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ABSTRACT

The problem of computing the similarity between two sequences arises in many areas
such as computational biology and natural language processing. A common measure of
the similarity of two strings is their edit-distance, that is the minimal cost of a series
of symbol insertions, deletions, or substitutions transforming one string into the other.
In several applications such as speech recognition or computational biology, the objects
to compare are distributions over strings, i.e., sets of strings representing a range of
alternative hypotheses with their associated weights or probabilities. We define the edit-
distance of two distributions over strings and present algorithms for computing it when
these distributions are given by automata. In the particular case where two sets of
strings are given by unweighted automata, their edit-distance can be computed using
the general algorithm of composition of weighted transducers combined with a single-
source shortest-paths algorithm. In the general case, we show that general weighted
automata algorithms over the appropriate semirings can be used to compute the edit-
distance of two weighted automata exactly. These include classical algorithms such as the
composition and ǫ-removal of weighted transducers and a new and simple synchronization

algorithm for weighted transducers which, combined with ǫ-removal, can be used to
normalize weighted transducers with bounded delays. Our algorithm for computing

the edit-distance of weighted automata can be used to improve the word accuracy of
automatic speech recognition systems. It can also be extended to provide an edit-distance

automaton useful for re-scoring and other post-processing purposes in the context of
large-vocabulary speech recognition.

1. Motivation

The problem of computing the similarity between two sequences arises in many

areas such as computational biology and natural language processing. A common

measure of the similarity of two strings is their edit-distance, that is the minimal

cost of a series of edit operations (symbol insertions, deletions, or substitutions)

transforming one string into the other [25]. This definition was originally given with

all edit operations having the same cost but, in general, the costs can be chosen

arbitrarily, or derived from a corpus by using general machine learning techniques

(e.g., [36]).

Similarity measures such as the edit-distance and its various generalizations can
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be used successfully to compare samples extracted from clean data. But real-world

data is in general more noisy and variable. A set of alternative sequences expected

to contain the true sequence must be considered instead of just one. That brings us

to define and compute the edit-distance of two sets of strings, or two languages.

More generally, in several applications such as speech recognition, computational

biology, handwriting recognition, or topic spotting, the objects to compare may

be sets of strings representing a range of alternative hypotheses with associated

probabilities, or some weights used to rank these hypotheses. Thus, this brings us

to define and compute the edit-distance between two string distributions.

The problem of computing the edit-distance between two strings has been exten-

sively studied. There exists a classical dynamic-programming algorithm for comput-

ing the edit-distance of two strings x1 and x2 in time O(|x1||x2|), where |xi|, i = 1, 2,

denotes the length of the string xi [43]. The algorithm is a special instance of a

single-source shortest-paths algorithm applied to a directed graph expanded dynam-

ically. Esko Ukkonen improved that algorithm by observing that only a restricted

part of that graph needs to be explored for the computation of the edit-distance [41].

The complexity of his algorithm is O(|x1|+ |x2|+d2), where d is the edit-distance of

x1 and x2. Gene Myers later described an other algorithm with the same time com-

plexity [34].a These algorithms are more efficient for strings with an edit-distance d

relatively small with respect to |x1| and |x2|. Recently, Maxime Crochemore et al.

gave a sub-quadratic algorithm for computing the similarity between two sequences

with arbitrary non-negative edit costs in time O((|x1|+ |x2|)2/ log (|x1|+ |x2|)) [9].

There exists a general algorithm for computing the edit-distance of two sets

of strings given by two (unweighted) finite automata based on the composition of

weighted transducers combined with a single-source shortest-paths algorithm [32].

