attaching a cell.

Definition 6.18. If M is a cofibrantly generated model category with generating
cofibrations I, then a relative cell complex in M is a map X → Y that can be
constructed by a well ordered process of attaching cells. A cell complex is an object
for which the map from the initial object is a relative cell complex.

Example 6.19. In the category of topological spaces, a CW-complex is an example
of a cell complex, but not all cell complexes are CW-complexes. This is because in
a CW-complex the attaching map of a cell factors through the subcomplex of lower
dimensional cells, but this is not required for a cell complex.

Example 6.20. In the category of simplicial sets, every simplicial set is a cell com-
plex, since it can be built from the empty simplicial set by (a possibly infinite
process of) attaching nondegenerate simplices one at a time. Every inclusion of
simplicial sets is a relative cell complex, for a similar reason.

Fixme: Finish this section.

7. Coends and ends

Lemma 7.1. A coequalizer is an epimorphism and an equalizer is a monomorphism.

Proof. We will prove that a coequalizer is an epimorphism; the proof that an equal-
izer is a monomorphism is dual to that. Let

A
f
//

g
// B

p
// C

be a coequalizer diagram. If r : C →W and s : C →W are maps such that rp = sp,
then (since pf = pg) we have rpf = rpg, and so rp coequalizes f and g. Thus,
both r and s are factorizations through C of the map sp, and the uniqueness part
of the definition of a coequalizer implies that r = s. �

Definition 7.2. Let M be a simplicial model category and let C be a small category.
If X is a C-diagram in M and K is a Cop-diagram of simplicial sets, then the coend
X ⊗C K is defined to be the object of M that is the coequalizer of the maps

(7.3)
∐

(σ : α→α′)∈C

Xα ⊗Kα′

φ
//

ψ
//

∐
α∈Ob(C)

Xα ⊗Kα

where

• the map φ on the summand Xα ⊗Kα′ indexed by (σ : α→ α′) ∈ C is the
composition of the map

σ∗ ⊗ 1Kα′ : Xα ⊗Kα′ −→Xα′ ⊗Kα′

(where σ∗ : Xα →Xα′) with the natural injection into the coproduct, and
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• the map ψ on that same summand is the composition of the map

1Xα
⊗ σ∗ : Xα ⊗Kα′ −→Xα ⊗Kα

(where σ∗ : Kα′ →Kα) with the natural injection into the coproduct.

In the notation of [8, pages 222–223], X ⊗C K =
∫ α

Xα ⊗Kα.

Example 7.4. Let K be a simplicial set and let ∆K be the category of simplices
of K (see Definition 3.5). If P : (∆K)op → SS is the (∆K)op-diagram of simplicial
sets that is a single point for every object of (∆K)op and G : ∆K → SS is the
functor of Proposition 3.6, then the coend G⊗∆K P is naturally isomorphic to K.

Example 7.5. Let K be a simplicial set and let ∆K be the category of simplices of
K (see Definition 3.5). If F : ∆K → Top takes an n-simplex of K to

∣∣∆[n]
∣∣ and

P : (∆K)op → SS takes every object of (∆K)op to a point, then the coend F⊗∆KP
is the geometric realization of K.

Lemma 7.6. Let M be a simplicial model category and let C be a small category.
If X is a C-diagram in M, K is a Cop-diagram of simplicial sets, and either

• X is the constant diagram at the initial object of M or
• K is the constant diagram at the empty simplicial set,

then the coend X ⊗C K is an initial object of M.

Proof. Definition 7.2 and Lemma 4.2 imply that, in either case, X ⊗C K is the
coequalizer of a pair of maps between initial objects of M, and so it is an initial
object of M. �

Definition 7.7. Let M be a simplicial model category and let C be a small category.
If X is a C-diagram in M and K is a C-diagram of simplicial sets, then the end
homC(K,X) is defined to be the object of M that is the equalizer of the maps

(7.8)
∏

α∈Ob(C)

(Xα)Kα

φ
//

ψ
//

∏
(σ : α→α′)∈C

(Xα′)
Kα

where

• the projection of the map φ on the factor (Xα′)
Kα indexed by (σ : α →

α′) ∈ C is the composition of a natural projection from the product with
the map

σ
1Kα
∗ : (Xα)Kα −→ (Xα′)

Kα

(where σ∗ : Xα →Xα′) and
• the projection of the map ψ on that same factor is the composition of a

natural projection from the product with the map

(1Xα′ )
σ∗ : (Xα′)

Kα′ −→ (Xα′)
Kα

(where σ∗ : Kα →Kα′ .

In the notation of [8, pp. 218–223] or [2, p. 329], homC(K,X) =
∫
α

(Xα)Kα .

Example 7.9. Let C be a small category and let K and L be C-diagrams of simplicial
sets. If α is an object of C, then (Lα)Kα is the set of maps of simplicial sets from
Kα to Lα, and so an element of

∏
α∈Ob(C)(Lα)Kα is a choice, for each object α of C,
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of a map of simplicial sets from Kα to Lα. Such a choice equalizes the projections
of φ and ψ onto the factor (Lα′)

Kα indexed by σ : α→ α′ when the square

Kα
//

K(σ)

��

Lα

L(σ)

��

Kα′
// Lα′

commutes, and so it equalizes φ and ψ when that collection of maps commutes with
all the morphisms of C. Thus, the end homC(K,L) is SSC(K,L), the set of maps
of diagrams from K to L.

Lemma 7.10. Let M be a simplicial model category and let C be a small category.
If X is a C-diagram in M, K is a C-diagram of simplicial sets, and either

• X is the constant diagram at the terminal object of M or
• K is the constant diagram at the empty simplicial set,

then the end homC(K,X) is a terminal object of M.

Proof. Definition 7.2 and Lemma 4.2 imply that, in either case, homC(K,X) is the
equalizer of a pair of maps between terminal objects of M, and so it is a terminal
object of M. �

7.1. Adjointness.

Proposition 7.11. Let M be a simplicial model category and let C be a small
category.

(1) If X is a C-diagram in M, K is a Cop-diagram of simplicial sets, and Z is
an object of M, then there is a natural isomorphism of sets

M(X ⊗C K, Z) ≈ SSCop(
K,Map(X, Z)

)
(where X ⊗C K is as in Definition 7.2).

(2) If X is a C-diagram in M, K is a C-diagram of simplicial sets, and W is an
object of M, then there is a natural isomorphism of sets

M(W, homC(K,X)) ≈ SSC
(
K,Map(W,X)

)
(where homC(K,X) is as in Definition 7.7).

Proof. We will prove part 1; the proof of part 2 is similar.
The object X ⊗C K is defined as the colimit of (7.3), and so M(X ⊗C K, Z) is

naturally isomorphic to the limit of the diagram∏
α∈Ob(C)

M(Xα ⊗Kα, Z)
φ∗
//

ψ∗
//

∏
(σ : α→α′)∈C

M(Xα ⊗Kα′ , Z) .

Proposition 4.1 implies that this limit is naturally isomorphic to the limit of the
diagram∏

α∈Ob(C)

SS
(
Kα,Map(Xα, Z)

) φ∗
//

ψ∗
//

∏
(σ : α→α′)∈C

SS
(
Kα′ ,Map(Xα, Z)

)
,

which is the definition of SSCop(
K,Map(X, Z)

)
(see Example 7.9). �
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Lemma 7.12. Let M be a simplicial model category and let C be a small category.

(1) If A→ B is a map of C-diagrams in M, K → L is a map of Cop-diagrams
of simplicial sets, and X → Y is a map of objects in M, then the dotted
arrow exists in every solid arrow diagram of the form

(7.13)

A⊗C LqA⊗CK B ⊗C K //

��

X

��

B ⊗C L //

66

Y

if and only if the dotted arrow exists in every solid arrow diagram of the
form

(7.14)

K //

��

Map(B, X)

��

L //

55

Map(A, X)×Map(A,Y ) Map(B, Y ) .

(2) If X → Y is a map of C-diagrams in M, K → L is a map of C-diagrams
of simplicial sets, and A → B is a map of objects in M, then the dotted
arrow exists in every solid arrow diagram of the form

A //

��

(X)L

��

B //

88

(X)K ×(Y )K (Y )L

if and only if the dotted arrow exists in every solid arrow diagram of the
form

K //

��

Map(B,X)

��

L //

55

Map(A,X)×Map(A,Y ) Map(B,Y ) .

Proof. We will prove part 1; the proof of part 2 is similar.
Proposition 7.11 gives a one-to-one correspondence between solid arrow diagrams

as in Diagram 7.13 and solid arrow diagrams as in Diagram 7.14, under which a
dotted arrow as in Diagram 7.13 corresponds to a dotted arrow as in Diagram 7.14.

�

Theorem 7.15. Let M be a simplicial model category and let C be a small category.

(1) If j : A→ B is an objectwise cofibration of C-diagrams in M and i : K → L
is a cofibration of Cop-diagrams of simplicial sets, then the pushout corner
map

A⊗C LqA⊗CK B ⊗C K −→ B ⊗C L

is a cofibration in M that is also a weak equivalence (and, thus, a trivial
cofibration) if either j is an objectwise weak equivalence or i is a weak
equivalence.
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(2) If p : X → Y is an objectwise fibration of C-diagrams in M and i : K → L
is a cofibration of C-diagrams of simplicial sets, then the pullback corner
map

homC(L,X) −→ homC(K,X)×homC(K,Y ) homC(L,Y )

is a fibration in M that is also a weak equivalence (and, thus, a trivial fibra-
tion) if either p is an objectwise weak equivalence or i is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is similar.
Note first that we are not assuming that there is any model category structure

on the category of C-diagrams in M, and the map j : A → B is just assumed
to be an objectwise cofibration. We do, however, use the Bousfield-Kan model
category structure on the category of Cop-diagrams of simplicial sets (in which
the weak equivalences are the objectwise weak equivalences and the fibrations are
the objectwise fibrations; see Theorem 5.1), and we are assuming that the map
i : K → L is a cofibration in this model category; this is a much stronger assumption
than just assuming that i is an objectwise cofibration.

To show that the pushout corner map is a cofibration we will show that it has
the left lifting property with respect to all trivial fibrations in M. Let p : X → Y
be a trivial fibration in M and assume that we have the solid arrow diagram in
Diagram 7.13. Lemma 7.12 implies that the dotted arrow exists in Diagram 7.13 if
and only if the dotted arrow exists in Diagram 7.14.

Proposition 4.1 implies that, for every object α of C, the map

Map(Bα, X) −→ Map(Aα, X)×Map(Aα,Y ) Map(Bα, Y )

is a trivial fibration in M, and so the map

Map(B, X) −→ Map(A, X)×Map(A,Y ) Map(B, Y )

is an objectwise trivial fibration of Cop-diagrams of simplicial sets. Thus, this map
is a trivial fibration of Cop-diagrams of simplicial sets (see Theorem 5.1) and the
map i : K → L is a cofibration of Cop-diagrams of simplicial sets, and so the dotted
arrow exists in Diagram 7.14, and so the pushout corner map is a cofibration.

Suppose now that j : A → B is also an objectwise weak equivalence, so that
it is an objectwise trivial cofibration. To show that the pushout corner map is a
trivial cofibration, we will show that it has the left lifting property with respect
to all fibrations. Let p : X → Y be a fibration in M and assume that we have the
solid arrow Diagram 7.13. Lemma 7.12 again implies that the dotted arrow exists in
Diagram 7.13 if and only if the dotted arrow exists in Diagram 7.14. Proposition 4.1
implies that, for every object α of C, the map

Map(Bα, X) −→ Map(Aα, X)×Map(Aα,Y ) Map(Bα, Y )

is a trivial fibration in M, and so the map

Map(B, X) −→ Map(A, X)×Map(A,Y ) Map(B, Y )

is an objectwise trivial fibration of Cop-diagrams of simplicial sets. Thus, this map
is a trivial fibration of Cop-diagrams of simplicial sets (see Theorem 5.1) and the
map i : K → L is a cofibration of Cop-diagrams of simplicial sets, and so the dotted
arrow exists in Diagram 7.14, and so the pushout corner map is a trivial cofibration.

Finally, assume that the map i : K → L is a weak equivalence, so that it is
a trivial cofibration of Cop-diagrams of simplicial sets. To show that the pushout
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corner map is a trivial cofibration we will show that it has the left lifting property
with respect to all fibrations. Let p : X → Y be a fibration in M and assume
that we have the solid arrow Diagram 7.13. Lemma 7.12 implies that the dotted
arrow exists in Diagram 7.13 if and only if the dotted arrow exists in Diagram 7.14.
Proposition 4.1 implies that, for every object α of C, the map

Map(Bα, X) −→ Map(Aα, X)×Map(Aα,Y ) Map(Bα, Y )

is a fibration in M, and so the map

Map(B, X) −→ Map(A, X)×Map(A,Y ) Map(B, Y )

is an objectwise fibration of Cop-diagrams of simplicial sets. Thus, this map is a
fibration of Cop-diagrams of simplicial sets (see Theorem 5.1) and the map i : K →
L is a trivial cofibration of Cop-diagrams of simplicial sets, and so the dotted arrow
exists in Diagram 7.14, and so the pushout corner map is a trivial cofibration. �

Corollary 7.16. Let M be a simplicial model category and let C be a small cate-
gory.

(1) If F : K → L is a cofibration of Cop-diagrams of simplicial sets and X is
a C-diagram in M that is objectwise cofibrant, then the induced map of
coends 1X ⊗C F : X ⊗C K →X ⊗C L is a cofibration.

(2) If F : K → L is a cofibration of C-diagrams of simplicial sets and X is a
C-diagram in M that is objectwise fibrant, then the induced map of ends
homC(F, 1) : homC(L,X)→ homC(K,X) is a fibration.

Proof. We will prove part 1; the proof of part 2 is similar.
Let A be the constant diagram at the initial object of M and let B = X;

the unique map A → B is then an objectwise cofibration, and so Theorem 7.15
implies that the pushout corner map is a cofibration. Since A is the constant
diagram at the initial object, both A ⊗C K and A ⊗C L are the initial object
of M (see Lemma 7.6), and so the pushout corner map is isomorphic to the map
1X ⊗C F : X ⊗C K →X ⊗C L. �

Corollary 7.17. Let M be a simplicial model category and let C be a small cate-
gory.

(1) If L is a cofibrant Cop-diagram of simplicial sets and j : A → B is an
objectwise cofibration of C-diagrams in M, then the map A⊗CL→ B⊗CL
is a cofibration in M that is a weak equivalence if j is an objectwise weak
equivalence.

(2) If L is a cofibrant C-diagram of simplicial sets and p : X → Y is an

objectwise fibration of C-diagrams in M, then the map homC(L,X) →
homC(L,Y ) is a fibration in M that is a weak equivalence if p is an object-
wise weak equivalence.

Proof. We will prove part 1; the proof of part 2 is similar.
Let K be the Cop-diagram of simplicial sets that is the constant diagram at the

empty simplicial set. The unique map K → L is then a cofibration of Cop-diagrams
of simplicial sets, and so Theorem 7.15 implies that the pushout corner map is a
cofibration. Since K is the constant diagram at the empty simplicial set, both
A ⊗C K and B ⊗C K are the initial object of M (see Lemma 7.6), and so the
pushout corner map is isomorphic to the map A⊗C L→ B ⊗C L. �
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Corollary 7.18. Let M be a simplicial model category and let C be a small cate-
gory.

(1) If L is a cofibrant Cop-diagram of simplicial sets and X is an objectwise
cofibrant diagram in M, then the coend X ⊗CL is a cofibrant object of M.

(2) If L is a cofibrant C-diagram of simplicial sets and X is an objectwise

fibrant diagram in M, then the end homC(L,X) is a fibrant object of M.

Proof. We will prove part 1; the proof of part 2 is similar.
Let A be the C-diagram in M that is the constant diagram at the initial object

of M, let B = X, and let j : A → B be the unique map. Corollary 7.17 implies
that the map A⊗C L→ B⊗C L is a cofibration, and Lemma 7.6 implies that that
is the map from the initial object of M to X ⊗C L. �

7.2. Homotopy invariance. Our homotopy invariance results will be consequences
of Theorem 7.15. That theorem, though, doesn’t directly discuss maps that are
merely objectwise weak equivalences; it discusses maps that are objectwise trivial
cofibrations or objectwise trivial fibrations. The tool that extends the applicabil-
ity of this is Kenny Brown’s lemma (Lemma 7.19), which implies that a functor
that takes objectwise trivial cofibrations between objectwise cofibrant objects to
weak equivalences also takes all objectwise weak equivalences between objectwise
cofibrant objects to weak equivalences, and a functor that takes objectwise trivial
fibrations between objectwise fibrant objects to weak equivalences also takes all ob-
jectwise weak equivalences between objectwise fibrant objects to weak equivalences
(see Corollary 7.20 and Corollary 7.22).

