Modeling Web I nteractionsand Errors*

Shriram Krishnamurthj
Robert Bruce Findler,
Paul Graunke&**, and
Matthias Felleiseh

1 Brown University, Providencesl, USA
2 University of Chicago, Chicago,, USA
3 Northeastern University, BoStomA, USA

Summary. Programmers confront a minefield when they design interactive Wadrams.
Web interactions take place via Web browsers. Browsers permit carsum whimsically
navigate among the various stages of a dialog, leading to unexpectedhestdéurthermore,
the growing diversity of browsers means the number of interactiveatipas users can per-
form continues to grow.

To investigate this programming problem, we develop a foundational nebléeb inter-
actions that reduces the panoply of browser-supported user intettichree fundamental
ones. We use the model to formally describe two classes of errors impYgbams. The de-
scriptions suggest techniques for detecting both classes of erron&alass we present an
incrementally-checked record type system, which effectively elimirtatese errors. For the
other class, we introduce a dynamic safety check that employs pragraatations to detect
errors.

1 Introduction

Over the past decade, the Web has evolved from a static mediaran interactive
one. A representative article claims that more than halfllofeb transactions are
interactive [4], and this ratio only grows in favor of inteti&ity. Indeed, entire corpo-
rations (including book retailers, auction sites, traesiarvation services, and so on)
now interact primarily or solely through the Web. Theserifatees no longer present
static content but rather consume user input, perform ceaipn based on these in-
puts, and generate corresponding output. As a result, theha® been transformed
into an important (and increasingly dominant) medium oéiiattive computation.
This rapid growth in the volume of interactively generatedtent might suggest
that Web page developers and programmers have masterectamics of inter-
active Web content. In practice, however, as this paper dstretes, consumers still

* This research is partially supported by NSF grants CCR-03059490&81064 and CAl-
0086264.
** Current affiliation: Galois Connections, Inc.

2 Krishnamurthi, et al.

encounter many, and sometimes costly, program errors gsitiige these new ser-
vices. Furthermore, many of these errors are caused plseaisen users employ the
interactiveoperations supported by Web browsers. A strong foundatiomferac-
tive computation must therefore study and address the vedNdeb programs.

A Web program’s execution consists of a series of interastioetween a Web
browser and a Web server. When a Web browser submits a reghest¢wath points
to a Web program, the server invokes the program with theestquia any of a
number of protocolsdGl [19], Java servlets [7], or Microsoft'asP.NET [18]). It
then waits for the program to terminate and turns the prograntput into a response
that the browser can display. Put differently, each indiaidWeb program simply
consumes amTTP request and produces a Web page in response. It is therefore
appropriate to call such programs “scripts” consideringt tifney only read some
inputs and write some output. This very simplicity, howevgalso what makes the
design of multi-stage Web dialogs difficult.

First, multi-stage interactive Web programs consist of ynseripts, each han-
dling one request. These scripts communicate with each gtheexternal media,
because the participants in a dialog must remember eadits pf a conversation.
Not surprisingly, forcing the scripts to communicate thesveauses many problems,
considering that such communications rely on unstatedtterdfore easily violated,
invariants.

Second, the use of a Web browser for the consumer’s side dfdlag introduces
even more complications. The primary purpose of a Web broisse empower con-
sumers to navigate among a web of hyperlinked nodes at widb#sumer naturally
wants this same power to explore dialogs on the Web. For ebeamponsumer may
wish to backtrack to an earlier stage in a dialog, clone a patiechoices and ex-
plore different possibilities in parallel, bookmark andrection and come back to it
later, and so on. Hence, a programmer must be extremelyutatefut the invariants
that govern the communications among the scripts that mplanunteractive Web
program. What appears to be invariant in a purely sequensidgicontext may not
be so in a dialog medium that allows arbitrary navigatiomnoast

In this paper, we make three contributions to the problemesighing reliable
interactive Web programs. First, we develop a simple, formadel of Web interac-
tions. Using this model, we can explain the above problemngisely. Second, we
develop a type system that solves one of these problems ovalge manner (rela-
tive to the model). Third, because not all the checks can Henpeed statically, we
suggest run-time checks to supplement the type system.

Section 2 describes a problem on an actual corporate Welthsitesuccintly
demonstrates the style of problems we study. Section 4datres a model of Web
interactions suitable for understanding problems withusetjal programs. Section 5
uses the model to demonstrate two major classes of mistakeson 6 introduces a
standard type system for the Web that eliminates the firss@&mistakes. Section 7
introduces a dynamic check into the programming languagevtarns consumers
of potential problems. Sections 3 and 8 place our work inexnt

Modeling Web Interactions and Errors 3
2 A Sample Problem

We illustrate one of the Web programming problems with amega from the com-
mercial world. Figure 1 contains snapshots from an actuataction with OrbitZ,
which sells travel services from many vendors. It naturizljtes comparison shop-
ping. In particular, a customer may enter the origin andidasbn airports to look
for flights between cities, receive a list of flight choicesddhen conduct the fol-
lowing actions:

1. Use the “open link in new window” option to study the detaif a flight that
leaves at 5:50pm (step 1). The consumer now has two browselows open.

2. Switching back to the choices window (step 2), the conswae inspect a dif-
ferent option, e.g., a flight leaving at 9:30am (step 3). Nb& tonsumer can
perform a side-by-side comparison of the options in two lsewvwindows.

3. After comparing the flight details, the customer decidetake the first flight
after all. The consumer switches back to the window with ttEOpm flight
(step 4). Using this window (form), the consumer submitsréguest for the
5:50pm flight (step 5).