Its complexity is O(|A1| |A2|) where |A1| and |A2| are the sizes of the input automata

A1 and A2. We briefly present that algorithm and point out its generality for deal-

ing with more complex edit-distance models that can be represented by weighted

transducers, including for example transpositions. An important advantage of this

algorithm is that it can be used on-the-fly since the composition algorithm admits

a natural on-the-fly implementation. It can also be combined with a pruning algo-

rithm to restrict the part of the transducer expanded either safely or based on a

heuristic. The classical dynamic programming algorithm for strings can be viewed

as a special instance of this general algorithm. Many of the pruning techniques used

in the case of strings can be extended to the automata case.

The edit-distance of weighted automata can be used to improve the word accu-

racy of automatic speech recognition systems. This was first demonstrated by [40]

in a restricted case where only the N best strings of two automata were compared,

and later by [26] who gave an algorithm for computing an approximation of the edit-

distance and an approximate edit-distance automaton. An alternative approach was

described by [16] who used an A∗ heuristic search of deterministic machines and

various pruning strategies, some based on the time segmentation of automata, to

aWe refer the reader to [10, 17] for general surveys of edit-distance and other text processing
algorithms, in particular related algorithms such as [23, 22, 15].
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compute that edit-distance in the context of speech recognition. However, that

approach does not produce an edit-distance automaton.

We present a general algorithm based on classical and new weighted automata

algorithms for computing exactly the edit-distance between two string distributions

given by two weighted automata. More specifically, our algorithm makes use of the

composition [35, 30] and ǫ-removal of weighted transducers [28], the determinization

of weighted automata [27], and a new and general synchronization algorithm for

weighted transducers which, combined with ǫ-removal, can be used to normalize

weighted transducers with bounded delays.

Other synchronization algorithms were given in the past. A synchronization

procedure was first given by Samuel Eilenberg [13]. The first explicit synchroniza-

tion algorithm was given by Christiane Frougny and Jacques Sakarovitch [14] for

transducers with bounded delay, later extended by Marie-Pierre Béal and Olivier

Carton to transducers with constant emission rate [2]. The algorithm of Frougny

and Sakarovitch applies only to transducers whose transitions have non-empty input

labels. Our synchronization algorithm is simple, is not restricted to these transduc-

ers, and applies more generally to all weighted transducers with bounded delays

defined over a semiring.

Note that the number of hypotheses compactly represented by weighted au-

tomata can be very large in many applications, e.g., in speech recognition applica-

tions, even relatively small automata of a few hundred states and transitions may

contain many more than four billion distinct strings. This makes a straightforward

use of string edit-distance algorithms prohibitive for computing the edit-distance

of weighted automata since the number of pairs of strings can exceed four billion

squared in may cases. The storage and the use of the results of such computations

would also be an issue. Thus, it is crucial to keep the compact automata representa-

tion of the input strings, and provide an algorithm for computing the edit-distance

that takes advantage of that representation. More generally, our algorithm can

be used to provide an exact edit-distance automaton useful for re-scoring and other

post-processing purposes in the context of large-vocabulary speech recognition. Our

algorithm is general and can be used in many other contexts such as computational

biology.

The paper is organized as follows. In Section 2, we introduce the definition

of the edit-distances of two languages, two distributions, or two automata. Sec-

tion 3 introduces the definitions and notation related to semirings and automata

that will be used in the rest of the paper. We then give a brief overview of sev-

eral weighted automata algorithms used to compute the edit-distance of weighted

automata (Section 4), including a full presentation and analysis of a new synchro-

nization algorithm for weighted transducers. Section 5 presents in detail a general

algorithm for computing the edit-distance of two unweighted automata. Finally,

the algorithm for computing the edit-distance of weighted automata, the proof of

its correctness, and the construction of the edit-distance weighted automaton are

given in Section 6.
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2. Edit-distance of languages and distributions

2.1. Edit-distance of strings and languages

Let Σ be a finite alphabet, and let Ω be defined by Ω = Σ∪{ǫ}×Σ∪{ǫ}−{(ǫ, ǫ)}.