Lemma 7.19 (K. S. Brown, [4]). Let M be a model category.

(1) If g : X → Y is a weak equivalence between cofibrant objects in M then
there is a functorial factorization of g as g = ji where i is a trivial cofibration
and j is a trivial fibration that has a right inverse that is a trivial cofibration.

(2) If g : X → Y is a weak equivalence between fibrant objects in M then there
is a functorial factorization of g as g = ji where i is a trivial cofibration
that has a left inverse that is a trivial fibration and j is a trivial fibration.

Proof. We will prove part 1; the proof of part 2 is dual.
Because there is a pushout diagram

∅ //

��

X

��

Y // X q Y

(where ∅ is the initial object of M), the fact that X and Y are cofibrant implies
that both of the injections X → X q Y and Y → X q Y are cofibrations. We can
then factor the map g q 1Y : X q Y → Y as

X q Y k // Z
j
// Y

where k is a cofibration and j is a trivial fibration, and let i : X → Z be the
cofibration that is the composition of cofibrations

X // X q Y k // Z .
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Since g and j are weak equivalences, the “two out of three” property of weak
equivalences implies that the cofibration i : X → Z is a weak equivalence, and so i
is a trivial cofibration. The composition of cofibrations Y → X q Y → Z is a right
inverse to the trivial fibration j, and (by the “two out of three” property) is thus
also a weak equivalence, and so j has a right inverse that is a trivial cofibration. �

Corollary 7.20. Let M be a simplicial model category and let C be a small cate-
gory.

(1) If K is a cofibrant Cop-diagram of simplicial sets and f : X → Y is an
objectwise weak equivalence of objectwise cofibrant C-diagrams in M, then
the induced map f∗ : X⊗CK → Y ⊗CK is a weak equivalence of cofibrant
objects.

(2) If K is a cofibrant C-diagram of simplicial sets and f : X → Y is an
objectwise weak equivalence of objectwise fibrant C-diagrams in M, then
the induced map f∗ : homC(K,X) → homC(K,Y ) is a weak equivalence
of fibrant objects.

Proof. We will prove part 1; the proof of part 2 is similar.

We can use Lemma 7.19 to factor the map of diagrams f : X → Y as X
i−→

W
j−→ Y where i is an objectwise trivial cofibration and j has a right inverse that is

an objectwise trivial cofibration. Corollary 7.17 implies that the map X ⊗C K →
W ⊗CK is a weak equivalence, Corollary 7.17 together with the “two out of three”
property of weak equivalences imply that the map W ⊗C K → Y ⊗C K is a weak
equivalence, and Corollary 7.18 implies that X⊗CK and Y ⊗CK are cofibrant. �

Corollary 7.21. Let M be a simplicial model category and let C be a small cate-
gory.

(1) If X is an objectwise cofibrant C-diagram in M and f : K → K ′ is a
trivial cofibration of Cop-diagrams of simplicial sets, then the induced map
of coends f∗ : X ⊗C K →X ⊗C K ′ is a trivial cofibration.

(2) If X is an objectwise fibrant C-diagram in M and f : K → K ′ is a trivial
cofibration of C-diagrams of simplicial sets, then the induced map of ends
f∗ : homC(K ′,X)→ homC(K,X) is a trivial fibration.

Proof. This follows from Theorem 7.15. �

Corollary 7.22. Let M be a simplicial model category and let C be a small cate-
gory.

(1) If X is an objectwise cofibrant C-diagram in M and f : K →K ′ is a weak
equivalence of cofibrant Cop-diagrams of simplicial sets, then the induced
map f∗ : X ⊗C K →X ⊗C K ′ is a weak equivalence of cofibrant objects in
M.

(2) If X is an objectwise fibrant C-diagram in M and f : K → K ′ is a weak
equivalence of cofibrant C-diagrams of simplicial sets, then the induced map
f∗ : homC(K ′,X)→ homC(K,X) is a weak equivalence of fibrant objects
in M.

Proof. We will prove part 1; the proof of part 2 is similar.

We can use Lemma 7.19 to factor the map of diagrams f : K → K ′ as K
i−→

K ′′
j−→K ′ where i is a trivial cofibration and j has a right inverse that is a trivial
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cofibration. Corollary 7.21 implies that the map X ⊗C K → X ⊗C K ′′ is a weak
equivalence, Corollary 7.21 and the “two out of three” property of weak equivalences
imply that the map X⊗CK

′′ →X⊗CK
′ is a weak equivalence, and Corollary 7.18

implies that X ⊗C K and X ⊗C K ′ are cofibrant. �

7.3. Generating sets of maps. We show here that if S is a set of maps in a
small category C such that every map in C is a finite composition of elements of
S, then you can compute ends and coends over C using only the maps in S (see
Proposition 7.24).

Lemma 7.23. Let C be a small category, let M be a simplicial model category, and
let X : C→M be a C-diagram in M.

(1) If K : Cop → SS is a Cop-diagram of simplicial sets, σ : α→ β and τ : β → γ
are maps in C, and

∐
ω∈Ob(C) Xω⊗Kω →W is a map such that the squares

Xα ⊗Kβ

1Xα⊗σ
∗
//

σ∗⊗1Kβ

��

Xα ⊗Kα

��

Xβ ⊗Kβ
// W

and

Xβ ⊗Kγ

1Xβ
⊗τ∗
//

τ∗⊗1Kγ

��

Xβ ⊗Kβ

��

Xγ ⊗Kγ
// W

commute, then the square

Xα ⊗Kγ

1Xα⊗(τσ)∗
//

(τσ)∗⊗1Kγ

��

Xα ⊗Kα

��

Xγ ⊗Kγ
// W

also commutes.
(2) If K : C→ SS is a C-diagram of simplicial sets, σ : α→ β and τ : β → γ are

maps in C, and W →
∏
ω∈Ob(C) (Xω)Kω is a map such that the squares

W //

��

(Xα)Kα

(σ∗)
1Kα

��

(Xβ)Kβ
(1Xβ

)σ
∗
// (Xβ)Kα

and

W //

��

(Xβ)Kβ

(τ∗)
1Kβ

��

(Xγ)Kγ
(1Xγ )τ

∗
// (Xγ)Kβ

commute, then the square

W //

��

(Xα)Kα

((τσ)∗)
1Kα

��

(Xγ)Kγ
(1Xγ )(τσ)∗

// (Xγ)Kα

also commutes.
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Proof. For part 1, we have the diagram

Xα ⊗Kα

&&

Xα ⊗Kβ

1⊗σ∗ 33

σ∗⊗1 ++
Xα ⊗Kα

1⊗(τσ)∗

++

1⊗τ∗ 33

σ∗⊗1 ++

(τσ)∗⊗1

33

Xβ ⊗Kβ
// W

Xβ ⊗Kγ
1⊗τ∗

33

τ∗⊗1 ++
Xγ ⊗Kγ

88

The two four-sided figures on the right commute by assumption, the four-sided
figure to their left commutes because this is a functor of two variables, and the two
three-sided figures on the upper and lower left commute because τ∗σ∗ = (τσ)∗ and
σ∗τ∗ = (τσ)∗. Thus, the outer four-sided figure commutes.

For part 2, we have the diagram

(Xα)Kα
(σ∗)

1

++

((τσ)∗)
1

��

(Xβ)Kα
(τ∗)

1

++
W

99

//

%%

(Xβ)Kβ

(1)σ∗ 33

(τ∗)
1

++

(Xγ)Kα

(Xγ)Kβ
(1)σ∗

33

(Xα)Kγ
(1)τ∗

33

(1)(τσ)∗

@@

The two four-sided figures on the left commute by assumption, the four-sided figure
to their right commutes because this is a functor of two variables, and the two three-
sided figures on the upper and lower right commute because (τσ)∗ = τ∗σ∗. Thus,
the outer four-sided figure commutes. �

Proposition 7.24. Let C be a small category and let S be a set of maps in C such
that every map in C is a finite composition of elements of S.

(1) If M is a simplicial model category, X : C → M is a C-diagram in M, and
K : Cop → SS is a Cop-diagram of simplicial sets, then the coend X ⊗C K
is naturally isomorphic to the coequalizer of the maps

∐
(σ : α→α′)∈S

Xα ⊗Kα′

φ
//

ψ
//

∐
α∈Ob(C)

Xα ⊗Kα

where the maps φ and ψ are as in Definition 7.2.
(2) If M is a simplicial model category, X : C → M is a C-diagram in M, and

K : C→ SS is a C-diagram of simplicial sets, then the end homC(K,X) is
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naturally isomorphic to the equalizer of the maps

∏
α∈Ob(C)

(Xα)Kα

φ
//

ψ
//

∏
(σ : α→α′)∈S

(Xα)Kα′

where the maps φ and ψ are as in Definition 7.7.

Proof. This follows from Lemma 7.23. �

Example 7.25. Example 7.4 shows how to reconstruct a simplicial set from the
diagram of its simplices, and Proposition 7.24 provides an alternate proof of Prop-
osition 3.7.

8. Homotopy colimits

Definition 8.1. Let M be a simplicial model category and let C be a small category.
If X is a C-diagram in M, then the homotopy colimit of X (denoted hocolimC X,
or hocolimX) is defined to be the coend X ⊗C N(−↓C)

op
(see Definition 2.5 and

Definition 7.2), that is, hocolimX is the coequalizer of the maps

(8.2)
∐

(σ : α→α′)∈C

Xα ⊗N(α′ ↓C)
op

φ
//

ψ
//

∐
α∈Ob(C)

Xα ⊗N(α ↓C)
op

where

• the map φ on the summand Xα ⊗N(α′ ↓C)
op

indexed by (σ : α→ α′) ∈ C

is the composition of the map

σ∗ ⊗ 1N(α′↓C)op : Xα ⊗N(α′ ↓C)
op −→Xα′ ⊗N(α′ ↓C)

op

(where σ∗ : Xα →Xα′) with the injection into the coproduct, and
• the map ψ on that same summand is the composition of the map

1Xα
⊗ σ∗ : Xα ⊗N(α′ ↓C)

op −→Xα ⊗N(α ↓C)
op

(where σ∗ : N(α′ ↓C)
op → N(α ↓C)

op
) with the injection into the coproduct.

Proposition 8.3. Let M be a simplicial model category and let C be a small cate-
gory. If X is an objectwise cofibrant C-diagram in M, then hocolimX is cofibrant.

Proof. This follows from Corollary 7.18, Proposition 5.13, and Theorem 5.1. �

Theorem 8.4. Let M be a simplicial model category and let C be a small category.
If X and Y are objectwise cofibrant C-diagrams in M and f : X → Y is an object-
wise weak equivalence, then the induced map of homotopy colimits f∗ : X → Y is
a weak equivalence of cofibrant objects.

Proof. This follows from Definition 8.1, Proposition 5.13, Theorem 5.1, and Corol-
lary 7.20. �
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8.1. Decomposing homotopy colimits. In this section, we use Proposition 3.7
to describe the simplicial sets N(α ↓C)

op
as colimits of diagrams of standard sim-

plices. This allows us to show that the homotopy colimit of a diagram can be
constructed as a coequalizer of maps between simpler objects than the ones in the
definition of the homotopy colimit (see Definition 8.1 and Proposition 8.5). This
will be used in Section 9 to show that the homotopy colimit can be constructed as
the realization (see Definition 9.2) of the simplicial replacement (see Definition 9.1)
of the diagram.

Proposition 8.5. Let M be a simplicial model category and let C be a small
category. If X is a C-diagram in M, then hocolimX = X⊗CN(−↓C)

op
is naturally

isomorphic to the coequalizer of the maps

(8.6)( ∐
(σ : α→α′)∈C

n≥0
∆[n]→N(α′↓C)op

Xα ⊗∆[n]
)
q
( ∐
α∈Ob(C)
n>0

0≤i≤n
∆[n]→N(α↓C)op

Xα ⊗∆[n− 1]
)
q
( ∐
α∈Ob(C)
n≥0

0≤i≤n
∆[n]→N(α↓C)op

Xα ⊗∆[n+ 1]
)

φ
//

ψ
//

∐
α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

Xα ⊗∆[n]

where, on the first summand,

• the map φ on the summand Xα ⊗ ∆[n] indexed by
(
(σ : α → α′) ∈

C, n,
(
(α0 ← α1 ← · · · ← αn) ∈ C, τ : α′ → αn

))
is the composition of

the map σ∗ ⊗ 1∆[n] : Xα ⊗∆[n]→ Xα′ ⊗∆[n] with the injection into the

coproduct of the summand indexed by
(
α′, n,

(
(α0 ← α1 ← · · · ← αn) ∈

C, τ : α′ → αn
))

, and
• the map ψ on that same summand is the injection into the coproduct of the

summand indexed by
(
α, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, τσ : α→ αn

))
and, on the second summand,

• the map φ on the summand Xα ⊗∆[n− 1] indexed by
(
α, n, i, σ : ∆[n]→

N(α ↓C)
op)

is the injection into the coproduct of the summand indexed by

α, (n− 1), and the composition ∆[n− 1]
di−→ ∆[n]

σ−→ N(α ↓C)
op

, and
• the map ψ on that same summand is the composition of the map 1Xα

⊗
di : Xα ⊗ ∆[n − 1] → Xα ⊗ ∆[n] composed with the injection into the
coproduct of the summand indexed by (α, n, σ)

and, on the third summand,

• the map φ on the summand Xα ⊗∆[n+ 1] indexed by
(
α, n, i, σ : ∆[n]→

N(α ↓C)
op)

is the injection into the coproduct of the summand indexed by

α, (n− 1), and the composition ∆[n+ 1]
si−→ ∆[n]

σ−→ N(α ↓C)
op

, and
• the map ψ on that same summand is the composition of the map 1Xα

⊗
si : Xα ⊗ ∆[n + 1] → Xα ⊗ ∆[n] composed with the injection into the
coproduct of the summand indexed by (α, n, σ).
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Proof. If we let

G =
( ∐
(σ : α→α′)∈C

n>0
0≤i≤n

∆[n]→N(α′↓C)op

Xα ⊗∆[n− 1]
)
q
( ∐
(σ : α→α′)∈C

n≥0
0≤i≤n

∆[n]→N(α′↓C)op

Xα ⊗∆[n+ 1]
)

and

H =
( ∐
α∈Ob(C)
n>0

0≤i≤n
∆[n]→N(α↓C)op

Xα ⊗∆[n− 1]
)
q
( ∐
α∈Ob(C)
n≥0

0≤i≤n
∆[n]→N(α↓C)op

Xα ⊗∆[n+ 1]
)

then in the diagram

G
//
//

����

H

����∐
(σ : α→α′)∈C

n≥0
∆[n]→N(α′↓C)op

Xα ⊗∆[n]
//
//

��

∐
α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

Xα ⊗∆[n]

��∐
(σ : α→α′)∈C

Xα ⊗N(α′ ↓C)
op //

//

∐
α∈Ob(C)

Xα ⊗N(α ↓C)
op

both of the columns are coproducts of coequalizer diagrams (see Proposition 4.3)
and are thus coequalizer diagrams, and each of the squares commutes if we use
either both upper horizontal arrows or both lower horizontal arrows and either
both left vertical arrows or both right vertical arrows.

Since the column on the right is a coequalizer diagram, for every object W of M
maps∐
α∈Ob(C)

Xα ⊗N(α ↓C)
op →W correspond to maps

∐
α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

Xα ⊗∆[n]→W

that coequalize the pair of parallel downward arrows on the right. Since coequalizers
are epimorphisms (see Lemma 7.1) and the left column is a coequalizer diagram,
a map

∐
α∈Ob(C) Xα ⊗ N(α ↓C)

op → W coequalizes the bottom pair of paral-

lel horizontal arrows if and only if the corresponding map
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

Xα ⊗

∆[n] → W coequalizes the middle pair of parallel horizontal arrows. Thus, maps∐
α∈Ob(C) Xα ⊗ N(α ↓C)

op → W that coequalize the bottom pair of parallel hori-

zontal arrows correspond to maps
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

Xα⊗∆[n]→W that coequalize

both the middle horizontal pair of parallel arrows and the right vertical pair of
parallel arrows, and so an initial object among the former corresponds to an initial
object among the latter. �
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8.1.1. Homotopy colimits and basic simplices. Proposition 8.5 decomposed the ob-
jects used in the definition of the homotopy colimit into simpler objects, so that the
homotopy colimit was presented as a quotient of a coproduct of objects Xα⊗∆[n],
one for each n-simplex of the simplicial set N(α ↓C)

op
, for each object α of C. The

following lemma shows that the map to the coequalizer is actually determined by
the map on those summands indexed by the “basic” simplices, where the “basic”
simplices are the ones of the form

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

)
(see

Example 2.4), i.e., the simplices of N(α ↓C)
op

for some α in which the map from
α to the final vertex of the simplex is the identity map. (The basic simplices are
in fact the elements of a basis for the free cell complex N(−↓C)

op
; see Proposi-

tion 5.13.) We will use this in Theorem 9.5 to show that the homotopy colimit is
isomorphic to the realization (see Definition 9.2) of the simplicial replacement (see
Definition 9.1) of the diagram, which is built using only the summands indexed by
the basic simplices.