At this point, the consumer expects the reservation systeragpond with a page
confirming the 5:50pm flight. Alarmingly, even though the pagdicates that click-
ing would reserve on the 5:50pm flight, Orbitz instead seldoe 9:30am flight. A
customer who doesn'’t pay close attention may purchase et tickthe wrong flight.

The Orbitz problem dramatically illustrates our case. faitilis is not an iso-
lated error. It exists in other services (such as hotel vasiens) on the Orbitz site.
Furthermore, as plain consumers, we have stumbled aciesshrelated problems
while using several vendor’s sites, including Apple, Coatital Airlines, Hertz car
rentals, Microsoft, and Register.com. Clearly, an errat titcurs repeatedly across
organizations suggests not a one-time programming fatitelbier a systemic prob-
lem. Hence, we must develop a foundational model to study MWebactions.

3 Prior Work

The Bigwig project [2] (a descendant of Bell Lab’s Maw! projgl]) provides a
radical solution to the problem. The main purpose of theqmiojs to provide a
domain-specific language for composing interactive Wekisas. The language’s
runtime system enforces the (informal) model of a sessiaEr of communicat-
ing threads [3]. For example, clicking on the back buttoretathe consumer back
to the very beginning of the dialog. While such a runtime syspeevents damage,
it is also overly draconian, especially when compared terodpproaches to dealing
with Web dialogs.

John Hughes [15], Christian Queinnec [22], and Paul GraHahihdependently
had the deep insight that a browser’s navigation action@spond to the use of first-
class continuations in a program. In particular, they st &n interaction with the

4 The screenshots were produced on June 28, 2002.

4 Krishnamurthi, et al.

Choices

- Alaska Airlines 15
E Fri, Aug 16

6 airfare Alaska Airlines 2168 12:00p-|
35 service fee operated by partner aitline plane 4
1 trip cost Sat, Aug 31
Clone Alaska Airlines 1529 1:45p
and operated by partner airline
Sat, Aug 31

Submit E Alaska Airlines 1551

operated by partner aitline

3 airfare Fri, Aug 16
5 service fee Alaska Airlines 2086 2:00p

8 trip cost operated by partner airline

Flight 2
) Orbitz: Flight Search Resuits- Domestic. . S5 n [2]x]
£ 01 3 8 Losaton [FlsPege-eo 5] o o request 10 8] @~ (5] & < [enzs &)
v

Alaska Airlines 15
Fri, Aug 16

Alaska Airlines 2168
operated by partner airline
Sat, Aug 31

Alaska Airlines 1529
operated by partner aitline
Sat, Aug 31

Alaska Airlines 1551
operated by partner aitline
Fri, Aug 16
Alaska Airlines 2086 el b G TavElenform
operated by partner aitline a8 3 & & vocation: (=] - -

depart Logan Intern
qorning” Boston

depart 5:50pm

evening

Problem

(5 Orbitz: Flight Traveler Information BB

6601 2 B Locaton, Ersreremeio= 1 6] < (319 - [

o

depart 9:30am Logan Intern
morning Boston

Commit to

First Choice
August 16, 2002
Alaska Airlines 1551
9-SoTBegton (BOS)

Shttle (SEA)

AUgU
Alaska Airlines 2086

Legend

——P» Click Submit

= — P syitch Windows

Fig. 1. Orbitz Interactions

Modeling Web Interactions and Errors 5

consumer corresponds to the manipulation of a continuatighe underlying lan-
guage and server support these manipulations, a prograsn’tibave to terminate to
interact with a consumer but instead captures a continuatid suspends the evalua-
tion. Every time a consumer submits a response, the conigrutatsumes the proper
continuation. Put differently, the communication amongpss is now internalized
within one program and can thus be subjected to the safetksluf the language.

Our prior work explored the implications of Queinnec’s inotwvays. First,
we built a Web server that enables Web programs to interaetttlf with con-
sumers [14]. Programming in this world eliminates many @f finoblems in a nat-
ural manner. Second, because this solution only appli¢eiserver offers support
for storing continuations, we explored the automatic gatien of robust Web pro-
grams via functional compilation techniques [17]. Whilestitiea works in principle,
a full-fledged implementation requires a re-engineeretibsystem and runtime
environment for the targeted language.

Thiemann [26] started with Hughes’s ideas and provides aatdrased library
for constructing Web dialogs. In principle, his solutiomrmsponds to our second
approach; his monads take care of the “compilation” of Weipt&into a suitable
continuation form. Working with Haskell, Thiemann can noseuiHaskell’s type sys-
tem to check the natural communication invariants betwkewarious portions of a
Web program. This work must accommodate effects (intevastwith file systems,
data bases, etc.), which it does in a somewhat unnatural enaBpecifically, for
each interaction, theGi scripts are re-executed from the beginning to the current
point of interaction, which can be computationally expeasirhis monad-based ap-
proach does, however, avoid the re-execution of effeatsetly preserving observed
behavior relative to these effects.

4 Modeling the Web

As Web browsers proliferate, we expect that both the numiettize nature of prob-
lems induced by interaction will grow. Browsers are likedyimtroduce interaction
features that are especially convenient to a user but amdlgqunanticipated by the
application developer. It becomes increasingly difficaltéason about the behavior
of a program in the context of each particular browser; weldjaiherefore, bene-
fit from a foundational model that encapsulates a wide vanéthese interactions
in a small set of primitives, akin to what Turing machinesambda calculi do for
standard computation. This section presents our first gttatnconstructing such a
model.