An element ω of the free monoid Ω∗ can be viewed as one of Σ∗ × Σ∗ via the con-

catenation: ω = (a1, b1) · · · (an, bn)→ (a1 · · · an, b1 · · · bn). We will denote by h the

corresponding morphism from Ω∗ to Σ∗ ×Σ∗ and write h(ω) = (a1 · · · an, b1 · · · bn).

Definition 1 An alignment ω of two strings x and y over the alphabet Σ is an

element of Ω∗ such that h(ω) = (x, y).

As an example, (a, ǫ)(b, ǫ)(a, b)(ǫ, b) is an alignment of aba and bb:

x = a b a ǫ

y = ǫ ǫ b b

Let c : Ω → R+ be a function associating some non-negative cost to each element

of Ω, that is to each symbol edit operation. For example c((ǫ, a)) can be viewed as

the cost of the insertion of the symbol a. Define the cost of ω ∈ Ω∗ as the sum of

the costs of its constituents: ω = ω0 · · ·ωn ∈ Ω∗: b

c(ω) =

n
∑

i=0

c(ωi) (1)

Definition 2 The edit-distance d(x, y) of two strings x and y over the alphabet Σ

is the minimal cost of a sequence of symbol insertions, deletions, or substitutions

transforming one string into the other:

d(x, y) = min {c(ω) : h(ω) = (x, y)} (2)

In the classical definition of edit-distance, the cost of all edit operations (insertions,

deletions, substitutions) is one [25]:

∀a, b ∈ Σ, c((a, b)) = 1 if (a 6= b) , 0 otherwise (3)

We will denote by c1 this specific edit cost function. The edit-distance then defines

a distance over Σ∗. More generally, the following result holds for symmetric cost

functions.

Proposition 1 Assume that the cost function c is symmetric (c((a, b)) = c((b, a))

for all (a, b) ∈ Ω. Then the edit-distance d defines a distance on Σ∗.

Proof. By definition d(x, x) = 0 for all x ∈ Σ∗. When c is symmetric, d is also

symmetric. The triangular inequality results from the observation that the total

bWe are not dealing here with the question of how such weights or costs could be defined. In
general, they can be derived from a corpus of alignments using various machine learning techniques
such as for example in [36].
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cost of the edit operations for transforming x ∈ Σ∗ into z ∈ Σ∗, then z into y ∈ Σ∗,

must be greater than or equal to d(x, y), the minimal cost of the edit operations for

transforming x into y. 2

The definition of edit-distance can be generalized to measure the similarity of

two languages X and Y .

Definition 3 The edit-distance of two languages X ⊆ Σ∗ and Y ⊆ Σ∗ is denoted

by d(X, Y ) and defined by:

d(X, Y ) = inf {d(x, y) : x ∈ X, y ∈ Y } (4)

This definition is natural since it coincides with the usual definition of the distance

between two subsets of a metric space when c is symmetric. The edit-distance of

two (unweighted) finite automata is defined in a similar way.

Definition 4 Let A1 and A2 be two finite automata and let L(A1) (L(A2)) be the

language accepted by A1 (resp. A2). The edit-distance of A1 and A2 is denoted by

d(A1, A2) and defined by:

d(A1, A2) = d(L(A1), L(A2)) (5)

We can consider in a similar way the edit-distance of languages belonging to

higher-order classes. However that edit-distance cannot always be computed in

general.

Proposition 2 The problem of determining the edit-distance of two context-free

languages is undecidable.

Proof. The edit-distance of two languages can be used to determine if their inter-

section is non-empty by checking if it is zero. But the emptyness problem for the

intersection of context-free languages is known to be undecidable [18]. The result

follows. 2

This result brings us to focus on the edit-distance of regular languages. It does

not have any implication, however, on the problem of determining the edit-distance

of a regular language and a context-free language or a language of higher order,

which may be of interest for various reasons.