Lemma 8.7. Let M be a simplicial model category, let C be a small category, and
let X be a C-diagram in M. If

h :
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

Xα ⊗∆[n] −→W

is a map that coequalizes the maps φ and ψ of (8.6), then for the summand Xα ⊗
∆[n] indexed by

(
α, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, τ : α→ αn

))
the diagram

Xα ⊗∆[n]
τ∗⊗1∆[n]

//

hτ
%%

Xαn ⊗∆[n]

h(1αn )
yy

W

commutes, where hτ is the composition of h with the injection into the coproduct
of the summand indexed by

(
α, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, τ : α → αn

))
and

h(1αn ) is the composition of h with the injection into the coproduct of the summand

indexed by
(
αn, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

))
.

Proof. The composition of h with the map φ on the summand Xα ⊗∆[n] indexed
by
(
(τ : α → αn) ∈ C, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

))
in the

first summand on the left of (8.6) is the composition h(1αn ) ◦ (τ∗ ⊗ 1∆[n]), and the
composition of h with the map ψ on that same summand is hτ . �

9. The realization of the simplicial replacement of a diagram

The main result in this section is Theorem 9.5, which shows that the homotopy
colimit of a diagram can be constructed as the realization (see Definition 9.2) of
the simplicial replacement (see Definition 9.1) of the diagram. This constructs
the homotopy colimit starting with the coproduct of a much smaller collection of
objects than the collection used in Proposition 8.5.

A “basic simplex” of N(α ↓C)
op

is one in which the map from the object α to
the final vertex of the simplex in N(α ↓C)

op
is the identity map, i.e., the ones of

the form
(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

)
(see Example 2.4). (The basic

simplices are in fact the elements of a basis for the free cell complex N(−↓C)
op

; see
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Proposition 5.13.) For every object α of C and every simplex
(
(α0 ← α1 ← · · · ←

αn) ∈ C, τ : α→ αn
)

of N(α ↓C)
op

, there are

• an object αn of C,
• a basic simplex

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

)
in N(αn ↓C)

op
,

and
• a map τ : αn → α in C

such that τ∗ : N(α ↓C)
op → N(αn ↓C)

op
takes that basic simplex

(
(α0 ← α1 ←

· · · ← αn) ∈ C, 1: αn → αn
)

to our simplex
(
(α0 ← α1 ← · · · ← αn) ∈ C, τ : α →

αn
)
, and such a triple is unique.

The realization of the simplicial replacement is constructed as a quotient of the
coproduct of a copy of Xαn ⊗ ∆[n] for every basic simplex

(
(α0 ← α1 ← · · · ←

αn) ∈ C, 1: αn → αn
)
. Lemma 8.7 implies that we can construct a map from the

homotopy colimit of a diagram X to the realization of the simplicial replacement
by mapping the summand Xα ⊗ ∆[n] indexed by

(
(α0 ← α1 ← · · · ← αn) ∈

C, τ : α→ αn
)

(see Proposition 8.5) by the composition of τ∗⊗1∆[n] : Xα⊗∆[n]→
Xαn ⊗ ∆[n] and the injection into the coproduct of the summand indexed by(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

)
(which, in the proof of Theorem 9.5, is

denoted simply (α0 ← α1 ← · · · ← αn) ∈ C).

Definition 9.1. Let M be a simplicial model category and let C be a small category.
If X is a C-diagram in M, then the simplicial replacement of X is the simplicial

object
∐
∗
X in M such that(∐

∗
X
)
n

=
∐

(α0←α1←···←αn)∈C

Xαn

and such that

• the face map di :
(∐

∗
X
)
n
→
(∐

∗
X
)
n−1

on the summand Xαn in-

dexed by (α0
σ0←− α1

σ1←− · · · σn−1←−−− αn) ∈ C is

– the injection into the coproduct of the summand indexed by (α1
σ1←−

α2
σ2←− · · · σn−1←−−− αn) ∈ C, if i = 0,

– the injection into the coproduct of the summand indexed by (α0
σ0←−

α1
σ1←− · · · σi−2←−−− αi−1

σi−1σi←−−−− αi+1
σi+1←−−− · · · σn−1←−−− αn) ∈ C, if 0 < i <

n, and
– the map (σn−1)∗ : Xαn → Xαn−1

composed with the injection into

the coproduct of the summand Xαn−1 indexed by (α0
σ0←− α1

σ1←−
· · · σn−2←−−− αn−1) ∈ C, if i = n

and

• the degeneracy map si :
(∐

∗
X
)
n
→
(∐

∗
X
)
n+1

on the summand Xαn

indexed by (α0
σ0←− α1

σ1←− · · · σn−1←−−− αn) ∈ C is the injection into the

coproduct of the summand indexed by (α0
σ0←− α1

σ1←− · · · σi−1←−−− αi
1αi←−−

αi
σi←− · · · σn−1←−−− αn) ∈ C.

Definition 9.2. Let M be a simplicial model category. If Y is a simplicial ob-
ject in M, then its realization

∣∣Y ∣∣ is the coend Y ⊗∆op ∆ (see Definition 3.3 and
Draft: November 23, 2014



NOTES ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITS 43

Definition 7.2), that is,
∣∣Y ∣∣ is the coequalizer of the maps

∐
(σ : [n]→[k])∈∆op

Y n ⊗∆[k]
φ
//

ψ
//

∐
n≥0

Y n ⊗∆[n]

where

• the map φ on the summand Y n ⊗∆[k] indexed by (σ : [n]→ [k]) ∈∆op is
the composition of the map

σ∗ ⊗ 1∆[k] : Y n ⊗∆[k] −→ Y k ⊗∆[k]

with the injection into the coproduct, and
• the map ψ on that same summand is the composition of the map

1Y n
⊗ σ∗ : Y n ⊗∆[k] −→ Y n ⊗∆[n]

(see Definition 3.3) with the injection into the coproduct.

Proposition 9.3. Let M be a simplicial model category. If Y is a simplicial object
in M, then

∣∣Y ∣∣ is naturally isomorphic to the coequalizer of the maps

(9.4)
( ∐
n>0

0≤i≤n

Y n ⊗∆[n− 1]
)
q
( ∐
n≥0

0≤i≤n

Y n ⊗∆[n+ 1]
) φ

//

ψ
//

∐
n≥0

Y n ⊗∆[n]

where, on the first summand,

• the map φ on the summand Y n ⊗∆[n− 1] indexed by (n, i) is the compo-
sition of the map di⊗ 1∆[n−1] : Y n⊗∆[n− 1]→ Y n−1⊗∆[n− 1] with the
injection into the coproduct, and
• the map ψ on that same summand is the composition of the map 1Y n

⊗
di : Y n ⊗∆[n− 1]→ Y n ⊗∆[n] with the injection into the coproduct

and, on the second summand,

• the map φ on the summand Y n ⊗∆[n+ 1] indexed by (n, i) is the compo-
sition of the map si⊗ 1∆[n+1] : Y n⊗∆[n+ 1]→ Y n+1⊗∆[n+ 1] with the
injection into the coproduct, and
• the map ψ on that same summand is the composition of the map 1Y n

⊗
si : Y n ⊗∆[n+ 1]→ Y n ⊗∆[n] with the injection into the coproduct.

Proof. Coequalizing φ and ψ on the first summand coequalizes the face operators
and coequalizing them on the second summand coequalizes the degeneracy opera-
tors. Since every morphism in ∆op is a finite composition of face and degeneracy
operators, the result follows from Proposition 7.24. �

Theorem 9.5. Let M be a simplicial model category and let C be a small category.
If X is a C-diagram in M, then hocolimX, the homotopy colimit of X, is naturally

isomorphic to
∣∣∣∐

∗
X
∣∣∣, the realization of the simplicial replacement of X.
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Proof. If Y =
∐
∗
X, then (9.4) is naturally isomorphic to

(9.6)
( ∐

n>0
0≤i≤n

(α0←α1←···←αn)∈C

Xαn ⊗∆[n− 1]
)
q

( ∐
n≥0

0≤i≤n
(α0←α1←···←αn)∈C

Xαn ⊗∆[n+ 1]
)

φ
//

ψ
//

∐
n≥0

(α0←α1←···←αn)∈C

Xαn ⊗∆[n]

We will define a natural isomorphism from the coequalizer of (9.6) to the coequalizer
of (8.6). We define

P :
∐
n≥0

(α0←α1←···←αn)∈C

Xαn ⊗∆[n] −→
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

Xα ⊗∆[n]

by defining P on the summand Xαn⊗∆[n] indexed by
(
n, (α0 ← α1 ← · · · ← αn) ∈

C
)

to be the injection into the coproduct of the summand indexed by
(
αn, n,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, 1: αn → αn
))

. To show that this induces a map from the
coequalizer of (9.6) to the coequalizer of (8.6), let

f :
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

Xα ⊗∆[n] −→ W

be a map that coequalizes the maps φ and ψ of (8.6); we will show that the
composition fP coequalizes the maps φ and ψ of (9.6).

There are two summands on the left of (9.6).

• In the first summand, consider the summand Xαn ⊗∆[n − 1] indexed by(
n, i, (α0

σ0←− α1
σ1←− · · · σn−1←−−− αn) ∈ C

)
.

– If i < n, then
∗ the composition Pφ on that summand is the injection into the

coproduct of the summand indexed by
·
(
αn, (n− 1),

(
(α1 ← α2 ← · · · ← αn) ∈ C, 1: αn → αn

))
, if

i = 0, and

·
(
αn, (n− 1), (α0 ← α1 ← · · · ← αi−1

σi−1σi←−−−− αi+1 ← · · · ←
αn) ∈ C, 1: αn → αn

)
, if 0 < i < n, and

∗ the composition Pψ on that same summand is the composition
of the map 1Xαn

⊗ di : Xαn ⊗ ∆[n − 1] → Xαn ⊗ ∆[n] with
the injection into the coproduct of the summand indexed by(
αn, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

))
.

Those two maps from Xαn ⊗∆[n− 1] to
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

Xα⊗∆[n] are

exactly the maps φ and ψ of (8.6) on the summand Xαn ⊗∆[n − 1]
indexed by

(
αn, n, i,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

))
in

the second summand on the left of (8.6), and so they are coequalized
by f .

– If i = n, then
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∗ the composition Pφ on that summand is the composition of
(σn−1)∗ ⊗ 1∆[n−1] : Xαn ⊗ ∆[n − 1] → Xαn−1 ⊗ ∆[n − 1] with
the injection into the coproduct of the summand indexed by(
αn−1, (n − 1),

(
(α0 ← α1 ← · · · ← αn−1) ∈ C, 1: αn−1 →

αn−1

))
, and

∗ the composition Pψ on that same summand is the composition
of the map 1Xαn

⊗ dn : Xαn ⊗ ∆[n − 1] → Xαn ⊗ ∆[n] with
the injection into the coproduct of the summand indexed by(
αn, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

))
.

On the summand Xαn ⊗∆[n− 1] indexed by
(
αn, n, n,

(
(α0 ← α1 ←

· · · ← αn) ∈ C, 1: αn → αn
))

of the second summand of (8.6), the
map φ is the injection into the coproduct of the summand indexed by(
αn−1, (n − 1),

(
(α0 ← α1 ← · · · ← αn−1) ∈ C, σn−1 : αn → αn−1

))
,

and Lemma 8.7 implies that the composition fφ on that summand is
the composition of (σn−1)∗ ⊗ 1∆[n−1] : Xαn ⊗ ∆[n − 1] → Xαn−1

⊗
∆[n−1] with the injection into the coproduct of the summand indexed
by
(
αn−1, (n − 1),

(
(α0 ← α1 ← · · · ← αn−1) ∈ C, 1: αn−1 → αn−1

))
composed with f . The map ψ maps that same summand to the com-
position of 1Xαn

⊗dn : Xαn⊗∆[n−1]→Xαn⊗∆[n] with the injection

into the coproduct of the summand indexed by
(
αn, n,

(
(α0 ← α1 ←

· · · ← αn) ∈ C, 1: αn → αn
))

, and so fPφ = fPψ on the first sum-
mand of (9.6).

• In the second summand of (9.6), consider the summand Xαn ⊗ ∆[n + 1]
indexed by

(
n, i, (α0 ← α1 ← · · · ← αn) ∈ C

)
.

– The composition Pφ is the injection into the coproduct of the sum-

mand indexed by
(
αn, (n + 1),

(
(α0 ← α1 ← · · ·αi

1αi←−− αi ← · · · ←
αn) ∈ C, 1: αn → αn

))
, and

– the composition Pψ is the composition of the map 1Xαn
⊗ si : Xαn ⊗

∆[n + 1] → Xαn ⊗∆[n] with the injection into the coproduct of the
summand indexed by

(
αn, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn →

αn
))

.
Those two maps are exactly the maps φ and ψ of (8.6) on the summand
Xαn ⊗∆[n+ 1] indexed by

(
αn, n, i,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn →

αn
))

in the third summand on the left of (8.6), and so they are coequalized
by f .

Thus, the map P induces a map P̃ from the coequalizer of (9.6) to the coequalizer

of (8.6). We will show that P̃ is an isomorphism by constructing an inverse map

Q̃.
We define

Q :
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

Xα ⊗∆[n] −→
∐
n≥0

(α0←α1←···←αn)∈C

Xαn ⊗∆[n]

by defining Q on the summand Xα ⊗∆[n] indexed by
(
α, n,

(
(α0 ← α1 ← · · · ←

αn) ∈ C, τ : α→ αn
))

to be the composition of the map τ∗ ⊗ 1∆[n] : Xα ⊗∆[n]→
Xαn ⊗ ∆[n] with the injection into the coproduct of the summand indexed by(
n, (α0 ← α1 ← · · · ← αn) ∈ C

)
.
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To show that this induces a map from the coequalizer of (8.6) to the coequalizer
of (9.6), let

f :
∐
n≥0

(α0←α1←···←αn)∈C

Xαn ⊗∆[n] −→ W

be a map that coequalizes the maps φ and ψ of (9.6); we will show that the
composition fQ coequalizes the maps φ and ψ of (8.6).

There are three summands on the left of (8.6).

• Consider the summand Xα⊗∆[n] indexed by
(
(σ : α→ α′) ∈ C, n,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, τ : α′ → αn
))

in the first summand on the left of
(8.6).

– The composition Qφ is the composition

Xα ⊗∆[n]
σ∗⊗1∆[n]−−−−−−→Xα′ ⊗∆[n]

τ∗⊗1∆[n]−−−−−−→Xαn ⊗∆[n]

composed with the injection into the coproduct of the summand in-
dexed by

(
n, (α0 ← α1 ← · · · ← αn) ∈ C

)
.

– The compositionQψ is the composition of the map (τσ)∗⊗1∆[n] : Xα⊗
∆[n]→Xαn ⊗∆[n] with the injection into the coproduct of the sum-
mand indexed by

(
n, (α0 ← α1 ← · · · ← αn) ∈ C

)
.

Since X is a functor, τ∗σ∗ = (τσ)∗, and so Qφ = ψ, and so fQφ = fQψ
on the first summand on the left of (8.6).
• Consider the summand Xα ⊗ ∆[n − 1] indexed by

(
α, n, i,

(
(α0 ← α1 ←

· · · ← αn) ∈ C, τ : α→ αn
))

in the second summand on the left of (8.6).
– If i < n, then

∗ the compositionQφ is the composition of the map τ∗⊗1∆[n−1] : Xα⊗
∆[n−1]→Xαn⊗∆[n−1] with the injection into the coproduct
of the summand indexed by
·
(
(n− 1), (α1 ← α2 ← · · · ← αn) ∈ C

)
, if i = 0, and

·
(
(n − 1), (α0 ← α1 ← · · · ← αi−1 ← αi+1 ← · · · ← αn) ∈
C
)
, if 0 < i < n

and
∗ the composition Qψ is the composition (τ∗⊗1∆[n])◦(1Xα

⊗di) =

(1Xαn
⊗ di) ◦ (τ∗ ⊗ 1∆[n−1]) : Xα ⊗ ∆[n − 1] → Xαn ⊗ ∆[n]

composed with the injection into the coproduct of the summand
indexed by

(
n, (α0 ← α1 ← · · · ← αn) ∈ C

)
.

Thus, the compositions Qφ and Qψ equal the composition of the map
τ∗ ⊗ 1∆[n−1] : Xα ⊗∆[n− 1]→Xαn ⊗∆[n− 1] with the maps φ and

ψ of (9.6) on the summand Xαn ⊗ ∆[n − 1] indexed by
(
n, i, (α0 ←

α1 ← · · · ← αn) ∈ C
)

in the first summand on the left of (9.6), and
are thus coequalized by f .

