
R-MAT: A Recursive Model for Graph Mining

Deepayan Chakrabarti∗ Yiping Zhan† Christos Faloutsos‡

Abstract
How does a ‘normal’ computer (or social) network look like?
How can we spot ‘abnormal’ sub-networks in the Internet, or
web graph? The answer to such questions is vital for outlier
detection (terrorist networks, or illegal money-laundering
rings), forecasting, and simulations (“how will a computer
virus spread?”).

The heart of the problem is finding the properties of real
graphs that seem to persist over multiple disciplines. We
list such “laws” and, more importantly, we propose a sim-
ple, parsimonious model, the “recursive matrix” (R-MAT)
model, which can quickly generate realistic graphs, captur-
ing the essence of each graph in only a few parameters. Con-
trary to existing generators, our model can trivially gen-
erate weighted, directed and bipartite graphs; it subsumes
the celebrated Erdős-Rényi model as a special case; it can
match the power law behaviors, as well as the deviations
from them (like the “winner does not take it all” model of
Pennock et al. [20]). We present results on multiple, large
real graphs, where we show that our parameter fitting algo-
rithm (AutoMAT-fast) fits them very well.

1 Introduction

Graphs, networks and their surprising regularities/laws
have been attracting significant interest recently. The
World Wide Web, the Internet topology and Peer-to-
Peer networks follows surprising power-laws [5, 10, 3],
exhibit strange “bow-tie” or “jellyfish” structures [5,
23], while still having a small diameter [2]. Finding pat-
terns, laws and regularities in large real networks has nu-
merous applications, from criminology and law enforce-
ment [8] to analyzing virus propagation patterns [19]and
understanding networks of regulatory genes and inter-
acting proteins [3] and so on.

Discovering and listing such laws is only the first
step. Ideally, we would like a generative model with the
following properties:

• Parsimony: It would have a few only parameters.

• Realism: It would only generate graphs that obey
the above “laws”, and it would match the prop-
erties of real graphs (degree exponents, diameters
etc.) with the appropriate values of its parameters.

• Generation speed: it would generate the graphs
quickly, ideally, linearly on the number of nodes
and edges.

∗School of Computer Science, CMU
†Dept. of Biological Sciences and School of Computer Science,

CMU
‡School of Computer Science, CMU

This is exactly the main part of this work. We
propose the Recursive Matrix (R-MAT) model, which
naturally generates power-law (or “DGX” [4] ) degree
distributions. We show that it naturally leads to small-
world graphs; it is recursive (=self-similar), and it has
only a small number of parameters.

The rest of this paper is organized as follows: Sec-
tion 2 surveys the existing graph laws and generators.
Section 3 presents the idea behind our method and its
algorithms. Section 4 gives the experimental results,
where we show that R-MAT successfully mimics large
real graphs. We conclude in Section 5.

2 Background and Related Work

A graph G = (V , E), is a set V of N nodes, and a set E
of E edges between them. The edges may be undirected
(like the network of Internet routers and their physical
links) or directed (like the network of who-trusts-whom
in the epinions.com database [21]). Bipartite graphs

have edges between two sets of nodes, like, for example,
the graph of the movie-actor database (www.imdb.com).

Patterns and “Laws”: Skewed distributions, and
power laws of the form y = xa, appear very often.
Power-laws have been observed for the degree distri-
butions of the Internet, the WWW and the citation
graph, the distribution of “bipartite cores” (≈ commu-
nities), the eigenvalues of the adjacency matrix and oth-
ers [10, 13, 2]. Recently, Pennock et al. [20] observed
deviations from power-laws for the Web graph, which
are well-modeled by the truncated, discretized lognor-
mal (“DGX”) distribution of Bi et al. [4]. Graphs also
exhibit a strong “community” effect [11, 14]. Most real
graphs have surprisingly small diameters: the “six de-
grees of separation” for the social network, 19 for the
Web, and small values for the Internet AS graph [2, 23].
Apart from these, there are many other measures such
as clustering coefficient, expansion, resilience, prestige,
influence, stress and so on [7, 12, 22, 18].

Broder et al. [5] show that the WWW has
a “bow-tie” structure with 4 roughly equal parts.
Tauro et al. [23] find that the Internet topology is orga-
nized as a set of concentric circles around a small core,
like a “Jellyfish”.

Graph Generators: The earliest, and most fa-
mous graph generating model is by Erdős and



Rényi.However it provably violates the power laws
above. Recent graph generators can be grouped in two
classes: degree based and procedural. Given a degree dis-
tribution (typically following a power-law), the degree-
based ones try to find a graph that matches it [2, 17], but
without giving any insights about the graph or trying
to match other criteria (like small diameter, eigenvalues
etc.).

On the other hand, procedural generators try to
find simple mechanisms to generate graphs that match
a property of the real graphs and, typically, the power
law degree distribution. This is the class that our
proposed R-MAT method belongs to. The typical
representative here is the Barabasi-Albert (BA) method
with the “preferential attachment” idea: keep adding
nodes; new nodes prefer to connect to existing nodes
with high degrees. However, this only gives power laws
of exponent 3. Many modifications and alternatives to
the basic idea have been proposed; some generators
also include the geometrical layout of nodes in their
models [1, 2, 17, 20, 6]. The BRITE graph generator
[15] uses components from several of the above models.