2.2. Edit-distance of distributions

In some applications such as speech recognition or computational biology, one

might wish to measure the similarity of a string x with respect to a distribution Y

of strings y with probability P (y). The edit-distance of x to Y can then be defined

by the expected edit-distance of x to the strings y:

d(x, Y ) = EP (y)[d(x, y)] (6)

The edit-distance of two distributions X and Y is defined in a similar way.
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Definition 5 The edit-distance of two distributions over the strings X and Y is

denoted by d(X, Y ) and defined by:

d(X, Y ) = EP (x,y)[d(x, y)] (7)

In most of the applications we are considering, we can assume X and Y to be

independent. We are particularly interested in the case where these distributions

are independent and given by weighted automata, which is typical in the applica-

tions already mentioned. More precisely, the corresponding automata are acyclic

weighted automata.

Definition 6 Let A1 and A2 be two acyclic weighted automata over the probability

semiring and let PA1
and PA2

be the probability laws they define. The edit-distance

of A1 and A2 is denoted by d(A1, A2) and defined by:

d(A1, A2) =
∑

x,y

PA1
(x)PA2

(y) d(x, y) (8)

Since A1 and A2 are acyclic, the sum in the definition runs over a finite set and

the definition is sound. We do no need to restrict ourselves to the case of acyclic

automata however. More generally, we can define the distance d(A1, A2) for all

automata A1 and A2 for which the sum is well-defined. The algorithms presented

in the next sections for the computation of the edit-distance are also general and

do not need to be restricted to the acyclic case.

We will present general algorithms for computing the edit-distance of both un-

weighted and weighted automata. Note that the computation of d(A1, A2) in the

weighted case is not trivial a priori since its definition makes use of the operations

min and + for computing the edit-distance of two strings and + and × to compute

probabilities. This will lead us to use operations over two distinct semirings to

compute d(A1, A2).

Our algorithms for computing the edit-distance of automata are based on some

general weighted automata and transducer algorithms. The next section introduces

the notation and the definitions necessary to describe these algorithms.

3. Preliminaries

As noticed previously, several types of operations are used in the definition of

the edit-distance of weighted automata. These operations belong to different alge-

braic structures, semirings, used in our algorithm.

Definition 7 ([21]) A system (K,⊕,⊗, 0, 1) is a semiring if:

1. (K,⊕, 0) is a commutative monoid with identity element 0;

2. (K,⊗, 1) is a monoid with identity element 1;

3. ⊗ distributes over ⊕;

4. 0 is an annihilator for ⊗: for all a ∈ K, a⊗ 0 = 0⊗ a = 0.
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Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R ∪ {−∞, +∞} ⊕log + +∞ 0
Tropical R ∪ {−∞, +∞} min + +∞ 0

Table 1: Semiring examples. ⊕log is defined by: x⊕log y = − log(e−x + e−y).

Thus, a semiring is a ring that may lack negation. Table 3 shows several examples of

semiring. Some familiar examples are the Boolean semiring B = ({0, 1},∨,∧, 0, 1),

or the real semiring R = (R+, +,×, 0, 1) used to combine probabilities. Two semir-

ings particularly used in the following sections are:

• The log semiring L = (R ∪ {∞},⊕log, +,∞, 0) [29] which is isomorphic to R

via a log morphism with:

∀a, b ∈ R ∪ {∞}, a⊕log b = − log(exp(−a) + exp(−b)) (9)

where by convention: exp(−∞) = 0 and − log(0) =∞.

• The tropical semiring T = (R+∪{∞}, min, +,∞, 0) which is derived from the

log semiring using the Viterbi approximation.

A semiring (K,⊕,⊗, 0, 1) is said to be weakly left divisible if for any x and y in K

such that x ⊕ y 6= 0, there exists at least one z such that x = (x ⊕ y) ⊗ z. We

can then write: z = (x ⊕ y)−1x. Furthermore, we will assume then that z can be

found in a consistent way, that is: ((u ⊗ x) ⊕ (u ⊗ y))−1(u ⊗ x) = (x ⊕ y)−1x for

any x, y, u ∈ K such that u 6= 0. A semiring is zero-sum-free if for any x and y in

K, x⊕ y = 0 implies x = y = 0. Note that the tropical semiring and the log semir-

ing are weakly left divisible since the multiplicative operation, +, admits an inverse.