– If i = n, then
∗ the composition Qφ is the composition of the map (σn−1τ)∗ ⊗

1∆[n−1] =
(
(σn−1)∗⊗1∆[n−1]

)
◦ (τ∗⊗1∆[n−1]) : Xα⊗∆[n−1]→

Xαn−1 ⊗ ∆[n − 1] with the injection into the coproduct of the

summand indexed by
(
(n − 1), (α0 ← α1 ← · · · ← αn−1) ∈ C

)
,

and
∗ the composition Qψ is the composition of (τ∗ ⊗ 1∆[n]) ◦ (1Xα ⊗
di) = (1Xαn

⊗di)◦ (τ∗⊗1∆[n−1]) : Xα⊗∆[n−1]→Xαn⊗∆[n]
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with the injection into the coproduct of the summand indexed
by
(
n, (α0 ← α1 ← · · · ← αn) ∈ C

)
.

Thus, the compositions Qφ and Qψ equal the composition of the map
τ∗ ⊗ 1∆[n−1] : Xα ⊗∆[n− 1]→Xαn ⊗∆[n− 1] with the maps φ and

ψ of (9.6) on the summand Xαn ⊗∆[n − 1] indexed by
(
n, n, (α0 ←

α1 ← · · · ← αn) ∈ C
)

in the first summand of (9.6) and are thus
coequalized by f .

• Consider the summand Xα ⊗ ∆[n + 1] indexed by
(
α, n, i,

(
(α0 ← α1 ←

· · · ← αn) ∈ C, τ : α→ αn
))

in the third summand on the left of (8.6). On
this summand

– the composition Qφ is the composition of the map τ∗⊗1∆[n−1] : Xα⊗
∆[n + 1] → Xαn ⊗∆[n + 1] with the injection into the coproduct of

the summand indexed by
(
(n + 1), (α0 ← α1 ← · · · ← αi

1αi−−→ αi ←
· · · ← αn) ∈ C

)
, and

– the composition Qψ is the composition of

(τ∗ ⊗ 1∆[n]) ◦ (1Xα
⊗ si) = (1Xα

⊗ si) ◦ (τ∗ ⊗ 1∆[n+1])

composed with the injection into the coproduct of the summand in-
dexed by

(
n, (α0 ← α1 ← · · · ← αn) ∈ C

)
.

Thus, the compositions Qφ and Qψ equal the composition of the map
τ∗ ⊗ 1∆[n+1] : Xα ⊗∆[n+ 1]→Xαn ⊗∆[n+ 1] with the maps φ and ψ of

(9.6) on the summand Xαn ⊗∆[n+ 1] indexed by
(
n, i, (α0 ← α1 ← · · · ←

αn) ∈ C
)

in the second summand of (9.6), and are thus coequalized by f .

Thus, the map Q induces a map Q̃ from the coequalizer of (8.6) to the coequalizer
of (9.6).

We will now show that P̃ and Q̃ are inverse isomorphisms. The composition Q̃P̃
is the identity because the composition QP is the identity.

The composition PQ takes the summand Xα ⊗∆[n] indexed by
(
α, n,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, τ : α→ αn
))

to the composition of the map τ∗⊗ 1∆[n] : Xα⊗
∆[n]→Xαn ⊗∆[n] with the injection into the coproduct of the summand indexed
by
(
αn, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

))
, and Lemma 8.7 implies

that the map to the coequalizer of (9.6) coequalizes that and the inclusion into the

coproduct of the original summand, and so P̃ Q̃ is the identity. �

10. Changing the indexing category of a homotopy colimit

Let M be a simplicial category and let F : C → D be a functor between small
categories. If X is a D-diagram in M, then there is an induced C-diagram F ∗X in
M, defined as the composition F ∗X = X ◦ F . In this section, we show that the
homotopy colimit hocolimC F

∗X of the induced diagram can be constructed as the
coend X⊗DN(−↓F )

op
over the category D (see Definition 2.10 and Theorem 10.4).

The reason this theorem is true is that, although hocolimC F
∗X is constructed

as a quotient of the (rather large) coproduct of a copy of XFα ⊗ ∆[n] for every
object α of C and every n-simplex of N(α ↓C)

op
(see Proposition 8.5), it can also

be constructed from the much smaller coproduct of XFα ⊗ ∆[n] for only certain
“basic simplices” of the simplicial sets N(−↓C)

op
. (The basic simplices are in fact

the elements of a basis for the free cell complex N(−↓C)
op

; see Corollary 5.11 and
Proposition 5.13.) Similarly, although the coend X ⊗D N(−↓D)

op
is defined as a
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quotient of the (rather large) coproduct of a copy of Xβ ⊗ ∆[n] for every object
β of D and every n-simplex of N(β ↓F )

op
(see Proposition 10.1), it can also be

constructed from the much smaller coproduct of Xβ ⊗∆[n] for only certain “basic
simplices” of the simplicial sets N(−↓F )

op
(again, the basic simplices are in fact

the elements of a basis for the free cell complex N(−↓F )
op

; see Corollary 5.11
and Proposition 5.14, and the maps N(α ↓C)

op → N(Fα ↓F )
op

(see Example 2.11)
take basic simplices to basic simplices. Theorem 10.4 shows that the map F∗ of
Lemma 2.9 defines an isomorphism hocolimC F

∗X = F ∗X ⊗C N(−↓C)
op ≈X ⊗D

N(−↓F )
op

. (For a much shorter proof of this that uses the mapping properties of
a basis of a free cell complex, see [7, Prop. 19.6.6].)

We begin by showing that the coend X ⊗D N(−↓F )
op

has a decomposition
similar to that of hocolimC F

∗X = F ∗X ⊗C (−↓C)
op

(see Proposition 8.5).

Proposition 10.1. Let M be a simplicial model category and let F : C → D be a
functor between small categories. If X is a D-diagram in M, then the coend (see
Definition 7.2) X ⊗D N(−↓F )

op
is naturally isomorphic to the coequalizer of the

maps

(10.2)( ∐
(σ : β→β′)∈D

n≥0
∆[n]→N(β′↓F )op

Xβ ⊗∆[n]
)
q
( ∐
β∈Ob(D)
n>0

0≤i≤n
∆[n]→N(β↓F )op

Xβ ⊗∆[n− 1]
)
q
( ∐
β∈Ob(D)
n≥0

0≤i≤n
∆[n]→N(β↓F )op

Xβ ⊗∆[n+ 1]
)

φ
//

ψ
//

∐
β∈Ob(D)
n≥0

∆[n]→N(β↓F )op

Xβ ⊗∆[n]

where, on the first summand,

• the map φ on the summand Xβ ⊗ ∆[n] indexed by
(
(σ : β → β′) ∈

D, n,
(
(α0 ← α1 ← · · · ← αn) ∈ C, τ : β′ → Fαn

))
is the composition

of the map σ∗⊗1∆[n] : Xβ⊗∆[n]→Xβ′⊗∆[n] with the injection into the

coproduct of the summand indexed by
(
β′, n,

(
(α0 ← α1 ← · · · ← αn) ∈

C, τ : β′ → Fαn
))

, and
• the map ψ on that same summand is the injection into the coproduct of the

summand indexed by
(
β, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, τσ : β → Fαn

))
and, on the second summand,

• the map φ on the summand Xβ ⊗∆[n− 1] indexed by
(
β, n, i, σ : ∆[n]→

N(β ↓F )
op)

is the injection into the coproduct of the summand indexed by

β, (n− 1), and the composition ∆[n− 1]
di−→ ∆[n]

σ−→ N(β ↓F )
op

, and
• the map ψ on that same summand is the composition of the map 1Xβ

⊗
di : Xβ ⊗∆[n − 1] → Xβ ⊗∆[n] with the injection into the coproduct of
the summand indexed by (β, n, σ)

and, on the third summand,

• the map φ on the summand Xβ ⊗∆[n+ 1] indexed by
(
β, n, i, σ : ∆[n]→

N(β ↓F )
op)

is the injection into the coproduct of the summand indexed by

β, (n+ 1), and the composition ∆[n+ 1]
si−→ ∆[n]

σ−→ N(β ↓F )
op

, and
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• the map ψ on that same summand is the composition of the map 1Xβ
⊗

si : Xβ ⊗∆[n + 1] → Xβ ⊗∆[n] with the injection into the coproduct of
the summand indexed by (β, n, σ).

Proof. This is identical to the proof of Proposition 8.5, changing α ∈ Ob(C) to
β ∈ Ob(D), (σ : α → α′) ∈ C to (σ : β → β′) ∈ D, N(α ↓C)

op
to N(β ↓F )

op
, and

N(α′ ↓C)
op

to N(β′ ↓F )
op

. �

Lemma 10.3. Let M be a simplicial model category, let F : C → D be a functor
between small categories, and let X be a D-diagram in M. If

h :
∐

β∈Ob(D)
n≥0

∆[n]→N(β↓F )op

Xβ ⊗∆[n] −→W

is a map that coequalizes the maps φ and ψ of (10.2), then for the summand
Xβ ⊗ ∆[n] indexed by

(
β, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, τ : β → Fαn

))
the

diagram

Xβ ⊗∆[n]
τ∗⊗1∆[n]

//

hτ
%%

XFαn ⊗∆[n]

h(1Fαn
)

yy
W

commutes, where hτ is the composition of h with the injection into the coproduct
of the summand indexed by

(
β, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, τ : β → Fαn

))
and h(1Fαn ) is the composition of h with the injection into the coproduct of the

summand indexed by
(
Fαn, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: Fαn → Fαn

))
.

Proof. The composition of h with the map φ on the summand Xβ ⊗∆[n] indexed
by
(
(τ : β → Fαn) ∈ D, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: Fαn → Fαn

))
in the

first summand on the left of (10.2) is the composition h(1Fαn ) ◦ (τ∗ ⊗ 1∆[n]), and
the composition of h with the map ψ on that same summand is hτ . �

Theorem 10.4. If M is a simplicial model category, F : C→ D is a functor between
small categories, X is a D-diagram in M, and F ∗X = X ◦ F is the induced C-
diagram in M, then there is a natural isomorphism of coends

hocolim
C

F ∗X = F ∗X ⊗C N(C ↓−)
op ≈ X ⊗D N(F ↓−)

op

and the natural map of homotopy colimits hocolimC F
∗X → hocolimD X is natu-

rally isomorphic to the natural map of coends X⊗DN(−↓F )
op →X⊗DN(−↓D)

op

induced by the natural map of Dop-diagrams N(−↓F )
op → N(−↓D)

op
(see Ex-

ample 2.12).
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Proof. Proposition 8.5 implies that hocolimC F
∗X = F ∗X ⊗C N(−↓C)

op
is natu-

rally isomorphic to the coequalizer of the maps

(10.5)( ∐
(σ : α→α′)∈C

n≥0
∆[n]→N(α′↓C)op

XFα⊗∆[n]
)
q
( ∐
α∈Ob(C)
n>0

0≤i≤n
∆[n]→N(α↓C)op

XFα⊗∆[n−1]
)
q
( ∐
α∈Ob(C)
n≥0

0≤i≤n
∆[n]→N(α↓C)op

XFα⊗∆[n+1]
)

φ
//

ψ
//

∐
α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

XFα ⊗∆[n]

We will define a natural isomorphism from the coequalizer of (10.5) to the coequal-
izer of (10.2). We define

P :
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

XFα ⊗∆[n] −→
∐

β∈Ob(D)
n≥0

∆[n]→N(β↓F )op

Xβ ⊗∆[n]

by defining P on the summand XFα⊗∆[n] indexed by
(
α, n, σ : ∆[n]→ N(α ↓C)

op)
to be the injection into the coproduct of the summand indexed by (Fα, n, F∗σ)
(where F∗ is as in Lemma 2.9).

To show that P induces a map P̃ from the coequalizer of (10.5) to the coequalizer
of (10.2), let

f :
∐

β∈Ob(D)
n≥0

∆[n]→N(β↓F )op

Xβ ⊗∆[n] −→ W

be a map that coequalizes the maps φ and ψ of (10.2); we will show that the
composition fP coequalizes the maps φ and ψ of (10.5).

There are three summands on the left of (10.5).

• Consider the summand XFα⊗∆[n] indexed by
(
(σ : α→ α′) ∈ C, n,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, τ : α′ → αn
))

in the first summand on the left of
(10.5).

– The composition Pφ on that summand is the composition of the map
(Fσ)∗⊗1∆[n] : XFα⊗∆[n]→XFα′⊗∆[n] with the injection into the

coproduct of the summand indexed by
(
Fα′, n,

(
(α0 ← α1 ← · · · ←

αn) ∈ C, F τ : Fα′ → Fαn
))

, and
– the composition Pψ on that same summand is the injection into the

coproduct of the summand indexed by
(
Fα, n,

(
(α0 ← α1 ← · · · ←

αn) ∈ C, F (τσ) : Fα→ Fαn
))

.
Those compositions Pφ and Pψ exactly equal the maps φ and ψ of (10.2)
on the summand XFα⊗∆[n] indexed by

(
(Fσ : Fα→ Fα′) ∈ D, n,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, F τ : Fα′ → Fαn
))

in the first summand on the left
of (10.2), and so they are coequalized by f .

• Consider the summand XFα ⊗ ∆[n − 1] indexed by (α, n, i, σ : ∆[n] →
N(α ↓C)

op
) in the second summand on the left of (10.5).
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– The composition Pφ on that summand is the injection into the co-
product of the summand indexed by

(
Fα, (n− 1), F∗(σ ◦ di)

)
, and

– the composition Pψ on that same summand is the composition of the
map 1XFα

⊗ di : XFα ⊗ ∆[n − 1] → XFα ⊗ ∆[n] with the injection
into the coproduct of the summand indexed by (Fα, n, F∗σ).

Those compositions Pψ and Pψ exactly equal the maps φ and ψ of (10.2)
on the summand XFα ⊗∆[n − 1] indexed by (Fα, n, i, F∗σ), and so they
are coequalized by f .
• Consider the summand XFα ⊗ ∆[n + 1] indexed by (α, n, i, σ : ∆[n] →

N(α ↓C)
op

) in the third summand on the left of (10.5).
– The composition Pφ on that summand is the injection into the co-

product of the summand indexed by
(
Fα, (n+ 1), F∗(σ ◦ si)

)
, and

– the composition Pψ on that same summand is the composition of the
map 1XFα

⊗ si : XFα ⊗ ∆[n + 1] → XFα ⊗ ∆[n] with the injection
into the coproduct of the summand indexed by (Fα, n, F∗σ).

Those compositions Pφ and Pψ exactly equal the maps φ and ψ of (10.2)
on the summand XFα ⊗∆[n + 1] indexed by (Fα, n, i, F∗σ), and so they
are coequalized by f .

Thus, the map P induces a map P̃ from the coequalizer of (10.5) to the coequalizer

of (10.2). We will show that P̃ is an isomorphism by constructing an inverse map

Q̃.
We define

Q :
∐

β∈Ob(D)
n≥0

∆[n]→N(β↓F )op

Xβ ⊗∆[n] −→
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

XFα ⊗∆[n]

by defining Q on the summand Xβ ⊗∆[n] indexed by
(
β, n,

(
(α0 ← α1 ← · · · ←

αn) ∈ C, τ : β → Fαn
))

to be the composition of the map τ∗⊗ 1∆[n] : Xβ ⊗∆[n]→
XFαn ⊗ ∆[n] with the injection into the coproduct of the summand indexed by(
αn, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: αn → αn

))
.

To show that Q induces a map Q̃ from the coequalizer of (10.2) to the coequalizer
of (10.5), let

g :
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

XFα ⊗∆[n] −→ W

be a map that coequalizes the maps φ and ψ of (10.5); we will show that the
composition gQ coequalizes the maps φ and ψ of (10.2).

There are three summands on the left of (10.2).

• Consider the summand Xβ⊗∆[n] indexed by
(
(σ : β → β′) ∈ D, n,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, τ : β′ → Fαn
))

in the first summand on the left of
(10.2).

– The compositionQφ on that summand is the composition Xβ⊗∆[n]
σ∗⊗1∆[n]−−−−−−→

Xβ′ ⊗∆[n]
τ∗⊗1∆[n]−−−−−−→ XFαn ⊗∆[n] composed with the injection into

the coproduct of the summand indexed by
(
αn, n,

(
(α0 ← α1 ← · · · ←

αn) ∈ C, 1: αn → αn
))

, and
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– the composition Qψ on that summand is the composition of the map
(τσ)∗ ⊗ 1∆[n] : Xβ ⊗∆[n]→XFαn ⊗∆[n] with the injection into the

coproduct of the summand indexed by
(
αn, n,

(
(α0 ← α1 ← · · · ←

αn) ∈ C, 1: αn → αn
))

.
Since τ∗σ∗ = (τσ)∗, the compositions Qφ and Qψ are equal on that sum-
mand, and so gQφ = gQψ on that summand.