In general, all of the above generators fail to meet
one or more of the following goals: (a) the generator
should be procedural (b) it should be able to gener-
ate all types of graphs (directed/undirected, bipartite,
weighted) (c) it should match both power-law degree
distributions and the “unimodal” distributions observed
by Pennock et al. [20] (d) it should satisfy more crite-
ria (like diameter, eigenvalue plots), in addition to the
degree distribution.

A related field is that of relational learning [9];
however, this focuses on finding structure at a more
local level while our work focuses on the global level.
Other topics of interest involving graphs include graph
partitioning,frequent subgraph discovery,finding cycles
in graphs,and many others. These address interesting
problems, and we are investigating their use in our work.

3 Proposed Method

Several previous graph generators have been described
in Section 2, but they all fail in one aspect or another.
The goals a graph generator should achieve are that the
generated graph should:

• (g1) match the degree distributions (power laws or
not)

• (g2) exhibit a “community” structure

• (g3) have a small diameter, and match other crite-
ria

Main Idea: We provide a method which fits
both unimodal and power-law graphs using very few
parameters. Our method, called Recursive MATrix,
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Figure 1: The R-MAT model

Symbol Meaning

N Number of nodes in the real graph

2n Number of nodes in the R-MAT graph

E Number of edges in the real graph, and
in the R-MAT generated graph after

duplicate elimination

(a, b, c, d) Probabilities of an edge falling into partitions
in the R-MAT model. a + b + c + d = 1.

Table 1: Table of Symbols

or R-MAT for short, generates the graph by operating
on its adjacency matrix in a recursive manner.

3.1 Fast Algorithm to generate Directed
Graphs: The adjacency matrix A of a graph of N

nodes is an N ∗ N matrix, with entry a(i, j) = 1 if
the edge (i, j) exists, and 0 otherwise. The basic idea
behind R-MAT is to recursively subdivide the adja-
cency matrix into four equal-sized partitions, and dis-
tribute edges within these partitions with a unequal
probabilities: starting off with an empty adjacency ma-
trix, we “drop” edges into the matrix one at a time.
Each edge chooses one of the four partitions with prob-
abilities a, b, c, d respectively (see Figure 1). Of course,
a + b + c + d = 1. The chosen partition is again subdi-
vided into four smaller partitions, and the procedure is
repeated until we reach a simple cell (=1× 1 partition).
This is the cell of the adjacency matrix occupied by the
edge. The number of nodes in the R-MAT graph is set
to 2n; typically n = dlog

2
Ne. There is a subtle point

here: we may have duplicate edges (ie., edges which fall
into the same cell in the adjacency matrix), but we only
keep one of them. To smooth out fluctuations in the de-
gree distributions, we add some noise to the (a, b, c, d)
values at each stage of the recursion and then renormal-
ize (so that a+b+c+d = 1). Table 1 shows the symbols
used in the paper.

3.2 Discussion: Meeting the Goals: Intuitively,
our technique is generating “communities” in the graph.



Typically, a ≥ b, a ≥ c, a ≥ d.
• The partitions a and d represent separate groups

of nodes which correspond to communities (say,
soccer and automobile enthusiasts).

• The partitions b and c are the cross-links between
these two groups; edges there would denote friends
with separate interests.

• The recursive nature of the partitions means that
we automatically get sub-communities within ex-
isting communities (say, motorcycle and car enthu-
siasts within the automobile group).

The third bullet results in “communities within commu-
nities” (goal g2). The skew in the distribution of edges
between the partitions (a ≥ d) leads to lognormals and
the DGX distribution (goal g1). We shall show experi-
mentally that R-MAT also generates graphs with small
diameter and matching other criteria as well (goal g3).

3.3 Parameter fitting with AutoMAT-fast: The
R-MAT model can be considered as a binomial cascade

in two dimensions. We can calculate the expected
number of nodes ck with out-degree k:

ck =

(

E

k

) n
∑

i=0

(

n

i

)

[

pn−i(1 − p)i
]k [

1 − pn−i(1 − p)i
]E−k

where 2n is the number of nodes in the R-MAT graph
and p = a + b. Fitting this to the observed outdegree
distribution gives us the estimated values for p = a + b

(and similarly q = a + c for the indegree distribution).
Conjecturing that the a : b and a : c ratios are
approximately 75 : 25 (as seen in many real world
scenarios), we can calculate the parameters (a, b, c, d).

3.4 Extending R-MAT to Undirected Graphs:
An undirected graph must have a symmetric adjacency
matrix. We achieve this by generating a directed graph
with b = c and then using a “clip-and-flip” on the
resulting adjacency matrix. This involves throwing
away the half of matrix above the main diagonal and
copying the lower half to it. The effect of this is twofold:
first, since b = c, the number of edges in the final
undirected matrix is approximately equal to that in the
directed graph; and second, this technique guarantees
that the resulting matrix will be symmetric, and hence
the corresponding graph will be undirected.