The model we present has four characteristics. First, istgof a single server
and a single client, because we wish to study the problerseagientialWeb inter-
actions. Second, it deals exclusively with dynamicallyeyated Web pages, called
forms, to mirrorHTML’s sub-language of requests. Third, the model allows the con
sumer to switch among Web pages arbitrarily; as we show ldtisrsuffices to rep-
resent the problem in Section 2 and similar phenomena.lfzitta model is abstract

6 Krishnamurthi, et al.

with respect to the programming language so that we can iexpet with alterna-
tives; here we use a lambda calculus for forms and basic thatagh we could also
have used a model such as Classic Java [10].

Our model lacks several properties that are orthogonal tagoals. First, the
model ignores client-side storage, a.k.a. “cookies,” Wipdmarily addresses cus-
tomization and storage optimizations. Server-side stosaffices for our goals. Sec-
ond, Web programmers must address concurrency via locgimggibly relying on
a server that serializes each session’s requests or redyiraydatabase. Distribut-
ing the server software across multiple machines comglécabncurrency further.
Third, monitoring and restarting servers improves fauttance. Fourth, the model
does not allow the user to add fields to or drop fields from Wem$before submis-
sion. While theHTTP protocol permits this, browsers typically ensure that tiies
not happen. Accordingly, Web applications can protect teues against dropped
fields through a simple dynamic check that will not, in preetiever fail. Finally, the
model neither addresses nor introduces any security casidaut existing solutions
for ensuring authentication and privacy apply [8, 11].

4.1 Server and Client

Figure 2 describes the components of our model. Each Webgewafion V) con-
sists of a single serveB(and a single client®). The server consists of storagg)(
and a dispatcher (see Figure 4). The dispatcher contairngesRdfor “programs”)
that associategRLs with programs and an evaluator that applies programs fnem t
table to the submitted form. Programs are closed teMft3 {n a yet to be specified
programming language.

W =8xC {7, “x", “why”, “zee" } C String
S =XYxP {xy.z} CId

P =Url— M° { www.drscheme.orgvww.plt-scheme.or§ C Url
M° = programs

C =FxTF

F = (foomUrl (1d V}))
V, = Int| String

Fig. 2. Components of the Web Model

The client consists of the current Web form and a set of altadsweb forms.
Initially, the set is a singleton consisting of only the hopagye. It then grows as the
consumer visits additional pages. The model assumes thatisumer can freely
(non-deterministically) replace the current page with egreviously visited page,
or visit a new page. Since the current page is always an eleofieil previously
visited pages, the consumer can also return to this pagelaive that this model of

Modeling Web Interactions and Errors 7

a consumer represents most interesting browser navigatitbons, including some
not yet conceived by browser implementérs.

The model distills a Web page to a minimal representatioerfgage is simply
a form (). It contains theurL to which the form is submitted and a set of form
fields. A field names a value that the consumer may edit at Rigure 3 presents a
concrete WebL form and its equivalentHirmL .

(form www.plt-scheme.org/my-program.ss
(name" Paul") (time" 1:30"))

<ht nl >
<body>
<form acti on="www. pl t - schene. or g/ ny- pr ogr am ss"
net hod="post " >
<i nput type="text" nane="nane" val ue="Paul" />
<i nput type="text" nane="tinme" val ue="1:30" />
<i nput type="submt" val ue="Submt">

</form
</ body>
</htm >
Fig. 3. WebL Form and EquivaleT™ML Form

Web Server | WebClient
Asubmif .

e read Dispatcher |
=) | |
’ write (EvaluatoD (Program§ s ﬁl) onke switch

Forms

Fig. 4. The Web Picture

Figure 4 illustrates how the pieces of the model interace bbld-faced letters
correspond to the non-terminals in Figure 2. The server Aadtenay run on differ-
ent machines, connected by a network. The client sendsritsritdorm to the server.
The form names a program on the server; the server applgpribgram to the form
and produces a response, possibly accessing the storeprotess. Finally, the re-
sponse replaces the current form on the client and appetirs atient’s set of visited
forms.

5 Entering arbitraryurLs into the browser is a degenerate case of the user creating a brand
new form, possibly with an incorrect number of fields (zero) or thengrfield names.

8 Krishnamurthi, et al.

dp: XX F — YXF

fill-form:W — W
(s, ((formu (kvo)),))<= (s, ((formu (k o)), {(formu (kv1))} U F))

switch: W — W
(s, (fo, T)) = (s, (fr, T))wherefy e T

submt - W — W

({00, D), (fo, F)) = ((o1, p), (fr, {AYUTF))
where <0’1, f1> = dp(O'o,fo)

Fig. 5. Language Transition Relation

Server : Client
i. 2o .] fo
[

d, |
[
R L

Fig. 6. Client-Server Control Flow

To specify behavior, we use rewriting rules on Web configarst Figure 5 con-
tains rules that determine the behavior of the client angeses far as Web programs
are concerned. Each rule is indexed by an operation and ta@er-client pair to
a new server-client pair, reflecting the change caused bypgheation.

fill-form allows the client to edit the values of fields in the curremtfoThe form
with the new data both becomes the current form and is addée twache. This
rule does not affect the server.

switch brings to the foreground a (possibly) different Web formnfrshe client’s
repository of visited forms. In practice, this happens inwmber of ways:
switching active browser windows, revisiting a cached Pagging the back or
forward buttons, or selecting a bookmark. This, too, doasffect the server.

submit dispatches on the current formRL to find a program in the table. This
program consumes the current server state and the subfoittedo generate an
updated server state and a response form. The server réfeisrdew state, while

5 The actual behavior of revisiting a page depends on whether the pagehsctor not.
Returning to a non-cached page falls understhiemitrule.