• Consider the summand Xβ ⊗∆[n− 1] indexed by
(
β, n, i,

(
(α0

σ0←− α1
σ1←−

· · · σn−1←−−− αn) ∈ C, τ : β → Fαn
))

in the second summand on the left of
(10.2).

– The composition Qφ on that summand is
∗ the map τ∗⊗1∆[n−1] : Xβ⊗∆[n−1]→XFαn⊗∆[n−1] composed

with the injection into the coproduct of the summand indexed
by
(
αn, (n − 1),

(
(α1 ← α2 ← · · · ← αn) ∈ C, 1: αn → αn

))
, if

i = 0,
∗ the map τ∗⊗1∆[n−1] : Xβ⊗∆[n−1]→XFαn⊗∆[n−1] composed

with the injection into the coproduct of the summand indexed

by
(
αn, (n− 1),

(
(α0 ← α1 ← · · · ← αi−1

σi−1σi←−−−− αi+1 ← · · · ←
αn) ∈ C, 1: αn → αn

))
, if 0 < i < n, and

∗ the map (σn−1τ)∗⊗1∆[n−1] : Xβ⊗∆[n−1]→XFαn−1
⊗∆[n−1]

composed with the injection into the coproduct of the sum-
mand indexed by

(
αn−1, (n − 1),

(
(α0 ← α1 ← · · · ← αn−1) ∈

C, 1: αn−1 → αn−1

))
if i = n,

and
– the composition Qψ on that same summand is the composition Xβ ⊗

∆[n−1]
1Xβ
⊗di

−−−−−→Xβ⊗∆[n]
τ∗⊗1∆[n]−−−−−−→XFαn⊗∆[n] composed with the

injection into the coproduct of the summand indexed by
(
Fαn, n,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, 1: αn → αn
))

.
Thus, the compositions Qφ and Qψ on that summand are the composition
of τ∗ ⊗ 1∆[n−1] : Xβ ⊗∆[n− 1]→ XFαn ⊗∆[n− 1] with the maps φ and

ψ of (10.5) on the summand XFαn ⊗∆[n− 1] indexed by
(
αn, n, i,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, 1: αn → αn
))

in the second summand on the left of
(10.5), and are thus coequalized by g.

• Consider the summand Xβ ⊗ ∆[n + 1] indexed by
(
β, n, i,

(
(α0 ← α1 ←

· · · ← αn) ∈ C, τ : β → Fαn
))

in the third summand on the left of (10.2).
– The composition Qφ on that summand is the map τ∗⊗1∆[n+1] : Xβ⊗

∆[n + 1] → XFαn ⊗ ∆[n + 1] composed with the injection into the
coproduct of the summand indexed by

(
αn, (n + 1),

(
(α0 ← α1 ←

· · · ← αi−1 ← αi
1αi←−− αi ← αi+1 ← · · · ← αn) ∈ C, 1: αn → αn

))
,

and
– the composition Qψ on that same summand is the composition Xβ ⊗

∆[n+1]
1Xβ
⊗si

−−−−−→Xβ⊗∆[n]
τ∗⊗1∆[n]−−−−−−→XFαn⊗∆[n] composed with the

injection into the coproduct of the summand indexed by
(
Fαn, n,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, 1: αn → αn
))

.
Thus, the compositions Qφ and Qψ on that summand are the composition
of τ∗ ⊗ 1∆[n+1] : Xβ ⊗∆[n+ 1]→ XFαn ⊗∆[n+ 1] with the maps φ and
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ψ of (10.5) on the summand XFαn ⊗∆[n+ 1] indexed by
(
αn, n, i,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, 1: αn → αn
))

in the third summand on the right of
(10.5), and are thus coequalized by g.

Thus, the map Q induces a map Q̃ from the coequalizer of (10.2) to the coequalizer
of (10.5).

We will now show that P̃ and Q̃ are inverse isomorphisms. The composition

QP :
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

XFα ⊗∆[n] −→
∐

α∈Ob(C)
n≥0

∆[n]→N(α↓C)op

XFα ⊗∆[n]

takes the summand XFα ⊗ ∆[n] indexed by
(
α, n,

(
(α0 ← α1 ← · · · ← αn) ∈

C, τ : α→ αn
))

to the composition of the map τ∗ ⊗ 1∆[n] : XFα ⊗∆[n]→XFαn ⊗
∆[n] with the injection into the coproduct of the summand indexed by

(
αn, n,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, 1: αn → αn
))

. Lemma 8.7 implies that the map to the co-
equalizer of (10.5) coequalizes that map and the injection into the coproduct, and

so Q̃P̃ is the identity map.
The composition PQ takes the summand Xβ ⊗∆[n] indexed by

(
β, n,

(
(α0 ←

α1 ← · · · ← αn) ∈ C, τ : β → Fαn
))

to the composition of the map τ∗⊗1∆[n] : Xβ⊗
∆[n]→XFαn⊗∆[n] with the injection into the coproduct of the summand indexed
by
(
Fαn, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, 1: Fαn → Fαn

))
. Lemma 10.3 implies

that the map to the coequalizer of (10.2) coequalizes that map and the injection

into the coproduct, and so P̃ Q̃ is the identity map. Thus, P̃ and Q̃ are inverse
isomorphisms.

We will now show that the natural map hocolimC F
∗X → hocolimD X equals

the composition

hocolim
C

F ∗X = F ∗X ⊗C N(−↓C)
op P̃−−−−−→X ⊗D N(−↓F )

op

1X⊗DF∗−−−−−−→X ⊗D N(−↓D)
op

= hocolim
D

X

(where F∗ is as in Example 2.12. On the summand XFα ⊗ ∆[n] indexed by(
α, n,

(
(α0 ← α1 ← · · · ← αn) ∈ C, τ : α → αn

))
, the map P̃ is the injection

into the coproduct of the summand indexed y
(
Fα, n,

(
(α0 ← α1 ← · · · ← αn) ∈

C, F τ : Fα→ Fαn
))

, and 1X ⊗D F∗ takes that to the injection into the coproduct

of the summand indexed by
(
Fα
)
, n,
(
(Fα0 ← Fα1 ← · · · ← Fαn) ∈ D, F τ : Fα→

Fαn
)
, which induces the natural map hocolimC F

∗X → hocolimD X. �

10.1. Weak equivalences and cofibrations.

Definition 10.6. A functor between small categories F : C→ D is homotopy right
cofinal (or homotopy terminal) if for every object β of D the simplicial set N(β ↓F )
(see Definition 2.7) is contractible. If C is a subcategory of D and F is the inclu-
sion, then C is called a homotopy right cofinal subcategory (or a homotopy terminal
subcategory) of D.

Remark 10.7. Lemma 2.28 implies that a functor F : C → D is homotopy right
cofinal if and only if for every object β of D the simplicial set N(β ↓F )

op
is con-

tractible.
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Theorem 10.8. Let M be a simplicial model category and let F : C → D be a
functor between small categories. If F is homotopy right cofinal, X is an objectwise
cofibrant D-diagram in M, and F ∗X = X ◦ F is the induced C-diagram, then
the natural map of homotopy colimits hocolimC F

∗X → hocolimD X is a weak
equivalence.

Proof. Theorem 10.4 implies that the natural map of homotopy colimits is iso-
morphic to the map of coends X ⊗D N(−↓F )

op → X ⊗D N(−↓D)
op

induced
by the map of Dop-diagrams of simplicial sets F∗ : N(−↓F )

op → N(−↓D)
op

(see
Example 2.12). Since both of those Dop-diagrams of simplicial sets are free cell
complexes (see Proposition 5.13 and Proposition 5.14) and F is homotopy right
cofinal, that map of diagrams is a weak equivalence of cofibrant Dop-diagrams (see
Theorem 5.1), and so the result follows from Corollary 7.22. �

Proposition 10.9. Let M be a simplicial model category, let D be a small category,
and let F : C→ D be the inclusion of a subcategory. If X is an objectwise cofibrant
D-diagram in M and F ∗X = X ◦F is the induced C-diagram, then the natural map
of homotopy colimits hocolimC F

∗X → hocolimD X is a cofibration of cofibrant
objects.

Proof. Theorem 10.4 implies that the natural map of homotopy colimits is iso-
morphic to the map of coends X ⊗D N(−↓F )

op → X ⊗D N(−↓D)
op

induced
by the map of Dop-diagrams of simplicial sets F∗ : N(−↓F )

op → N(−↓D)
op

(see
Example 2.12). Thus, the result follows from Proposition 5.15, Corollary 7.16, and
Corollary 7.18. �

10.2. Homotopy colimits as colimits.

Proposition 10.10. Let M be a simplicial model category and let C be a small
category. If X is a objectwise cofibrant C-diagram in M, then there are

• a natural objectwise cofibrant C-diagram X̃ in M,

• a natural isomorphism R : colim X̃ ≈ hocolimX, and

• a natural objectwise weak equivalence p : X̃ →X

such that the induced map colim p : colim X̃ → colimX equals the composition

colim X̃ ≈ hocolimX = X ⊗C N(−↓C)
op −→X ⊗C P ≈ colimX

(where P is the constant Cop-diagram at a single point).

Proof. For each object α of C we have the forgetful functor Fα : (C ↓α) → C that
takes the object β → α of (C ↓α) to β, and this induces a (C ↓α)-diagram F ∗αX =

X ◦ Fα in M; we let X̃α = hocolim(C↓α) F
∗
αX. Proposition 8.3 implies that each

X̃α is cofibrant.
If ∗ is the category with one object and no non-identity maps, we let iα : ∗ →

(C ↓α) take that object to the terminal object 1α : α→ α of (C ↓α). Since the func-
tor iα is homotopy right cofinal (see Definition 10.6), the induced map of homotopy

colimits (iα)∗ : Xα → X̃α is a weak equivalence (see Theorem 10.8). We can also
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define a map pα : X̃α →Xα as the composition

X̃α = hocolim
(C↓α)

i∗αX = i∗αX ⊗(C↓α)

(
−↓ (C ↓α)

)op

−→ i∗αX ⊗(C↓α) P ≈ colim
(C↓α)

i∗αX ≈Xα

(where P is the constant (C ↓α)
op

-diagram at a point and that last isomorphism is
because 1α : α→ α is a terminal object of (C ↓α)). Since pα ◦ (iα)∗ is the identity

map of Xα and (iα)∗ is a weak equivalence, pα : X̃α →Xα is a weak equivalence.
If σ : α → α′ is a map in C, then σ induces a functor (C ↓α) → (C ↓α′) that

commutes with Fα and Fα′ and so induces a map σ∗ : X̃α → X̃α′ that makes the
square

X̃α
//

pα

��

X̃α′

pα′

��

Xα
// Xα′

commute. Fixme: Add more explanation of why the square commutes!
Thus, we have an objectwise weak equivalence of objectwise cofibrant diagrams

X̃ →X.
We now define R : colim X̃ → hocolimX. If α is an object of C, then X̃α =

hocolim(C↓α) F
∗
αX. If β → α is an object of (C ↓α), then the forgetful functor(

β ↓ (C ↓α)
)op −→ (β ↓C)

op

(which takes the object
β //

��

γ
��

α
of
(
β ↓ (C ↓α)

)op
to the object β → γ of (β ↓C)

op
)

induces a map
Xβ ⊗N

(
β ↓ (C ↓α)

)op −→Xβ ⊗N(β ↓C)
op

such that the composition

Xβ ⊗N
(
β ↓ (C ↓α)

)op −→Xβ ⊗N(β ↓C)
op −→ hocolimX

coequalizes the maps φ and ψ of (8.2). Thus, we have maps X̃α → hocolimX such
that if σ : α→ α′ is a map in C, then

X̃α
σ∗ //

  

X̃α′

}}

hocolimX

commutes, and so we have an induced map R : colim X̃ → hocolimX.
To show thatR is an isomorphism, we’ll construct an inverse map S : hocolimX →

colim X̃. For this, we’ll use the decomposition of hocolimX in Proposition 8.5. For
each object α of C and simplex

(
(α0 ← α1 ← · · · ← αn), σ : α→ αn

)
of N(α ↓C)

op

(see Example 2.4), we map the summand Xα⊗∆[n] to X̃α0
= hocolim(C↓α0) F

∗
α0
X

by viewing that simplex as a simplex of N
(
(α→ α0) ↓ (C ↓α0)

)op
, and then compose

with the injection X̃α0
→ colim X̃. That defines a map from the right hand side

of (8.6) to colim X̃ that coequalizes the maps φ and ψ of (8.6), and thus defines

our map S : hocolimX → colim X̃. Using the decomposition of Proposition 8.5
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on both hocolimX and each X̃α = hocolimF ∗αX one can show that R and S are
inverse isomorphisms.

Finally, since each category (C ↓α) has the terminal object 1α : α→ α, and each
square

X̃α = hocolim
(C↓α)

F ∗αX //

��

colim hocolim
(C↓α)

F ∗αX = hocolimX

��

Xα = colim
(C↓α)

F ∗αX // colim colim
(C↓α)

F ∗αX = colimX

commutes, the map colim p : colim X̃ → colimX has the required factorization.
Fixme: This paragraph needs more explanation! �

11. Homotopy limits

Definition 11.1. Let M be a simplicial model category and let C be a small
category. If X : C→M is a C-diagram in M, then the homotopy limit holimX of X
is defined to be the end homC(N(C ↓−),X) (see Definition 2.15 and Definition 7.7),
that is, holimX is the equalizer of the maps

(11.2)
∏

α∈Ob(C)

(Xα)N(C↓α)
φ
//

ψ
//

∏
(σ : α→α′)∈C

(Xα′)
N(C↓α)

where

• the projection of the map φ on the factor (Xα′)
N(C↓α) indexed by σ : α→ α′

is the composition of a natural projection from the product with the map

(σ∗)
1N(C↓α) : (Xα)N(C↓α) −→ (Xα′)

N(C↓α)

and
• the projection of the map ψ on that same factor is the composition of a

natural projection from the product with the map

(1Xα′ )
N(σ∗) : (Xα′)

N(C↓α′) −→ (Xα′)
N(C↓α) .

Proposition 11.3. Let M be a simplicial model category and let C be a small
category. If X is an objectwise fibrant C-diagram in M, then holimX is fibrant.

Proof. This follows from Corollary 7.18, Proposition 5.13, and Theorem 5.1. �

Theorem 11.4. Let M be a simplicial model category and let C be a small category.
If X and Y are objectwise fibrant C-diagrams in M and f : X → Y is an object-
wise weak equivalence, then the induced map of homotopy limits f∗ : holimX →
holimY is a weak equivalence of fibrant objects.

Proof. This follows from Definition 11.1, Proposition 5.13, Theorem 5.1, and Corol-
lary 7.20. �

Draft: November 23, 2014



NOTES ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITS 57

11.1. The space of maps from a homotopy colimit.

Theorem 11.5. Let M be a simplicial model category and let C be a small category.
If X is a C-diagram in M and Y is an object of M, then Map(X, Y ) is a Cop-
diagram of simplicial sets and there is a natural isomorphism of simplicial sets
Map(hocolimC X, Y ) ≈ holimCop Map(X, Y ).

Proof. Fixme: Fill this in. �

11.2. Decomposing homotopy limits. In this section, we use Proposition 3.7 to
describe the simplicial sets N(C ↓α) as colimits of diagrams of standard simplices.
This allows us to show that the homotopy limit of a diagram can be constructed
as an equalizer of maps between simpler objects than the ones in the definition of
the homotopy limit (see Definition 11.1 and Proposition 11.6). This will be used in
Section 12 to show that the homotopy limit can be constructed as the total object
(see Definition 12.2) of the cosimplicial replacement (see Definition 12.1) of the
diagram.