Definition 8 A weighted finite-state transducer T over a semiring K is an 8-tuple

T = (Σ, ∆, Q, I, F, E, λ, ρ) where:

• Σ is the finite input alphabet of the transducer;

• ∆ is the finite output alphabet;

• Q is a finite set of states;

• I ⊆ Q the set of initial states;

• F ⊆ Q the set of final states;

• E ⊆ Q× (Σ ∪ {ǫ})× (∆ ∪ {ǫ})×K×Q a finite set of transitions;

• λ : I → K the initial weight function; and

• ρ : F → K the final weight function mapping F to K.
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A Weighted automaton A = (Σ, Q, I, F, E, λ, ρ) is defined in a similar way by simply

omitting the output labels.

Given a transition e ∈ E, we denote by i[e] its input label, p[e] its origin or

previous state and n[e] its destination state or next state, w[e] its weight, o[e] its

output label (transducer case). Given a state q ∈ Q, we denote by E[q] the set of

transitions leaving q.

A path π = e1 · · · ek is an element of E∗ with consecutive transitions: n[ei−1] =

p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek] and

p[π] = p[e1]. A cycle π is a path whose origin and destination states coincide:

n[π] = p[π]. We denote by P (q, q′) the set of paths from q to q′ and by P (q, x, q′)

and P (q, x, y, q′) the set of paths from q to q′ with input label x ∈ Σ∗ and output

label y (transducer case). These definitions can be extended to subsets R, R′ ⊆ Q,

by: P (R, x, R′) = ∪q∈R, q′∈R′P (q, x, q′). The labeling functions i (and similarly

o) and the weight function w can also be extended to paths by defining the label

of a path as the concatenation of the labels of its constituent transitions, and the

weight of a path as the ⊗-product of the weights of its constituent transitions:

i[π] = i[e1] · · · i[ek], w[π] = w[e1]⊗· · ·⊗w[ek]. We also extend w to any finite set of

paths Π by setting: w[Π] =
⊕

π∈Π w[π]. An automaton A is regulated if the output

weight associated by A to each input string x ∈ Σ∗:

[[A]](x) =
⊕

π∈P (I,x,F )

λ(p[π]) ⊗ w[π] ⊗ ρ(n[π]) (10)

is well-defined and in K. This condition is always satisfied when A contains no ǫ-

cycle since the sum then runs over a finite number of paths. It is also always satisfied

with k-closed semirings such as the tropical semiring [29]. [[A]](x) is defined to be 0

when P (I, x, F ) = ∅.

Similarly, a transducer T is regulated if the output weight associated by T to

any pair of input-output string (x, y) by:

[[T ]](x, y) =
⊕

π∈P (I,x,y,F )

λ(p[π]) ⊗ w[π] ⊗ ρ(n[π]) (11)

is well-defined and in K. [[T ]](x, y) = 0 when P (I, x, y, F ) = ∅. In the following, we

will assume that all the automata and transducers considered are regulated. We

denote by |M | the sum of the number of states and transitions of an automaton or

transducer M .

A successful path in a weighted automaton or transducer M is a path from an

initial state to a final state. A state q of M is accessible if q can be reached from I.

It is coaccessible if a final state can be reached from q. A weighted automaton M

is trim if there is no transition with weight 0 in M and if all states of M are both

accessible and coaccessible. M is unambiguous if for any string x ∈ Σ∗ there is at

most one successful path labeled with x. Thus, an unambiguous transducer defines

a function.

Note that the second operation of the tropical semiring and the log semiring

as well as their identity elements are identical. Thus the weight of a path in an
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automaton A over the tropical semiring does not change if A is viewed as a weighted

automaton over the log semiring or vice-versa.