Modeling Web Interactions and Errors 9

the new form is sent to the client and becomes the new curoemt. frigure 6
depicts this flow of control.

The actual dispatching and evaluation (which is triggenredibpatching) are specific
to the programming language, which we introduce next.

4.2 Functional Web Programming

Figure 7 specifies WebL, a core Web programming languagel \&&ends the call-
by-value A-calculus [21] with integers, strings, and Web forms, whéeh records
with a reference to a program. The language layer connetketd/eb layer of the
model (Figure 2) by providing the two missing componentg $yntax) and
semantics of program evaluation, and the language-sendigpatch functiom,,.

Theform construct creates Web forms. Théld construct extracts the value of
a form field with the naméd. We specify the semantics of WebL with a reduction
semantics [9]. There are two reductions: thereduction substitutes an argument
value for the formal parameter in the body of a function at gpliaation, while the
select reduction performs field lookup.

The bottom half of Figure 7 specifies dispatching. It shows Hg processes a
submitted formform,. First, it uses theJrL in form, to extract a program from its
tableP. Second, it applies the program to the form and reduces pipication to a
valueform, . The storer, remains the same, because thusfar WebL has no imperative
constructs.

4.3 Stateful Web Programming

Up to this point, scripts in our model can only communicatdhwiach other through
forms. In practice, however, Web scripts often communicationly via forms but
also through external storage (such as files and servlebrestgects [7]). To model
such stateful communications, we extend WebL wééd andwrite primitives. Fig-
ure 8 presents these language extensions. The two primérgower programs
to read flat values from, and to write flat values to, storetiooa. The reduction
relation—,, is the natural extension of the relatien—,. The extended relation
relates pairs of terms and stores rather than just termssecorently the dispatcher
starts a reduction with the invoked program and the curtengésAt the end it uses
the modified store to form the next Web configuration. Becaudg one program
may modify the store at a time, the server model is sequential

5 Problemswith Web Applications

Our model of Web interactions can represent some common Yagioganming prob-
lems concisely. Here we present two of them. The first prohi¢etihat a Web script
expects a different kind of form than is delivered. We duls firioblem the “(script)
communication problem.” The second problem reveals a weskof the hypertext

10 Krishnamurthi, et al.

Syntax
M=V
| (M M)
| 1d
| (form Url (Id Mi)
| M.Id

V =V |(A(dM)[F

Semantics

E =01 EMI|VE
| (form Url (Id V) (Id E) (Id M))
| E.Id

(Bv) EI((A (x) body V)] — E[bodyx\V]]
(select) E[(form url (n; v;) (nj vj) (nk vi)) - n;] —» E[vi]

L anguage to Web Connection

dp(oo, (form Url (Id v))) = (o0, form,)
where prog = P(Url) and (prog (form Url (Id v))) —, form,

Fig. 7. Web Programming Language

Syntax L anguage to Web Connection
M=-...|(read Id) | (writeld M) YC(d— VW)
Semantics dp(oo, (form Url (Id s;)) = (o1, form,)

. where prog = p(Url)
(0, €0) —vo {0, 1) if e0—y €1
(0, E[(write Idv,)]) —vo (o[Id\v,], E[v,]) <‘;0 (7’<7"09 (ffgrrnT >U ri (ids)))
(0, E[(read Id)]) —suo {0, E[o(Id)]) vo (01, |
whereld € don{(o), v, €V,

Fig. 8. Language Extensions for Storage

transfer protocol. Due to the lack of an update method, mé&dion on client Web
pages becomes obsolete over time and, hence, may misleadrtkemer. We dub
this problem the “TTP) observer problem” indicating that thertp protocol does
not permit a proper implementation of the Observer patté2h (which enables de-
pendent observers to be notified of state changes).

5.1 The Communication Problem

Since standard Web programs must terminate to interactaxdtimsumer, non-trivial
interactive software consists of many small Web prografrtbel software needs to

Modeling Web Interactions and Errors 11

interact NV times with the client, it consists aV + 1 scripts, and all scripts must
communicate properly with their successbi/orse, since the client can arbitrarily

resubmit pages, the programmer cannot assume anythingtab@cripts’ execution
sequence.

plt-scheme.org/cgi/start.ss
A
(form plt-scheme.org/cgi/next.ss
(name" Your Name")))

plt-scheme.org/cgi/next.ss
(A
(form plt-scheme.org/cgi/done.ss
(confirm-namer.name)
(confirm-phoner.phone)))

X o] (form start.s$

....... |
0

(form next.ss
21 | response (name""))
|

v
.
nexr ;
hone submlt fill-form
(form next.ss
5‘ (neﬁme) (name" Ed"))

Fig. 9. Collaborating Programs

Even without the difficulties of unusual execution sequensglitting Web pro-
grams into pieces can introduce errors. Consider the exampFigure 9. The
server’s table contains two programs with the filenarstest.ssand next.s&. The
start.ssprogram prompts for the user’'s name and directs this infaomdo next.ss

" A good programmer may recognize opportunities for aggregating sdrtie programs.
It is also possible to use a “multiplexer” technique that merges all theggssarto one
single file and uses a dispatcher to find the proper subroutine. The m®bémain the
same, however, because the various pieces of the same progranunaate viaHTTP.