Proposition 11.6. Let M be a simplicial model category and let C be a small
category. If X is a C-diagram in M, then holimX is naturally isomorphic to the
equalizer of the maps

(11.7)
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n]
φ
//

ψ
//

( ∏
(σ : α→α′)∈C

n≥0
∆[n]→N(C↓α)

(Xα′)
∆[n]

)
×
( ∏
α∈Ob(C)
n>0

0≤i≤n
∆[n]→N(C↓α)

(Xα)∆[n−1]
)
×
( ∏
α∈Ob(C)
n≥0

0≤i≤n
∆[n]→N(C↓α)

(Xα)∆[n+1]
)

where the projections of the maps φ and ψ onto the first factor are such that

• the projection of φ onto the factor (Xα′)
∆[n] indexed by

(
(σ : α → α′) ∈

C, n,
(
(α0 → α1 → · · · → αn) ∈ C, τ : αn → α

)
) is the composition

of the projection from the product onto the factor (Xα)∆[n] indexed by(
α, n,

(
(α0 → α1 → · · · → αn) ∈ C, τ : αn → α

))
with the map

(σ∗)
1∆[n] : (Xα)∆[n] → (Xα′)

∆[n], and
• the projection of ψ onto that same factor is the projection from the product

onto the factor (Xα′)
∆[n] indexed by

(
α′, n,

(
(α0 → α1 → · · · → αn) ∈

C, στ : αn → α′
))

,

the projections onto the second factor are such that

• the projection of φ onto the (Xα)∆[n−1] indexed by
(
α, n, i, σ : ∆[n] →

N(C ↓α)
)

is the projection onto the (Xα)∆[n−1] indexed by α, (n− 1), and

the composition ∆[n− 1]
di−→ ∆[n]

σ−→ N(C ↓ ), and
• the projection of ψ onto that same factor is the composition of the projec-

tion onto the (Xα)∆[n] indexed by (α, n, σ) with the map (1Xα
)d
i

: (Xα)∆[n] →
(Xα)∆[n−1],

and the projections onto the third factor are such that
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• the projection of φ onto the (Xα)∆[n+1] indexed by
(
α, n, i, σ : ∆[n] →

N(C ↓α)
)

is the projection onto the (Xα)∆[n+1] indexed by α, (n+ 1), and

the composition ∆[n+ 1]
si−→ ∆[n]

σ−→ N(C ↓α), and
• the projection of ψ onto that same factor is the composition of the projec-

tion onto the (Xα)∆[n] indexed by σ with the map (1Xα
)s
i

: (Xα)∆[n] →
(Xα)∆[n+1].

Proof. If we let

G =
( ∏
α∈Ob(C)
n>0

0≤i≤n
∆[n]→N(C↓α)

(Xα)∆[n−1]
)
×
( ∏
α∈Ob(C)
n≥0

0≤i≤n
∆[n]→N(C↓α)

(Xα)∆[n+1]
)

and

H =
( ∏

(σ : α→α′)∈C
n>0

0≤i≤n
∆[n]→N(C↓α)

(Xα′)
∆[n−1]

)
×
( ∏

(σ : α→α′)∈C
n≥0

0≤i≤n
∆[n]→N(C↓α)

(Xα′)
∆[n+1]

)

then in the diagram∏
α∈Ob(C)

(Xα)N(C↓α) //
//

��

∏
(σ : α→α′)∈C

(X ′α)N(C↓α)

��∏
α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n] //
//

����

∏
(σ : α→α′)∈C

n≥0
∆[n]→N(C↓α)

(Xα′)
∆[n]

����

G
//
// H

both of the columns are products of equalizer diagrams (see Proposition 4.4) and
are thus equalizer diagrams, and each of the squares commutes if you use either
both upper horizontal arrows or both lower horizontal arrows and either both left
vertical arrows or both right vertical arrows.

Since the column on the left is an equalizer diagram, for every object W of M
maps

W →
∏

α∈Ob(C)

(Xα)N(C↓α) correspond to maps W →
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n]

that equalize the pair of parallel downward arrows on the left. Since equalizers
are monomorphisms (see Lemma 7.1), such a map W →

∏
α∈Ob(C)(Xα)N(C↓α)

equalizes the upper pair of parallel horizontal arrows if and only if the corre-
sponding map equalizes the middle pair of parallel horizontal arrows. Thus, maps
W →

∏
α∈Ob(C)(Xα)N(C↓α) that equalize the top pair of parallel horizontal arrows

correspond to maps W →
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n] that equalize both the middle
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horizontal pair of parallel arrows the the left pair of vertical parallel arrows, and
so a terminal object among the former corresponds to a terminal object among the
latter. �

11.2.1. Homotopy limits and basic simplices. Proposition 13.1 decomposed the ob-
jects used in the definition of the homotopy limit into simpler objects, so that the

homotopy limit was presented as a subobject of a product of objects X∆[n]
α , one for

each n-simplex of the simplicial set N(C ↓α), for each object α of C. The following
lemma shows that the map from the equalizer is actually determined by the map
to those factors indexed by the “basic” simplices, where the “basic” simplices are
the ones of the form

(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

)
(see Example 2.14),

i.e., the simplices of N(C ↓α) for some α in which the map from the final vertex of
the simplex to α is the identity map. (The basic simplices are in fact the elements
of a basis for the free cell complex N(C ↓−); see Proposition 5.13.) We will use this
in Theorem 12.5 to show that the homotopy limit is isomorphic to the total object
(see Definition 12.2) of the cosimplicial replacement (see Definition 12.1) of the
diagram, which is built using only the summands indexed by the basic simplices.

Lemma 11.8. Let M be a simplicial model category, let C be a small category, and
let X : C→M be a C-diagram in M. If

h : E −→
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n]

is a map that equalizes the maps φ and ψ of (11.7), then for every factor (Xα)∆[n]

indexed by
(
α, n,

(
(α0 → α1 → · · · → αn) ∈ C, τ : αn → α

))
the diagram

E
h(1(αn))

zz

hτ

##

(X(αn))
∆[n]

(τ∗)
(1∆[n])

// (Xα)∆[n]

commutes, where hτ is the composition of h with the projection onto that factor
and h(1(αn)) is the composition of h with the projection onto the factor indexed by(
αn, n,

(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

))
.

Proof. The projection of φ onto the factor (Xα)∆[n] indexed by
(
(τ : αn → α) ∈

C, n,
(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

))
in the first factor on the right

of (11.7) is the composition (τ∗)
(1∆[n]) ◦ h(1(αn)), and the projection of ψ onto that

same factor is hτ . �

12. The total object of the cosimplicial replacement of a diagram

The main result in this section is Theorem 12.5, which shows that the homotopy
limit of a diagram can be constructed as the total object (see Definition 12.2) of the
cosimplicial replacement (see Definition 12.1) of the diagram. This constructs the
homotopy limit starting with the product of a much smaller collection of objects
than the collection used in Proposition 11.6.

A “basic simplex” of N(C ↓α) is one in which the map from the final vertex of
the simplex in N(C ↓α) to α is the identity map, i.e., the ones of the form

(
(α0 →
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α1 → · · · → αn) ∈ C, 1: αn → αn
)

(see Example 2.14). (The basic simplices are in
fact the elements of a basis for the free cell complex N(C ↓−); see Proposition 5.13.)
For every object α of C and every simplex

(
(α0 → α1 → · · · → αn) ∈ C, τ : αn → α

)
of N(C ↓α), there are

• an object αn of C,
• a basic simplex

(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

)
in N(C ↓αn),

and
• a map τ : αn → α in C such that τ∗ : N(C ↓αn) → N(C ↓α) takes that

basic simplex
(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

)
to our simplex(

(α0 → α1 → · · · → αn) ∈ C, τ : αn → α
)
,

and such a triple is unique.
The total object of the cosimplicial replacement is constructed as a subobject

of the product of a copy of X∆[n]
αn for every basic simplex

(
(α0 → α1 → · · · →

αn) ∈ C, 1: αn → αn
)
. Lemma 11.8 implies that we can construct a map from the

total object of the cosimplicial replacement of a diagram to the homotopy limit by
mapping to the factor (Xα)∆[n] indexed by

(
(α0 → α1 → · · · → αn) ∈ C, τ : αn →

α
)

(see Proposition 11.6) by the composition of the map to the factor indexed by(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

)
(which, in the proof of Theorem 12.5, is

denoted simply (α0 → α1 → · · · → αn) ∈ C) and (τ∗)
1∆[n] : (Xαn)∆[n] → (Xα)∆[n].

Definition 12.1. Let M be a simplicial model category and let C be a small
category. If X : C→ M is a C-diagram in M, then the cosimplicial replacement of

X is the cosimplicial object
∏∗

X in M such that(∏∗
X
)n

=
∏

(α0→α1→···→αn)∈C

Xαn

and such that

• the projection of the coface map di :
(∏∗

X
)n
→
(∏∗

X
)n+1

onto the

factor Xαn+1 indexed by (α0
σ0−→ α1

σ1−→ · · · σn−−→ αn+1) ∈ C is the composi-
tion of a projection from the product with

– the identity map from the factor Xαn+1 indexed by (α1
σ1−→ α2

σ2−→
· · · σn−−→ αn+1) ∈ C if i = 0,

– the identity map from the factor Xαn+1
indexed by (α0

σ0−→ α1
σ1−→

· · · σi−2−−−→ αi−1
σiσi−1−−−−→ αi+1

σi+1−−−→ · · · σn−−→ αn+1) ∈ C if 0 < i < n + 1,
and

– the map (σn)∗ : Xαn → Xαn+1
from the factor Xαn indexed by

(α0
σ0−→ α1

σ1−→ · · · σn−1−−−→ αn) ∈ C if i = n+ 1
and

• the projection of the codegeneracy map si :
(∏∗

X
)n
→
(∏∗

X
)n−1

onto the factor Xαn−1
indexed by (α0

σ0−→ α1
σ1−→ · · · σn−2−−−→ αn−1) ∈ C is

the composition of a projection from the product with the identity map

from the factor Xαn−1 indexed by (α0
σ0−→ α1

σ1−→ · · · σi−1−−−→ αi
1αi−−→ αi

σi−→
· · · σn−2−−−→ αn−1) ∈ C for 0 ≤ i ≤ n− 1.
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Definition 12.2. Let M be a simplicial model category. If Y is a cosimplicial
object in M, then its total object (or corealization) TotY is defined to be the end

hom∆(∆,Y ) (see Definition 3.3 and Definition 7.7), that is, TotY is the equalizer
of the maps ∏

n≥0

(Y n)∆[n]
φ
//

ψ
//

∏
(σ : [n]→[k])∈∆

(Y k)∆[n]

where

• the projection of the map φ onto the factor (Xk)∆[n] indexed by σ : [n]→ [k]
is the composition of a projection from the product with the map

(σ∗)
1∆[n] : (Y n)∆[n] −→ (Y k)∆[n]

and
• the projection of the map ψ onto that same factor is the composition of a

projection from the product with the map

(1Y k
)σ∗ : (Y k)∆[k] −→ (Y k)∆[n] .

Proposition 12.3. Let M be a simplicial model category. If Y is a cosimplicial
object in M, then TotY is naturally isomorphic to the equalizer of the maps

(12.4)
∏
n≥0

(Y n)∆[n]
φ
//

ψ
//

( ∏
n>0

0≤i≤n

(Y n)∆[n−1]
)
×
( ∏
n≥0

0≤i≤n

(Y n)∆[n+1]
)

where the projections of φ and ψ onto the first factor are such that

• the projection of φ onto the (Y n)∆[n−1] indexed by (n, i) is the composition
of a projection from the product with the map (di)1∆[n−1] : (Y n−1)∆[n−1] →
(Y n)∆[n−1], and
• the projection of ψ onto that same factor is the composition of a projection

from the product with the map (1Y n
)d
i

: (Y n)∆[n] → (Y n−1)∆[n−1]

and the projections onto the second factor are such that

• the projection of φ onto the (Y n)∆[n+1] indexed by (n, i) is the composition
of a projection from the product with the map (si)1∆[n+1] : (Y n+1)∆[n+1] →
(Y n)∆[n+1], and
• the projection of ψ onto that same factor is the composition of a projection

from the product with the map (1Y n
)s
i

: (Y n)∆[n] → (Y n)∆[n+1].

Proof. Equalizing the projections of φ and ψ onto the first factor equalizes the
coface operators and equalizing the projections onto the second factor equalizes
the codegeneracy operators. Since every morphism in the cosimplicial indexing
category is a finite composition of coface and codegeneracy operators, the result
follows from Proposition 7.24. �

Theorem 12.5. Let M be a simplicial model category and let C be a small category.
If X : C → M is a C-diagram in M, then holimX, the homotopy limit of X, is

naturally isomorphic to Tot
∏∗

X, the total object of the cosimplicial replacement

of X.
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Proof. We will define a natural isomorphism from the equalizer of (12.4) for Y =∏∗
X to the equalizer of (11.7). We define

P :
∏
n≥0

(Y n)∆[n] −→
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n]

by letting the projection of P onto the factor (Xα)∆[n] indexed by
(
α, n,

(
(α0 →

α1 → · · · → αn) ∈ C, σ : αn → α
))

be the projection onto the (Xαn)∆[n] indexed

by (α0 → α1 → · · · → αn) ∈ C composed with the map (σ∗)
1∆[n] : (Xαn)∆[n] →

(Xα)∆[n]. To show that this defines a map from the equalizer of (12.4) to the
equalizer of (11.7) we must show that if f : E →

∏
n≥0(Y n)∆[n] is a map that

equalizes the maps φ and ψ of (12.4), then the composition Pf equalizes the maps
φ and ψ of (11.7).

Let f : E →
∏
n≥0(Y n)∆[n] be a map that equalizes the maps φ and ψ of (12.4).

The projection of φ onto the first factor on the right of (11.7), projected onto the
factor (Xα′)

∆[n] indexed by
(
(σ : α → α′) ∈ C,

(
(α0 → α1 → · · · → αn), τ : αn →

α
))

, when composed with P , is the projection onto the (Xαn)∆[n] indexed by

(α0 → α1 → · · · → αn) ∈ C composed with the map (τ∗)
1∆[n] : (Xαn)∆[n] →

(Xα)∆[n] composed with the map (σ∗)
1∆[n] : (Xα)∆[n] → (Xα′)

∆[n]. The projec-
tion of ψ onto that same factor, when composed with P , is the projection onto
the (Xαn)∆[n] indexed by (α0 → α1 → · · · → αn) ∈ C composed with the map(
(στ)∗

)1∆[n] : (Xαn)∆[n] → (Xα′)
∆[n], composed with the identity map. Since

σ∗τ∗ = (στ)∗, the map P equalizes the projection onto the first factor of (11.7) of
φ and ψ, an so the composition Pf equalizes them as well.

Since f equalizes the maps φ and ψ of (12.4), Pf equalizes the projections of φ
and ψ of (11.7) onto the second and third factors of the right side of (11.7), and so

P defines a map P̃ from the equalizer of (12.4) to the equalizer of (11.7).

To show that P̃ is an isomorphism, we’ll define an inverse map Q̃. We begin by
defining

Q :
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n] −→
∏
n≥0

(Y n)∆[n] ≈
∏
n≥0

(α0→α1→···→αn)∈C

(Xαn)∆[n]

by letting the projection of Q onto the factor (Xαn)∆[n] indexed by
(
n, (α0 → α1 →

· · · → αn) ∈ C
)

be the projection onto the (Xαn)∆[n] indexed by
(
αn, n,

(
(α0 →

α1 → · · · → αn) ∈ C, 1: αn → αn
))

. To show that this defines a map from the

equalizer of (11.7) to the equalizer of (12.4), we let g : F →
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n]

be a map that equalizes the maps φ and ψ of (11.7). The fact that g equalizes the
projections of φ and ψ onto the second and third factors of (11.7) implies that the

composition Qg equalizes (12.4). Thus, Q defines a map Q̃ from the equalizer of
(11.7) to the equalizer of (12.4).

We will now show that Q̃ is a inverse for P̃ . The composition Q̃P̃ is the identity
of the equalizer of (12.4) because QP is the identity of

∏
n≥0(Y n)∆[n]. To see that
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P̃ Q̃ is the identity, let g : F →
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n] equalize the maps φ and ψ of

(11.7). The composition PQ :
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n] →
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(Xα)∆[n] is

such that its projection onto the factor (Xα)∆[n] indexed by
(
α, n,

(
(α0 → α1 →

· · · → αn) ∈ C, τ : αn → α
))

is the composition of the projection onto the (Xαn)∆[n]

indexed by
(
αn, n,

(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

))
composed with the

map (τ∗)
1∆[n] : (Xαn)∆[n] → (Xα)∆[n], and since g equalizes the maps φ and ψ of

(11.7), this is also true of the map PQg (see Lemma 11.8). Thus, PQg = g, and

so P̃ Q̃ is the identity of the equalizer of (11.7). �

13. Changing the indexing category of a homotopy limit

Let M be a simplicial category and let F : C → D be a functor between small
categories. If X is a D-diagram in M, then there is an induced C-diagram F ∗X in
M, defined as the composition F ∗X = X ◦ F . In this section, we show that the
homotopy limit holimC F

∗X of the induced diagram can be constructed as the end
homD(N(F ↓−),X) over the category D (see Definition 2.20 and Theorem 13.4).

The reason this theorem is true is that, although holimC F
∗X is constructed as a

subobject of the (rather large) product of a copy of (XFα)∆[n] for every object α of
C and every n-simplex of N(C ↓α) (see Proposition 11.6), it can also be constructed
from the much smaller product of (XFα)∆[n] for only certain “basic simplices” of
the simplicial sets N(C ↓−). (The basic simplices are in fact the elements of a
basis for the free cell complex N(C ↓−); see Corollary 5.11 and Proposition 5.13.)