4. Weighted automata algorithms

In this section we give a brief overview of some classical and existing weighted

automata algorithms such as composition, determinization, and minimization, and

describe a new and general synchronization algorithm for weighted transducers.

4.1. Composition of weighted transducers

Composition is a fundamental operation on weighted transducers that can be

used in many applications to create complex weighted transducers from simpler

ones. Let K be a commutative semiring and let T1 and T2 be two weighted trans-

ducers defined over K such that the input alphabet of T2 coincides with the output

alphabet of T1. Then, the composition of T1 and T2 is a weighted transducer T1 ◦T2

defined for all x, y by [3, 13, 37, 21]:c

[[T1 ◦ T2]](x, y) =
⊕

z

T1(x, z)⊗ T2(z, y) (12)

There exists a general and efficient composition algorithm for weighted transducers

[35, 30]. States in the composition T1 ◦ T2 of two weighted transducers T1 and T2

are identified with pairs of a state of T1 and a state of T2. Leaving aside transitions

with ǫ inputs or outputs, the following rule specifies how to compute a transition

of T1 ◦ T2 from appropriate transitions of T1 and T2:
d

(q1, a, b, w1, q2) and (q′1, b, c, w2, q
′
2) =⇒ ((q1, q2), a, c, w1 ⊗ w2, (q

′
1, q

′
2)) (13)

In the worst case, all transitions of T1 leaving a state q1 match all those of T2

leaving state q′1, thus the space and time complexity of composition is quadratic:

O((|Q1|+ |E1|)(|Q2|+ |E2|)). Figures 1(a)-(c) illustrate the algorithm when applied

to the transducers of Figures 1(a)-(b) defined over the tropical semiring T = T .

Intersection of weighted automata and composition of finite-state transducers

are both special cases of composition of weighted transducers. Intersection corre-

sponds to the case where input and output labels of transitions are identical and

composition of unweighted transducers is obtained simply by omitting the weights.

Thus, we can use both the notation A = A1 ∩A2 or A1 ◦A2 for the intersection of

two weighted automata A1 and A2. A string x is recognized by A iff it is recognized

by both A1 and A2 and [[A]](x) = [[A1]](x) ⊗ [[A2]](x).

4.2. Determinization of weighted automata

A weighted automaton is said to be deterministic or subsequential [39] if it has a

cNote that we use a matrix notation for the definition of composition as opposed to a functional

notation. This is a deliberate choice motivated in many cases by improved readability.
dSee [35, 30] for a detailed presentation of the algorithm including the use of a transducer filter

for dealing with ǫ-multiplicity in the case of non-idempotent semirings.
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0 1
a:b/0.1
a:b/0.2

2b:b/0.3

3/0.7b:b/0.4

a:b/0.5

a:a/0.6

0 1b:b/0.1

b:a/0.2 2a:b/0.3

3/0.6a:b/0.4

b:a/0.5

(a) (b)

(0, 0) (1, 1)a:b/0.2

(0, 1)a:a/0.4

(2, 1)
b:a/0.5

(3, 1)b:a/0.6

a:a/0.3

a:a/0.7
(3, 2)a:b/0.9

(3, 3)/1.3

a:b/1

(c)

Figure 1: (a) Weighted transducer T1 over the tropical semiring. (b) Weighted
transducer T2 over the tropical semiring. (c) Construction of the result of compo-
sition T1 ◦ T2. Initial states are represented by bold circles, final states by double
circles. Inside each circle, the first number indicates the state number, the second,
at final states only, the value of the final weight function ρ at that state. Arrows
represent transitions and are labeled with symbols followed by their corresponding
weight.

unique initial state and if no two transitions leaving any state share the same input

label.

There exists a natural extension of the classical subset construction to the case

of weighted automata over a weakly left divisible semiring called determinization

[27].e The algorithm is generic: it works with any weakly left divisible semiring.