8 Typically, “.ss” is the suffix for Scheme programs; we use it here tsuggestive since our
Web programming language is based on Scheme.

12 Krishnamurthi, et al.

This second program attempts to verify some propertiestdbhewconsumer. In do-
ing so, it assumes that the input form contains bo#imeand phonefields, and
attempts to extract both. The attempt to extract the nostexiphonefield results in
a runtime error. The diagram illustrates the problem gregdly. When programmers
mistakenly encode field names assumptions into the store-stakeithat is easily
made with Java servlet amdP.NET session objects—these safety errors concerning
form field accesses become even more nefarious.

By now, programmers are well-aware of this problem and eynektensive dy-
namic testing to find these mistakes. In Section 6, we presdype system that
discovers such problems statically and still allows pragreers to develop complex
interactive Web programs in an incremental manner.

5.2 The Observer Problem

In a model-view-controlleryvc) architecture, a change to the model triggers no-
tification to all the views to update their display. Web prags do not enjoy this
privilege, becauseTTP does not provide for an update (or “push”) method. Once a
browser receives a page, it becomes outdated wherieemodel changes on the
server, which may be due to additional form submissions fiteerconsumer.

The Observer problem is often, but not always, due to a camiusf environ-
ments and stores, or form and server-side storage. A protiranreserves flights
needs to use both kinds of storage to represent differedskaf information [17].
Unfortunately, programmers who don't understand the difiee may place infor-
mation into the store when it really belongs in the Web form.

Figure 10 shows a reformulation of Orbitz’s problem (seetir) in WebL.
The first of these programpick-flight, asks the customer for a preferred flight time.
The second progranaspnfirm-flight writes the selected flight time into external stor-
age before asking the user to confirm the flight time. The thimafram,receipt-
flight, reads the selected flight from storage and charges thencasfor a ticket.

It is easy to see that the WebL program models the problemdtid®e2. Sub-
mitting two requests for theonfirm-flightprogram results in two pages displaying
different flight times on the client, yet only the flight time the most recent re-
quest resides in the server’s external storage. Submittiegutdated form that no
longer matches the storage produces the mistake.

6 Type Checking Communication

Trying to extract a field from a form fails in WebL if the form dg not contain the
named field. To prevent such errors, languages often empigyeasystem (and/or
safety checks). Our Web model shows, however, that stfaigbdrd type checking
doesn’t work, because programs consist of many separapgssicrosely connected
via forms and storage. Checking all the scripts togethemfesasible. Not only are
these scripts developed and deployed in an incremental@nghey may also reside

Modeling Web Interactions and Errors 13

pick-flight— (A (empty-forn (for m confirm-flight(departure-time' hh:mm™)))

confirm-flight— (X (first-form)
(write your-flight first-form.departure-time
(form receipt-flight(confirm-time(read your-flight)))

receipt-flight— (A (confirmed-form
(buy-flight(read your-flight)
(form next-action(itinerary (read your-flight)))

Fig. 10. Stateful Web Programs

on different Web servers and/or be written in different pemgming languages. Fur-
thermore, consumers can always editFa. to generate a fresh request that the server
has not seen before, akin to a user typing a fresh commane egdhl-eval-print loop

of an interactive language implementation.

We therefore provide amcrementaltype system for Web applications. When
the server receives a request fasRL not already in its table, it installs the relevant
program to handle the request. Before installing the newgnara, the server type
checks the program, which is a check for internal consistdnaddition, the server
also derives constraints that this new program imposes erotier programs on
the server with which it interacts. These constraints bexexternal consistency
checks. If either type checking or constraint resolutidls féhe program is rejected,
resulting in an error. In practice, a programmer may reggeral programs of one
application and have them typed checked before they areykshl

The type system for internal consistency checking heavilydws from simply-
typed A-calculi with records [5, 20, 24]. Figure 11 defines the typstam. In ad-
dition to the usual function type-{~) and primitive typednt and String, the type
language also includes types for Web forms. Similar to rtgwes for m types con-
tain the names and types of the form fields that, accordinbew intended usage,
must have flat (marshallable) types. We overload the typg@nwment to map both
variables and store locations to types. An initial type smuinent/, maps locations
in the external storage to flat types. Typed WebL differs f\ebL only by requir-
ing types for function arguments. That ig, (k) M) becomes X (x : 7) M) in Typed
WebL.

The type system also serves as the basis for external cemgysthecking. As
the type checker traverses the program, it generates agrtston external programs.
The type judgments, as shown in Figure 11, have antecedsdrasd the bar) which,
when conjoined, specify a condition. When this conditiordspthe consequent (be-
low the bar) also holds. Each judgment rules that a type enrient () proves that
a term has a particular type, and generates a (possibly ¢msgttpf constraints. A
constraintUrl : (form (Id 7,)) insists that the program associated wilth consume

Web forms of typeform (Id 7,)).