Similarly, although the end homD(N(D ↓−),X) is defined as a subobject of the
(rather large) product of a copy of (Xβ)∆[n] for every object β of D and every
n-simplex of N(F ↓β) (see Proposition 13.1), it can also be constructed from the
much smaller product of (Xβ)∆[n] for only certain “basic simplices” of the sim-
plicial sets N(F ↓−) (again, the basic simplices are in fact the elements of a basis
for the free cell complex N(F ↓−); see Corollary 5.11 and Proposition 5.14, and
the maps N(C ↓α) → N(F ↓Fα) (see Example 2.19) take basic simplices to basic
simplices. Theorem 13.4 shows that the map F∗ of Lemma 2.19 defines an isomor-
phism holimC F

∗X = homC(N(C ↓−), F ∗X) ≈ homD(N(F ↓−),X). (For a much
shorter proof of this that uses the mapping properties of a basis of a free cell com-
plex, see [7, Prop. 19.6.6].) We begin by showing that the end homD(N(F ↓−),X)

has a decomposition similar to that of holimC F
∗X = homC((C ↓−), F ∗X) (see

Proposition 11.6).

Proposition 13.1. Let M be a simplicial model category and let F : C → D be
a functor between small categories. If X is a D-diagram in M, then the end
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homC(N(F ↓−),X) is naturally isomorphic to the equalizer of the maps

(13.2)
∏

β∈Ob(D)
n≥0

∆[n]→N(F↓β)

(Xβ)∆[n]
φ
//

ψ
//

( ∏
(σ : β→β′)∈D

n≥0
∆[n]→N(F↓β)

(Xβ′)
∆[n]

)
×
( ∏
β∈Ob(D)
n>0

0≤i≤n
∆[n]→N(F↓β)

(Xβ)∆[n−1]
)
×
( ∏
β∈Ob(D)
n≥0

0≤i≤n
∆[n]→N(F↓β)

(Xβ)∆[n+1]
)

where the projections of the maps φ and ψ onto the first factor are such that

• the projection of φ onto the factor (Xβ′)
∆[n] indexed by

(
(σ : β → β′) ∈

D, n,
(
(α0 → α1 → · · · → αn) ∈ C, τ : Fαn → β

)
) is the composition

of the projection from the product onto the factor (Xβ)∆[n] indexed by(
β, n,

(
(α0 → α1 → · · · → αn) ∈ C, τ : Fαn → β

))
with the map

(σ∗)
1∆[n] : (Xβ)∆[n] → (Xβ′)

∆[n], and
• the projection of ψ onto that same factor is the projection from the product

onto the factor (Xβ′)
∆[n] indexed by

(
β′, n,

(
(α0 → α1 → · · · → αn) ∈

C, στ : Fαn → β′
))

,

the projections onto the second factor are such that

• the projection of φ onto the (Xβ)∆[n−1] indexed by
(
β, n, i, σ : ∆[n] →

N(F ↓β)
)

is the projection onto the (Xβ)∆[n−1] indexed by β, (n− 1), and

the composition ∆[n− 1]
di−→ ∆[n]

σ−→ N(F ↓β), and
• the projection of ψ onto that same factor is the composition of the projec-

tion onto the (Xβ)∆[n] indexed by (β, n, σ) with the map (1Xβ
)d
i

: (Xβ)∆[n] →
(Xβ)∆[n−1],

and the projections onto the third factor are such that

• the projection of φ onto the (Xβ)∆[n+1] indexed by
(
β, n, i, σ : ∆[n] →

N(F ↓β)
)

is the projection onto the (Xβ)∆[n+1] indexed by β, (n+ 1), and

the composition ∆[n+ 1]
si−→ ∆[n]

σ−→ N(F ↓β), and
• the projection of ψ onto that same factor is the composition of the projec-

tion onto the (Xβ)∆[n] indexed by (β, n, σ) with the map (1Xβ
)s
i

: (Xβ)∆[n] →
(Xβ)∆[n+1].

Proof. This is identical to the proof of Proposition 11.6, changing α ∈ Ob(C) to
β ∈ Ob(D), (σ : α → α′) ∈ C to (σ : β → β′) ∈ D, N(C ↓α) to N(F ↓β), and
N(C ↓α′) to N(F ↓β′). �

Lemma 13.3. Let M be a simplicial model category, let F : C → D be a functor
between small categories, and let X : D→M be a D-diagram in M. If

h : E −→
∏

α∈Ob(D)
n≥0

∆[n]→N(F↓α)

(Xα)∆[n]
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is a map that equalizes the maps φ and ψ of (13.2), then for every factor (Xα)∆[n]

indexed by
(
α, n,

(
(α0 → α1 → · · · → αn) ∈ C, τ : Fαn → α

))
the diagram

E
h(1(Fαn))

yy

hτ

##

(X(Fαn))
∆[n]

(τ∗)
(1∆[n])

// (Xα)∆[n]

commutes, where hτ is the projection onto that factor and h(1(Fαn)) is the projection

onto the factor indexed by
(
Fαn, n,

(
(α0 → α1 → · · · → αn) ∈ C, 1: Fαn → Fαn

))
.

Proof. The projection of φ onto the factor (Xα)∆[n] indexed by
(
(τ : Fαn → α) ∈

D, n,
(
(α0 → α1 → · · · → αn) ∈ C, 1: Fαn → Fαn

))
in the first factor on the right

of (13.2) is the composition (τ∗)
(1∆[n]) ◦h(1(Fαn)), and the projection of ψ onto that

same factor is hτ . �

Theorem 13.4. If M is a simplicial model category, F : C→ D is a functor between
small categories, X is a D-diagram in M, and F ∗X = X ◦F : C→M is the induced
C-diagram in M, then there is a natural isomorphism of ends

homD(N(F ↓−),X) ≈ homC(N(C ↓−), F ∗X) = holim
C

F ∗X

and the natural map of homotopy limits holimD X → holimC F
∗X is isomorphic

to the map of ends induced by the map of D-diagrams N(F ↓−) → N(D ↓−) (see
Example 2.21).

Proof. Proposition 11.6 applied to the C-diagram F ∗X implies that holimC F
∗X =

homC(N(C ↓−), F ∗X) is naturally isomorphic to the equalizer of the maps

(13.5)
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(XFα)∆[n]
φ
//

ψ
//

( ∏
(σ : α→α′)∈C

n≥0
∆[n]→N(C↓α)

(XFα′)
∆[n]

)
×
( ∏
α∈Ob(C)
n>0

0≤i≤n
∆[n]→N(C↓α)

(XFα)∆[n−1]
)
×
( ∏
α∈Ob(C)
n≥0

0≤i≤n
∆[n]→N(C↓α)

(XFα)∆[n+1]
)

where the maps φ and ψ are as described in Proposition 11.6. We will define a
natural isomorphism from the equalizer of (13.2) to the equalizer of (13.5).

We begin by defining

R :
∏

α∈Ob(D)
n≥0

∆[n]→N(F↓α)

(Xα)∆[n] −→
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(XFα)∆[n]

by letting the projection of R onto the factor (XFα)∆[n] indexed by
(
α, n,

(
(α0 →

α1 → · · · → αn) ∈ C, τ : αn → α
))

be the projection from the product onto the

factor (XFα)∆[n] indexed by
(
Fα, n,

(
(α0 → α1 → · · · → αn) ∈ C, F τ : Fαn →

Fα
))

.
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To show that R induces a map from the equalizer of (13.2) to the equalizer of
(13.5), let f : E →

∏
α∈Ob(D)
n≥0

∆[n]→N(F↓α)

(Xα)∆[n] be a map that equalizes the maps φ and

ψ of (13.2). The projection of φ onto the first factor on the right of (13.5), projected
onto the factor (XFα′)

∆[n] indexed by
(
(σ : α → α′) ∈ C, n,

(
(α0 → α1 → · · · →

αn) ∈ C, τ : αn → α
))

, when composed with R, is the projection onto the factor

(XFα)∆[n] indexed by
(
Fα, n,

(
(α0 → α1 → · · · → αn) ∈ C, F τ : Fαn → Fα

))
composed with the map ((Fσ)∗)

1∆[n] : (XFα)∆[n] → (XFα′)
∆[n]. The projection of

ψ onto that same factor, when composed with R, is the projection onto the factor
(XFα′)

∆[n] indexed by
(
Fα′, n,

(
(α0 → α1 → · · · → αn) ∈ C, F (στ) : Fαn →

Fα′
))

. Since the map f equalizes the maps φ and ψ of (13.2), Rf equalizes the
projections of φ and ψ of (13.5) onto the first factor on the right (see Lemma 13.3).

Similarly, since f equalizes the projections of φ and ψ of (13.2) onto the second
and third factors on the right of (13.2), Rf equalizes the projections of φ and ψ of

(13.5) onto the second and third factors of (13.5). Thus, R defines a map R̃ from
the equalizer of (13.2) to the equalizer of (13.5).

To show that R̃ is an isomorphism, we’ll define an inverse map S̃. We begin by
defining

S :
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(XFα)∆[n] −→
∏

α∈Ob(D)
n≥0

∆[n]→N(F↓α)

(Xα)∆[n]

by letting the projection of S onto the factor (Xα)∆[n] indexed by
(
α, n,

(
(α0 →

α1 → · · · → αn) ∈ C, τ : Fαn → α
))

be the projection onto the factor (XFαn)∆[n]

indexed by
(
αn, n,

(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

))
composed with the

map (τ∗)
1∆[n] : (XFαn)∆[n] → (XFα)∆[n]. To show that this defines a map from the

equalizer of (13.5) to the equalizer of (13.2), we let g : E →
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(XFα)∆[n]

be a map that equalizes the maps φ and ψ of (13.5). The projection of φ onto
the first factor on the right of (13.2), projected onto the factor (Xα′)

∆[n] in-
dexed by

(
(σ : α → α′) ∈ D, n,

(
(α0 → α1 → · · · → αn) ∈ C, τ : Fαn → α

))
,

when composed with S, is the projection onto the factor (XFαn)∆[n] indexed by(
αn, n,

(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

))
composed with the map

(τ∗)
1∆[n] : (XFαn)∆[n] → (Xα)∆[n], composed with the map (σ∗)

1∆[n] : (Xα)∆[n] →
(Xα′)

∆[n]. The projection of ψ onto that same factor is the projection onto the fac-
tor (XFαn)∆[n] indexed by

(
αn, n,

(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

))
com-

posed with the map
(
(στ)∗

)1∆[n] : (XFαn)∆[n] → (XFα′)
∆[n]. Since (στ)∗ = σ∗τ∗,

the map S equalizes the projections of φ and ψ onto the first factor on the right of
(13.2), and so the composition Sg also equalizes them.

Since g equalizes the projections onto the second and third factors on the right of
(13.5), Sg equalizes the projections onto the second and third factors on the right

of (13.2), and so S defines a map S̃ from the equalizer of (13.5) to the equalizer of
(13.2).

We will now show that S̃ is an inverse for R̃. To see that S̃R̃ is the identity,
let f : E →

∏
α∈Ob(D)
n≥0

∆[n]→N(F↓α)

(Xα)∆[n] be a map that equalizes the maps φ and ψ of
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(13.2). The composition

SR :
∏

α∈Ob(D)
n≥0

∆[n]→N(F↓α)

(Xα)∆[n] −→
∏

α∈Ob(D)
n≥0

∆[n]→N(F↓α)

(Xα)∆[n]

is such that its projection onto the factor (Xα)∆[n] indexed by
(
α, n,

(
(α0 → α1 →

· · · → αn) ∈ C, τ : Fαn → α
))

is the composition of the projection onto the

(XFαn)∆[n] indexed by
(
Fαn, n,

(
(α0 → α1 → · · · → αn) ∈ C, 1: Fαn → Fαn

))
with the map (τ∗)

1∆[n] : (XFαn)∆[n] → (Xα)∆[n]. Since f equalizes the maps φ
and ψ of (13.2), that composition equals the projection onto the factor (Xα)∆[n]

indexed by
(
α, n,

(
(α0 → α1 → · · · → αn) ∈ C, τ : Fαn → α

))
(see Lemma 13.3),

and so S̃R̃ is the identity.

To see that R̃S̃ is the identity, let g : E →
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(XFα)∆[n] equalize the

maps φ and ψ of (13.5). The composition

RS :
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(XFα)∆[n] −→
∏

α∈Ob(C)
n≥0

∆[n]→N(C↓α)

(XFα)∆[n]

is such that its projection onto the factor (XFα)∆[n] indexed by
(
α, n,

(
(α0 →

α1 → · · · → αn) ∈ C, τ : αn → α
))

is the composition of the projection onto the

(XFαn)∆[n] indexed by
(
αn, n,

(
(α0 → α1 → · · · → αn) ∈ C, 1: αn → αn

))
with

the map
(
(Fτ)∗

)1∆[n] : (XFαn)∆[n] → (XFα)∆[n]. Since g equalizes the maps φ

and ψ of (13.5), that composition equals the projection onto the factor (XFα)∆[n]

indexed by
(
α, n,

(
(α0 → α1 → · · · → αn) ∈ C, τ : αn → α

))
(see Lemma 11.8), and

so R̃S̃ is the identity. �

13.1. Weak equivalences and fibrations.

Definition 13.6. A functor between small categories F : C → D is homotopy left
cofinal (or homotopy initial) if for every object β of D the simplicial set N(F ↓β)
(see Definition 2.16) is contractible. If C is a subcategory of D and F is the in-
clusion, then C is called a homotopy left cofinal subcategory (or a homotopy initial
subcategory) of D.

Theorem 13.7. Let M be a simplicial model category and let F : C → D be a
functor between small categories. If F is homotopy left cofinal, X is an objectwise
fibrant D-diagram in M, and F ∗X = X ◦ F is the induced C-diagram, then the
natural map of homotopy limits holimD X → holimC F

∗X is a weak equivalence.

Proof. Theorem 13.4 implies that the natural map of homotopy limits is isomorphic
to the map of ends homD

(
N(D ↓−),X

)
→ homD

(
N(F ↓−),X

)
induced by the

map of D-diagrams F∗ : N(F ↓−) → N(D ↓−) (see Example 2.21). Since F is
homotopy left cofinal, that map of diagrams is a weak equivalence of cofibrant
D-diagrams, and so the result follows from Corollary 7.22. �

Proposition 13.8. Let M be a simplicial model category, let D be a small category,
and let F : C→ D be the inclusion of a subcategory. If X is an objectwise fibrant
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D-diagram in M and F ∗X = X ◦ F is the induced C-diagram, then the natural
map of homotopy limits holimD X → holimC F

∗X is a fibration of fibrant objects.

Proof. Theorem 13.4 implies that the natural map of homotopy limits is naturally
isomorphic to the map of ends homD

(
N(D ↓−),X

)
→ homD

(
N(F ↓−),X

)
in-

duced by the map of D-diagrams F∗ : N(F ↓−) → N(D ↓−) (see Example 2.21).
Thus, the result follows from Proposition 5.15, Corollary 7.16, and Corollary 7.18.

�

14. Diagrams of spaces

14.1. The geometric realization and total singular complex functors. In
this section we show that the homotopy colimit and homotopy limit functors behave
well with respect to the total singular complex and geometric realization functors
(see Theorem 14.2 and Theorem 14.3).

Lemma 14.1. Let K be a simplicial set.

(1) If X is a simplicial set, then there is a natural isomorphism
∣∣X ⊗ K∣∣ ≈∣∣X∣∣⊗K.

(2) If X is a topological space, then there is a natural isomorphism Sing(XK) ≈
(SingX)K .

Proof. For part 1, we have natural isomorphisms∣∣X ⊗K∣∣ =
∣∣X ×K∣∣ ≈ ∣∣X∣∣× ∣∣K∣∣ =

∣∣X∣∣⊗K .

For part 2, for every n ≥ 0 there are natural isomorphisms(
Sing(XK)

)
n

= Top
(∣∣∆[n]

∣∣, XK
)

= Top
(∣∣∆[n]

∣∣, X |K|)
≈ Top

(∣∣∆[n]
∣∣× ∣∣K∣∣, X)

≈ Top
(∣∣∆[n]×K

∣∣, X)
≈ SS(∆[n]×K,SingX)

≈ SS
(
∆[n], (SingX)K

)
≈
(
(SingX)K

)
n

where X |K| is the topological space of continuous functions from
∣∣K∣∣ to X. Thus,

we have a natural isomorphism Sing(XK) ≈ (SingX)K . �

Theorem 14.2. Let C be a small category.

(1) If X is a C-diagram of simplicial sets, then there is a natural isomorphism∣∣hocolimX
∣∣ ≈ hocolim

∣∣X∣∣
of topological spaces.