3.5 Extending R-MAT to Bipartite Graphs:
For a bipartite graph, the length and height may be
different, and the adjacency matrix will be a rectangle
instead of a square. Here too, we set the length and
width to be powers of 2, denoted by 2n1 and 2n2 .
While dropping edges, we might form a partition with a
length(height) of 1; in such a case, further partitions
are just top-bottom(left-right) with the appropriate
probabilities.

4 Experiments

The questions we wish to answer are:

• [Q1] How does R-MAT compare with existing
generators for undirected graphs?

• [Q2] How does R-MAT compare with existing
generators for directed graphs?

• [Q3] How does R-MAT compare with existing
generators for bipartite graphs?

The datasets we use for our experiments are:
Epinions: A directed graph of who-trusts-whom from
epinions.com [21]: N = 75, 879; E = 508, 960.
Epinions-U: An undirected version of the Epinions

graph: N = 75, 879; E = 811, 602.
Clickstream: A bipartite graph of Internet users’ brows-
ing behavior [16]. An edge (u, p) denotes that user u ac-
cessed page p. It has 23, 396 users, 199, 308 pages and
952, 580 edges.

Apart from degree distributions, we compare the
models on their singular value vs. rank plot, first singu-
lar vectors (network values) vs. rank plots, “hop-plot”
(number of reachable pairs vs. number of hops) and “ef-
fective diameter” [18, 23], and stress distribution [12]
(the stress of an edge is the number of shortest paths
between node pairs that it is a part of). For undirected
graphs, eigenvalues and singular values are equivalent;
for other graphs, eigenvalues may not exist.

We compared R-MAT to the AB [1], GLP [6]
and PG [20] models, chosen for their popularity or
recency. All of these are used to generate undirected
graphs; they have not been used for directed or bipartite
graphs. Thus, we can compare them with R-MAT
only on Epinions-U. Also, we are unaware of any
good parameter-fitting mechanisms for these generators,
so for each generator, we exhaustively find the best
parameter values. We use AB+, PG+ and GLP+ to
stand for the original algorithms augmented by our
parameter fitting.

[Q1] Undirected Graphs: We show results in
Figure 2 for the Epinions-U undirected graph. Notice
that R-MAT is very close to Epinions-U in all cases,
while the competitors are not. Recall that all the
y-scales are logarithmic, so small differences actually
represent large deviations. The “stress distribution”
plot is similar, but is not shown due to lack of space.

[Q2] Directed Graphs: We can see from Figure 3
that the match between R-MAT and the Epinions

dataset is very good. The effective diameter is 4 for both
the real graph and for the R-MAT generated graph. The
other models considered are not applicable.

[Q3] Bipartite Graphs: R-MAT matches the bi-
partite Clickstream dataset very well (Figure 4) includ-

ing the “un-powerlaw-like” outdegree distribution. The
other models are not applicable.



5 Conclusions

The goal of this paper was to create a simple, parsimo-
nious graph model to describe real graphs. Our R-MAT
model is exactly a step in this direction: we illustrate
experimentally that several, diverse real graphs can be
well approximated by an R-MAT model with the appro-
priate choice of parameters. Moreover, we propose a list
of natural tests which hold for a variety of real graphs:
matching the power-law/DGX distribution for the in-
and out-degree; the hop-plot and the diameter of the
graph; the singular value distribution; the values of the
first singular vector (“Google-score”); and the “stress”
distribution over the edges of the graph.

In addition to its realism, our proposed R-MAT
model has the following advantages over previous gen-
erators:
• It matches real graphs for all the tests mentioned

above. This sets it apart from most of the existing
graph generators which typically focus on matching
only a few of the properties.

• The graphs can be generated very quickly (in
O(E log(E) log(N)) time)

• We present AutoMAT-fast, a fast algorithm to fit
the parameters of this model, so that it can mimic
a real graph.

• R-MAT easily subsumes the celebrated Erdős-
Rényi model (a=b=c=d=0.25)

• R-MAT can easily generate realistic weighted
graphs (by setting weight=number of duplicate
edges), directed graphs and bipartite graphs. None
of its competitors can do all the three tasks.

• R-MAT can produce graphs with power-law degree
distributions, but it can also produce graphs with
degree distributions that match the “winner does
not take all” model of [20] - all with just the
appropriate choice of parameters.

• R-MAT automatically generates graphs with the
“communities within communities” property.
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Figure 2: The Epinions-U Undirected Graph: The R-MAT plots gives the best fit to the Epinions-U graph (solid
line) among all the generators.
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Figure 3: The Epinions Directed Graph: The AB+, PG+ and GLP+ methods do not apply. The crosses and
dashed lines represent the R-MAT generated graphs, while the pluses and strong lines represent the real graph.
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Figure 4: The Clickstream Bipartite Graph: The AB+, PG+ and GLP+ methods do not apply. The crosses
and dashed lines represent the R-MAT generated graphs, while the pluses and strong lines represent the real
graph.