14 Krishnamurthi, et al.

Types Type Judgments
Type = Type— Type
| (form (Id Types)) I'HM:Type =
| Type, where
Type, = String| Int Z={Url: (form (]dT;)}

Type Derivation Rules

I+ string: String{} r'em: (form (Ida 7a) (Ids 70) (Tds 700)), €

I'tn:int{} I'Em.ddg : e, &
—_
Irx)y=r I'tm:7n,&m
I'tx:r{} I' - (form Url (Id m)) : (form (Id 7)),

{Url : (form (Id 1))} U &nr
Nx:mpbFm:7,€

TEOX:Ta)M) 7w — 7, ri)=m
I't(readl): 7, {}

I'Emo:1e — 7,8
I'my 7,6 rag=m '-m:mn,¢
' (momi):7,&U& I'F (writelm): 7, &

Fig. 11. Internal Types for WebL

Most type rules in Figure 11 handle constraints in a strégivard manner.
Checking atomic expressions yields the empty set of canstra&Checking most ex-
pressions that contain subexpressions simply propadeeohstraints from check-
ing the subexpressions. The application rule says thagifitthction position gener-
ates constrain{, and the argument position generates consti@inthen the entire
application expression will generate the union of these, the constrainy U &; .
The only expressions that generate fresh atomic congtraiator m expressions.

The expressionférm Url (Id m)) constructs dorm value, so its type is simi-
lar to a record type. Thiform expression also indirectly connects the program as-
sociated withUrl to the form the consumer will submit later. If the type-chexck
looked up the program associated witH immediately and compared tfia m type
with the function’s argument type, this would suffice. It idwmot, however, allow
for independent development of connected Web programteddstype checking
the form expression generates the constrdint : (form (Id 7,)), which must be
checked later.

Figure 12 extends the definition of the server s@tgith a set of constraints
Z. The functioninstall-programadds a new program to the server’s table at a
givenUrl if the program is internally and externally consistent. flikathe program
must type check and the generated constraints must be tntsisth the constraints
already on the server. A set of constraints is consistetiiéfset is a function from
URLS to types. Th&€onstrainfunction ensures that the programis well typed, and

Modeling Web Interactions and Errors 15

Server Extension and Additional Functions
S=XxPx&
Install-program: Url M W — W
Install-program{(Url, m, ({0, p, &), ¢)) = ({o, p[Url\m], Constrain&,Url, m)), c)
whenConsistentConstrair(¢, Url, m))
Constrain: = UriM — =

Consistent = boolean
- Constrair(&o, Url, m) =

Consist = j
"o torm (o) € & 1 fo 0 e o (form (din 7 D}
(Url : (form (Idy 1)) € € = Whje“;ek m: (form (Tdin, 7in)
(Ido 7o) = (Idy 1) — (form (Tdput Tout)), 1

Fig. 12. Constraint Checking

it extends the existing set of constraigtsto include constraints generated during
type checking;.

plt-scheme.org/cgi/start.ss
(A ([x: (form)])
(form plt-scheme.org/cgi/next.ss
(name" Your Name")))

plt-scheme.org/cgi/next.ss
(A ([x: (form (name Striny (phone Striny)])
(form plt-scheme.org/cgi/done.ss
(confirm-namer.name)
(confirm-phonex.phone)))

Fig. 13. Typed Collaborating Programs

The incremental type checker catches communication elirarsiding the one
demonstrated in Figure 9. Adding type annotations resoltheé pair of programs
in Figure 13. Type checking produces types and constraintsdth programs. The
constraints, however, reveal a problem. Checlgtayt.ssresults in the following
constraint:

{ next.ss (form (name String) }
When the server installsext.ssthe Constrainfunction generates this constraint:
{ next.ss (form (name Striny(phone Striny) }

These two constraints are nobnsistentso the server rejects timext.sgprogram.
With type annotations, type checking, constraint genenatind constraint check-

ing in place, the system provides three levels of guarantdesfirst result shows that

individual Web scripts respond to appropriately typed esgsiwithout getting stuck.

16 Krishnamurthi, et al.

Proposition 1. For all m in M, 7 in Type, and set of Constraingsif I, - m: 7, &
then for some vinV, m— v.

The proof is essentially the same as the usual proof of stnongyalization for the
simply-typed lambda calculus.

The second proposition shows that the server does not apglypAbgrams to
forms of the wrong type, as long as the server starts in a gade. 8efore we can
state it, however, we need to explain what it means for a sestate to be well-
typed and for a submitted form to be well-typed. A server ifl-typped when all the
programs have function types that map forms to forms and waliehe constraints
are consistent:

server-typecheck&, p, £)) iff Consistent) and for eacturl in dom(p),
I'o FpUrl): (form (Idy 1,1)) — (form (Ids 12)), v @nd
¢urm C €andUrl : (form (Id 71,1)) € ¢

A form is well typed with respect to a server if it refers to @gram on the server
that accepts that type of form.

form-typecheckso, p, &), (form Url (Id vy))) iff
oS
there are types; such thatly F v, : 7, {} and

Url : (form (Id Tb;) isin ¢ and
and Url € dom(p)

Proposition 2. If server-typechecks) and form-typechecks(, fo) then for some

<317 <f17 ?)%
(50, (for T)) = submit (s1, (f1, T))-

If the server's set of constraints is closed, the resultogfiguration also guarantees
the success of the next submission.

Proposition 3. If (o p, €), (fo, T)) =supmit (s1, (f1, T))s
server-typecheckqd, p, £)), form-typechecksg, p, &), fo),
and for each constraint/r : (form W) in¢&, if Url is in dom(p) then
server-typecheck() and form-typechecks(, f1).

In practice these checks only need to be performed upon deritais strategy
makes it possible to incrementally install programs thégrr other programs that
have not yet been written and that are used only in rare cedthsthe caveat that
they are only checked when they are installed.

Alternative Web Programming L anguages

It is not necessary to instantiate our model with a functipnagramming language.
Instead, we could have used a language suchbagw g>, which is the canoni-
cal imperative while-loop language over a basic data typé/eth documents [25].