(2) If X is a C-diagram of topological spaces, then there is a natural isomor-
phism

Sing(holimX) ≈ holim(Sing(X))

of simplicial sets.
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Proof. For part 1, the geometric realization functor is a left adjoint, and so it com-
mutes with colimits. Lemma 14.1 thus implies that we have natural isomorphisms∣∣hocolimX

∣∣ =
∣∣X ⊗C N(−↓C)

op∣∣
=
∣∣∣colim

(∐
Xα ⊗N(α′ ↓C)

op
⇒
∐

Xα ⊗N(α ↓C)
op
)∣∣∣

≈ colim
(∐∣∣Xα ⊗N(α′ ↓C)

op∣∣⇒∐∣∣Xα ⊗N(α ↓C)
op∣∣)

≈ colim
(∐∣∣Xα

∣∣⊗N(α′ ↓C)
op

⇒
∐∣∣Xα

∣∣⊗N(α ↓C)
op
)

=
∣∣X∣∣⊗C N(−↓C)

op

= hocolim
∣∣X∣∣ .

Part 2 is similar: the total singular complex functor is a right adjoint, and so it
commutes with limits. Lemma 14.1 thus implies that we have natural isomorphisms

Sing(holimX) = Sing
(
homC(N(C ↓−),X)

)
= Sing

(
lim
(∏

(Xα)N(C↓α) ⇒
∏

(Xα′)
N(C↓α)

))
≈ lim

(∏
Sing

(
(Xα)N(C↓α)

)
⇒
∏

Sing
(
(Xα′)

N(C↓α)
))

≈ lim
(∏

(SingXα)N(C↓α) ⇒
∏

(SingXα′)
N(C↓α)

)
= homC

(
N(C ↓−),SingX

)
= holim(SingX) . �

Theorem 14.3. Let C be a small category.

(1) If X is an objectwise cofibrant C-diagram of topological spaces, then there
is a natural weak equivalence of simplicial sets

hocolim(SingX) −→ Sing(hocolimX) .

(2) If X is an objectwise fibrant C-diagram of simplicial sets, then there is a
natural weak equivalence of topological spaces∣∣holimX

∣∣ −→ holim
∣∣X∣∣ .

Proof. For part 1, the natural objectwise weak equivalence of objectwise cofibrant
C-diagrams of topological spaces

∣∣SingX
∣∣ → X induces a natural weak equiva-

lence hocolim
∣∣SingX

∣∣→ hocolimX (see Theorem 8.4). Theorem 14.2 implies that

this is naturally isomorphic to a natural weak equivalence
∣∣hocolim(SingX)

∣∣ →
hocolimX, and this corresponds under the standard adjunction to a natural weak
equivalence hocolim(SingX)→ Sing(hocolimX).

Part 2 is similar: the natural objectwise weak equivalence of objectwise fibrant
C-diagrams of simplicial sets X → Sing

∣∣X∣∣ induces a natural weak equivalence

holimX → holim(Sing
∣∣X∣∣) (see Theorem 11.4). Theorem 14.2 implies that this

is naturally isomorphic to a natural weak equivalence holimX → Sing(holim
∣∣X∣∣)

and this corresponds under the standard adjunction to a natural weak equivalence∣∣holimX
∣∣→ holim

∣∣X∣∣. �
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14.2. Filtered diagrams of simplicial sets. The main result of this section is
Theorem 14.17.

Lemma 14.4. Let C be a small filtered category and let X be a C-diagram of
simplicial sets. If K is a simplicial set with finitely many nondegenerate simplices,
then the natural map

colim
α

SS(K,Xα) −→ SS(K, colim
α

Xα)

is an isomorphism of sets.

Proof. We first show that the natural map is surjective. Let f : K → colimX be
a map. For each nondegenerate simplex σ : ∆[n] → K of K there is an object ασ

of C such that the composition ∆[n]
σ−→ K

f−→ colimX factors through Xασ ; since
there are only finitely many of those and C is filtered, there exists an object β of
C such that all of those compositions factor through Xβ . Corollary 3.14 implies
that there are only finitely many relations to be imposed upon these factorizations
through Xβ in order for the map σ to factor, and so there is a map β → γ in C

such that the map Xβ → Xγ imposes those relations, and so the map f factors
through Xγ . Thus, the natural map is surjective.

To see that it is injective, let α and β be objects of C and let f : K → Xα

and g : K → Xβ be maps such that the compositions K
f−→ Xα → colimX and

K
g−→ Xβ → colimX are equal. Corollary 3.14 implies that it is sufficient to

find an object γ of C and maps s : α → γ and t : β → γ in C such that, for each
nondegenerate simplex σ : ∆[n]→ K of K, the compositions

∆[n]
σ // K

f
// Xα

s∗ // Xγ

and

∆[n]
σ // K

g
// Xβ

t∗ // Xγ

are equal; these exist because there are only finitely many such nondegenerate
simplices and C is filtered. �

Lemma 14.5. Let C be a small filtered category and let i : K → L be a map
between simplicial sets with finitely many nondegenerate simplices. If X and Y
are C-diagrams of simplicial sets and for every object α of C the map fα : Xα → Y α

has the right lifting property with respect to i, then the induced map of colimits
colim f : colimX → colimY has the right lifting property with respect to i.

Proof. Given a solid arrow diagram

(14.6)

K
s //

i

��

colimX

��

L
t
//

::

colimY

Lemma 14.4 implies that there are objects α and β of C and factorizations

K
sα−−−→Xα −→ colimX of s and

L
tβ−−−→Y β −→ colimY of t.
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We can then choose an object γ of C for which there are maps α → γ and β → γ
in C, and we will have the not necessarily commutative diagram

K
sα //

i

��

Xα
// Xγ

fγ

��

L
tβ
// Y β

// Y γ ,

and since K has only finitely many nondegenerate simplices, there is a map γ → δ
in C such that the solid arrow diagram

K
sα //

i

��

Xα
// Xγ

// Xδ

��

L
tβ
//

44

Y β
// Y γ

// Y δ

does commute. Since fδ : Xδ → Y δ has the right lifting property with respect to i,
there exists a dotted arrow making the diagram commute, and that dotted arrow
defines the required dotted arrow in Diagram 14.6. �

Proposition 14.7. Let C be a small filtered category, let X and Y be C-diagrams
of simplicial sets, and let f : X → Y be a map of diagrams.

(1) If the map f is an objectwise fibration, then the induced map of colimits
colim f : colimX → colimY is a fibration.

(2) If the map f is an objectwise trivial fibration, then the induced map of
colimits colim f : colimX → colimY is a trivial fibration.

Proof. A map of simplicial sets is

• a fibration if it has the right lifting property with respect to the maps
Λ[n, k]→ ∆[n] for all n > 0 and 0 ≤ k ≤ n and
• a trivial fibration if it has the right lifting property with respect to the

maps ∂∆[n]→ ∆[n] for all n ≥ 0,

and so the result follows from Lemma 14.5. �

Corollary 14.8. If C is a small filtered category and X is a C-diagram of fibrant
simplicial sets, then colimX is fibrant.

Proof. This follows from Proposition 14.7, letting Y be the constant diagram at a
point. �

Lemma 14.9. Let C be a small filtered category and let X be a C-diagram of
fibrant simplicial sets. If K is a simplicial set with finitely many nondegenerate
simplices, then the C-diagram of simplicial sets Map(K,X) (which on an object α
of C is Map(K,Xα)) is a C-diagram of fibrant simplicial sets and the natural map

colim
α

Map(K,Xα) −→ Map(K, colim
α

Xα)

is an isomorphism of fibrant simplicial sets.

Proof. Since every simplicial set is cofibrant and each Xα is fibrant, each simplicial
set Map(K,Xα) is fibrant.
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The colimit of a diagram of simplicial sets is constructed dimensionwise, and so
it is sufficient to show that for every n ≥ 0 the map of sets

colim
α

Mapn(K,Xα) −→ Mapn(K, colim
α

Xα)

is an isomorphism. Since

Mapn(K,Xα) = SS(K ×∆[n],Xα) ,

Mapn(K, colim
α

Xα) = SS(K ×∆[n], colim
α

Xα) ,

and K × ∆[n] has only finitely many nondegenerate simplices, the isomorphism
follows from Lemma 14.4, and Corollary 14.8 implies that these are fibrant simplicial
sets. �

Theorem 14.10. Let C be a small filtered category. If X and Y are C-diagrams of
simplicial sets and f : X → Y is an objectwise weak equivalence, then the induced
map of colimits colim f : colimX → colimY is a weak equivalence.

Proof. Factor the map of diagrams f : X → Y as X
i−→ W

p−→ Y where i is a
trivial cofibration and p is a fibration (in the Bousfield-Kan model structure on C-
diagrams of simplicial sets). The map i is then also an objectwise trivial cofibration.
Since f is an objectwise weak equivalence, the two-out-of-three property implies
that the objectwise fibration p is actually an objectwise trivial fibration, and so
Proposition 14.7 implies that colim p : colimW → colimY is a trivial fibration.

Since colimit is a left Quillen functor (because the constant diagram functor
(its right adjoint) preserves fibrations and trivial fibrations), colim i : colimX →
colimW is a trivial cofibration, and so the composition colimX → colimW →
colimY is a weak equivalence. �

Proposition 14.11. Let C be a small filtered category. If X is a C-diagram of
simplicial sets, then the natural map hocolimX → colimX is a weak equivalence.

Proof. Proposition 10.10 implies that there is a C-diagram X̃ and an objectwise

weak equivalence of diagrams X̃ → X for which the induced map of colimits

colim X̃ → colimX is isomorphic to the natural map hocolimX → colimX, and
Theorem 14.10 implies that the induced map of colimits is a weak equivalence. �

Corollary 14.12. Let C be a small filtered category. If X is a C-diagram of
fibrant simplicial sets then the natural map hocolimX → colimX is a fibrant
approximation to hocolimX.

Proof. Proposition 14.11 implies that the map is a weak equivalence and Corol-
lary 14.8 implies that colimX is fibrant. �

14.3. Commuting hocolim and holim: simplicial sets.

Lemma 14.13. If C is a small filtered category, D is a finite category (i.e., D has
finitely many objects and finitely many morphisms), and X is a C×D-diagram of
sets, then the natural map

colim
C

lim
D

X −→ lim
D

colim
C

X

is an isomorphism of sets.

Proof. See, e.g., [8, p. 211] or [1, Thm. 2.13.4] or [9, Thm. 9.5.2]. �
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Corollary 14.14. If C is a small filtered category, D is a finite category (i.e., D
has finitely many objects and finitely many morphisms), and X is a C×D-diagram
of simplicial sets, then the natural map

colim
C

lim
D

X −→ lim
D

colim
C

X

is an isomorphism of simplicial sets.

Proof. Since limits and colimits of diagrams of simplicial sets are constructed di-
mensionwise, this follow from Lemma 14.13. �

Definition 14.15. A category D is finite and acyclic if

• D has finitely many objects,
• D has finitely many morphisms, and
• there is no composable sequence of non-identity maps that starts and ends

at the same object.

This is equivalent to saying that the nerve ND of D has only finitely many nonde-
generate simplices. This is also equivalent to what Dwyer and Spaliński [5, 10.13]
have called a very small category.

Proposition 14.16. If D is a finite and acyclic category (see Definition 14.15) and
α is an object of D, then N(D ↓α), the nerve of the overcategory of α, has only
finitely many nondegenerate simplices.

Proof. The conditions on D imply that there are only finitely many composable
strings of non-identity maps. �

Theorem 14.17. Let C be a small filtered category and let D be a finite and
acyclic category (see Definition 14.15). If X is an objectwise fibrant C×D-diagram
of simplicial sets, then there is a natural isomorphism

holim
D

FibD(hocolim
C

X) ≈ Fib(hocolim
C

holim
D

X)

where FibD(hocolimC X) is an objectwise fibrant approximation to the D-diagram
hocolimC X and Fib(hocolimC holimD X) is a fibrant approximation to hocolimC holimD X.

Proof. Let L be the category a
φ
//

ψ
// b with two objects {a, b} and two non-

identity maps φ, ψ : a → b. Let Y be the C × L-diagram of simplicial sets such
that

• Y β,a =
∏
α∈Ob(D)(Xβ,α)N(D↓α),

• Y β,b =
∏

(σ : α→α′)∈D(Xβ,α′)
N(D↓α),

• the maps φ and ψ are as in Definition 11.1, and
• if τ : β → β′ is a map in C, then the maps Y β,a → Y β′,a and Y β,b → Y β′,b

are induced by the maps Xβ,α →Xβ′,α and Xβ,α′ →Xβ′,α′ .

Corollary 14.14 implies that the natural map colimC limL Y → limL colimC Y is an
isomorphism, and so it remains only to identify these colimits and limits.

Since Y β,a and Y β,b are defined as finite products, XK = Map(K,X) for all sim-
plicial sets X and K, and each N(D ↓α) has finitely many nondegenerate simplices
(see Proposition 14.16), Lemma 14.9 implies that

colim
C

Y β,a ≈
∏

α∈Ob(D)

colim
C

(
(Xβ,α)N(D↓α)

)
≈

∏
α∈Ob(D)

(colim
C

Xβ,α)N(D↓α)
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and

colim
C

Y β,b ≈
∏

(σ : α→α′)∈D

colim
C

(
(Xβ,α′)

N(D↓α)
)
≈

∏
(σ : α→α′)∈D

(colim
C

Xβ,α′)
N(D↓α) .

Corollary 14.12 thus implies that for every object β of C the limit of the diagram

colim
C

Y β,a

φ
//

ψ
// colim

C
Y β,b

is the homotopy limit of an objectwise fibrant approximation to the D-diagram
hocolimC X. That is, limL colimC Y is holimD FibD(hocolimC X).

To identify colimC limL Y , note that for each object β of C the limit limL Y β,∗
is holimD Xβ,∗. Proposition 11.3 implies that these are all fibrant simplicial sets,
and so Corollary 14.12 implies that colimC limL Y = colimC holimD X is a fibrant
approximation to hocolimC holimD X. �

14.4. Commuting hocolim and holim: topological spaces. The main result
of this section is Theorem 14.19.

The following theorem shows that, for diagrams in the category of topological
spaces, the homotopy colimit functor preserves objectwise weak equivalences even
if the objects are not assumed to be cofibrant.

Theorem 14.18. Let C be a small category. If X and Y are C-diagrams of topo-
logical spaces and f : X → Y is an objectwise weak equivalence, then the induced
map of homotopy colimits f∗ : X → Y is a weak equivalence.

Proof. See [6, Appendix A]. �

Theorem 14.19. Let C be a small filtered category and let D be a finite and acyclic
category (see Definition 14.15). If Y is a C×D-diagram of topological spaces, then
there is a natural zig-zag of weak equivalences between holimD hocolimC Y and
hocolimC holimD Y .

Proof. Let X be the (objectwise) total singular complex of Y , so that X is a C×D-
diagram of fibrant simplicial sets. Theorem 14.17 implies that there is a natural
isomorphism

holim
D

FibD(hocolim
C

X) ≈ Fib(hocolim
C

holim
D

X) ,

and so we have a natural isomorphism of topological spaces

(14.20)
∣∣holim

D
FibD(hocolim

C
X)
∣∣ ≈ ∣∣Fib(hocolim

C
holim

D
X)
∣∣ .

We will show that there is a natural zig-zag of weak equivalences between the
left hand side of (14.20) and holimD hocolimC Y and a natural zig-zag of weak
equivalences between the right hand side of (14.20) and hocolimC holimD Y .

We first examine the left hand side of (14.20). Theorem 14.3 implies that there
is a natural weak equivalence∣∣holim

D
FibD(hocolim

C
X)
∣∣ −→ holim

D

∣∣FibD(hocolim
C

X)
∣∣ ,

Theorem 11.4 implies that we have a natural weak equivalence

holim
D

∣∣hocolim
C

X
∣∣ −→ holim

D

∣∣FibD(hocolim
C

X)
∣∣ ,
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and Theorem 14.2 gives us a natural isomorphism

holim
D

∣∣hocolim
C

X
∣∣ ≈ holim

D
hocolim

C

∣∣X∣∣ .

Since X = SingY , we have a natural objectwise weak equivalence
∣∣X∣∣ =

∣∣SingY
∣∣ −→

Y , and so Theorem 14.18 and Theorem 11.4 give us a natural weak equivalence

holim
D

hocolim
C

∣∣X∣∣ −→ holim
D

hocolim
C

Y .

We next examine the right hand side of (14.20). We have a natural weak equiv-
alence ∣∣hocolim

C
holim

D
X
∣∣ −→ ∣∣Fib(hocolim

C
holim

D
X)
∣∣ ,

Theorem 14.2 gives us a natural isomorphism∣∣hocolim
C

holim
D

X
∣∣ ≈ hocolim

C

∣∣holim
D

X
∣∣ ,

Theorem 14.3 and Theorem 14.18 give us a natural weak equivalence

hocolim
C

∣∣holim
D

X
∣∣ −→ hocolim

C
holim

D

∣∣X∣∣ ,

and since we have a natural objectwise weak equivalence
∣∣X∣∣ =

∣∣SingY
∣∣ → Y ,

Theorem 14.18 and Theorem 11.4 give us a natural weak equivalence

hocolim
C

holim
D

∣∣X∣∣ −→ hocolim
C

holim
D

Y . �
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