Modeling Web Interactions and Errors 17

Furthermore, thebi gwi g> language already provides an internal type system that
derives and checks information about Web documents. I8 $ystem is stronger
than ours, allowing programmers to use complex mechaniesmsoimposing Web
documents.

The<bi gwi g> project and our analysis differ with respect to the ultingadal.
First, our primary goal is to accommodate the existing Wetwiser mechanisms. In
contrast,<bi gwi g>'s runtime system disables the browser’s navigation fuometi
ality. Second, we wish to accommodate an open world, wheiptsén ASP.NET,
Perl, or Python can collaborate. Our propositions show lym& thecks in the lan-
guage and in the server can accommodate just this kind ohegenThebi gwi g>
project does not provide a model and therefore does notgeavifoundation for in-
vestigating Web interactions in general.

Separating constraints on collaborating programs fromtythe checking of in-
dividual programs lends the system flexibility. For TypeddlV@rograms, the set of
forms produced could be computed simply by examining thgnam’s return type.
For other languages the local type checking and the consiyaneration may be
less connected.

Extending our constraint checking to dynamically typedglaages requires a
type inference system capable of determining the typesl gibakible forms a pro-
gram might produce. Though this is not necessary for Typetdl\ee choose to
keep the constraint generation separate to emphasizedbapendence of the con-
straints from the languages used for individual scripts.

7 Addressing Outdated Observers

Section 5.2 describes the Observer problem, and pointshatiittis caused by the
Web's lack of a “push” method. Some Web sites simulate pgstata by using a
“meta” tag inHTML that forces the generated page to refresh its content pesityd
A naive implementation of this technique suffers from obviocalability problems.
More germane to our discussion, however, is that this doesactaally implement
the desired user interaction.

To understand this, consider the example in section 2. Téeapens a new win-
dow in step 1 to explore the flight departing at 5:50pm. Whenuger examines a
different flight in step 3, a push implementation would evety updatethe infor-
mation in the window for the 5:50pm flight, to maintain its @mcy with the server’s
state. While this makes the flight reservation made after Stepnsistent with the
information on the window, it means that the user's mentabestion of the first
window with the flight at 5:50pm has been silently invalicht®y the update. This
error is just as insidious as that in section 2.

A better solution is to modify the server so that it detectewh submitted form
does not reflect the server state. Roughly speaking, thisgmonds to the execution
of a safety check like the one for array indexing or list destrring. If the “up-
to-date” test fails, the server informs the consumer of theason, which prevents
the erroneous computation from causing further damagenAieanalogy to safety

18 Krishnamurthi, et al.

checks, the server signals an exception and thus informstigumer at the earliest
opportunity that something went wrong. We believe that #pproach is general
because it is independent of the scripting language. Rurtdlyaamic checking is
an appropriate compromise because these kinds of sitgatiepend on dynamic
configurations rather than on static properties of the @nogr

To check on the datedness of a submitted form, the server peufirm some
additional bookkeeping. Specifically, determining if sdiileg is outdated requires
a notion of time, and therefore the server must keep trackref [23]. For us, time
is the number of processed submissions. The external stofathanges so that it
maps locations not only to flat values but also to a timestamghk last write, i.e.,
Y Cld — Timex V, (compare to the signature in figure 8).

In addition, the server maintainscarrier set of all storage locations read or
written during the execution of a script. When it sends eadepa the consumer,
the server adds the current time stamp and this set of lotsatie an extra hidden
field on the page.

With this additional bookkeeping, the server can now chels&tiver each request
is up-to-date. When a request arrives, the server extrattstie carrier set and the
page creation time. If any of the timestamps attached todtations in the carrier
set are out of date, then the submitted form may be incomsigii¢h the data in the
current server store, and the server signals an exceptamtifiging the out-of-date
items:

A form with carrier setCS and time stamp@ submitted to a server with
current stater is out of date if and only if any of the locations i€Shave a
time stamp inr that is larger thar .

The actual size of the carrier set will vary based not onlytengcript’s function but
also on its implementation (i.e., depending on how staiéfs).

Clearly, a n&ve use of this test produces many false positives. For ebarap
script may use and modify the server state to compute a pageerpa set of ad-
vertisements, or other information irrelevant to the cansu If a form is out of
date only for “irrelevant” storage locations, the consustesuld clearly not receive
a warning. We therefore allow programs to specify whethadirg or writing a
location in the server state ig@evant or irrelevant action from the consumer’s per-
spective. Assuming that language implementors make tleagd the Web server
can reduce the carrier set that it collects during a scriptetton and the number of
warnings it issues.

8 Conclusion

Our paper introduces a formal model of sequential, intar@deb programs. We
use the model to describe classes of errors that occur whesugeers interact with
programs using the natural capabilities of Web browsers.dralysis pinpoints two
classes of problems with scripting languages and servers.

Modeling Web Interactions and Errors 19

To remedy the situation, languages used for scripting shoame with type
checkers that compute the shape of expected forms on thediguand the shape
of forms that the scripts may produce. These languagesdlatsao allow scripts to
specify which actions on the server’s state are relevanthferconsumer. Further-
more, servers should be modified to integrate the type irdtion from the scripts.
In particular, servers should only submit forms to a scriphé form is well-typed
and its content is up-to-date.

Most combinations of Web servers and Web application prograng languages
fail to implement either kind of test. All of them, in partiew, fail to check for
the currency of data, even those whose authors are keenlse avfathe prob-
lem described in Section 2. While we have implemented our inioda toy Web
server, we have not (yet) ported the code to our PLT Web sétvdr Similarly,
WASH/CGI [26] is based on a purely functional programminggaage in recog-
nition of the problems involving state; the careful managetof state appeares to
address the problem of Section 2. This design is, howeveejdag. The true culprit
is a lack of server-based checks that warn users about edtadbrmation.

This formal model has already proven useful in other workb\§grams nat-
urally give rise to temporal properties governing their@x@n over the course of
a workflow, making model checking [6] an attractive verifioattechnique. A niare
model construction based purely on the program source, Vewkils to take into
consideration the many interaction possibilities introgth by browsers, and thus
fails to catch errors of the sort discussed in this paper. ddeheach browser primi-
tive would, however, be onerous. Our work on model checkinyeb programs [16]
therefore uses the model of this paper to constrain the Egeyof analysis, and can
thus verify programs that operate in any browser so longl&lseit interaction prim-
itives can be reduced to the ones presented in this paper.

In short, the formal model helps us to first reduce the conifyief Web interac-
tion primitives to a small and manageable number. It thepse$ describe common
Web problems in terms of these primitives. We can then der@rdication tech-
niques to address these problems. We hope to exploit thiglkdge to build better
languages for programming applications that reside oresgand in Web browsers.

Acknowledgment

Thanks to Jacob Matthews for helping us experiment with WASH, and to Scott
Smolka for his careful editorial work.

References

1. Atkins, D. L., T. Ball, G. Bruns and K. C. Cox. Mawl: A domain-specititnguage for
form-based servicesSoftware Engineerind5(3):334—346, 1999.

2. Brabrand, C., A. Mgller, A. Sandholm and M. Schwartzbach. Alagg for developing
interactive Web services, 1999. Unpublished manuscript.

3. Brabrand, C., A. Mgller, A. Sandholm and M. I. Schwartzbach.uAtime system for
interactive Web services. Bournal of Computer Networkpages 1391-1401, 1999.

20

»

]

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.
21.

22.

23.

24,

25.

26.

Krishnamurthi, et al.

BrightPlanet. DeepWeb.
http://ww. conpl et epl anet . conl Tut ori al s/ DeepWeb/ .

. Cardelli, L. Type systems. IHandbook of Computer Science and Engineer@gC

Press, 1996.

. Clarke, E., O. Grumberg and D. Pelddodel CheckingMIT Press, 2000.
. Coward, D. Java servlet specification version 2.3, October 2000.

http://java. sun. coni product s/ servlet/.

. Dierks, T. and C. Allen. The transport layer security protocol, dani999.

http://ww.ietf.org/rfc/rfc2246.txt.

. Felleisen, M. and R. Hieb. The revised report on the syntactic theofissquential

control and stateTheoretical Computer Scienc#02:235-271, 1992. Original version
in: Technical Report 89-100, Rice University, June 1989.

Flatt, M., S. Krishnamurthi and M. Felleisen. Classes and mixindAdk! SIGPLAN-
SIGACT Symposium on Principles of Programming Langugumges 171-183, January
1998.

Freier, A. O., P. Karlton and P. C. Kocher. Secure socket BageNovember 1996. IETF
Draft http://wp. net scape. conf eng/ ssl 3/ssl-toc. htn .

Gamma, E., R. Helm, R. Johnson and J. Vlissi@esign Patterns, Elements of Reusable
Object-Oriented SoftwareAddison-Wesley, 1994.

Graham, P. Beating the averagest p: / / ww. paul gr aham com avg. htm .
Graunke, P. T., S. Krishnamurthi, S. van der Hoeven and M.i§etle Programming the
Web with high-level programming languages .Haropean Symposium on Programming
pages 122-136, April 2001.

Hughes, J. Generalising monads to arro®sience of Computer Programmirgj7 (1—
3):67-111, May 2000.

Licata, D. R. and S. Krishnamurthi. Verifying interactive Web paogs. InIEEE In-
ternational Symposium on Automated Software Enginegpages 164-173, September
2004.

Matthews, J., R. B. Findler, P. T. Graunke, S. KrishnamurthiNMnielleisen. Automati-
cally restructuring programs for the Welutomated Software Engineering: An Interna-
tional Journal 2003.

Microsoft Corporationht t p: / / www. nmi cr osof t. coni net /.

NCSA. The Common Gateway Interfab¢t p: / / hoohoo. ncsa. ui uc. edu/ cgi /.
Pierce, B. CTypes and Programming Languag@gIT Press, 2002.

Plotkin, G. D. Call-by-name, call-by-value, and thealculus. Theoretical Computer
Sciencepages 125-159, 1975.

Queinnec, C. The influence of browsers on evaluators or, caititims to program Web
servers. IPACM SIGPLAN International Conference on Functional Programmpages
23-33, 2000.

Reed, D. P. Implementing atomic actions on decentralized dafe&CNhTransactions on
Computer Systempages 234—-254, February 1983.

Remy, D. Typechecking records and variants in a natural extensionLof M ACM
Symposium on Principles of Programming Languagesgies 77—-88, 1989.

Sandholm, A. and M. I. Schwartzbach. A type system for dynamgb \dbcuments. In
Symposium on Principles of Programming Languagegies 290-301, 2000.
Thiemann, P. WASH/CGI: Server-side Web scripting with sessioti$ygred, composi-
tional forms. InPractical Applications of Declarative Languaggmges 192—208, 2002.