Figures 2(a)-(b) illustrate the determinization of a weighted automaton over the

tropical semiring. A state r of the output automaton that can be reached from the

start state by a path π corresponds to the set of pairs (q, x) ∈ Q×K such that q can

be reached from an initial state of the original machine by a path σ with l[σ] = l[π]

and λ(p[σ])⊗w[σ] = λ(p[π])⊗w[π]⊗x. Thus, x is the remaining weight at state q.

Unlike the unweighted case, determinization does not halt for some input weighted

automata. In fact, some weighted automata, non subsequentiable automata, do not

even admit equivalent subsequential machines. We say that a weighted automaton

A is determinizable if the determinization algorithm halts for the input A. With a

determinizable input, the algorithm outputs an equivalent subsequential weighted

automaton [27].

There exists a sufficient condition, necessary and sufficient for unambiguous

automata, for the determinizability of weighted automata over a tropical semir-

ing based on a twins property [27]. There exists an efficient algorithm for testing

the twins property for weighted automata [1]. In particular, any acyclic weighted

eWe assume that the weighted automata considered are all such that for any string x ∈ Σ∗,
w[P (I, x, Q)] 6= 0. This condition is always satisfied with trim machines over the tropical semiring
or any zero-sum-free semiring.
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0

2
a/1

b/4

1/0

a/3

b/1

3/0

b/1

b/3

b/3

b/5

{(0,0)}/0

{(1,2),(2,0)}/2
a/1

{(1,0),(2,3)}/0

b/1
{(3,0)}/0

b/1

b/3

(a) (b)

Figure 2: (a) Weighted automaton A over the tropical semiring. (b) Equivalent
subsequential weighted automaton A2 over the tropical semiring constructed by the
determinization algorithm.

automaton has the twins property and is determinizable.

4.3. Synchronization

In this section, we present a general algorithm for the synchronization of weighted

transducers. Roughly speaking, the objective of the algorithm is to synchronize the

consumption of non-ǫ symbols by the input and output tapes of a transducer as

much as possible.

Definition 9 The delay of a path π is defined as the difference of length between

its output and input labels:

d[π] = |o[π]| − |i[π]| (14)

The delay of a path is thus simply the sum of the delays of its constituent tran-

sitions. A trim transducer T is said to have bounded delays if the delay along all

paths of T is bounded. We then denote by d[T ] ≥ 0 the maximum delay in absolute

value of a path in T . The following lemma gives a straightforward characterization

of transducers with bounded delays.

Lemma 1 A transducer T has bounded delays iff the delay of any cycle in T is

zero.

Proof. If T admits a cycle π with non-zero delay, then d[T ] ≥ |d[πn]| = n|d[π]| is

not bounded. Conversely, if all cycles have zero delay, then the maximum delay in

T is that of the simple paths which are of finite number. 2

We define the string delay of a path π as the string σ[π] defined by:

σ[π] =

{

suffix of o[π] of length |d[π]| if d[π] ≥ 0
suffix of i[π] of length |d[π]| otherwise

(15)

and for any state q ∈ Q, the string delay at state q, s[q], by the set of string delays
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of the paths from an initial state to q:

s[q] = {σ[π] : π ∈ P (I, q)} (16)

Lemma 2 If T has bounded delays then the set s[q] is finite for any q ∈ Q.

Proof. The lemma follows immediately the fact that the elements of s[q] are all

of length less than d[T ]. 2

A weighted transducer T is said to be synchronized if along any successful path

of T the delay is zero or varies strictly monotonically. An algorithm that takes as

input a transducer T and computes an equivalent synchronized transducer T ′ is

called a synchronization algorithm. We present a synchronization algorithm that

applies to all weighted transducers with bounded delays. The following is the pseu-

docode of the algorithm.

Synchronization(T )

1 F ′ ← Q′ ← E′ ← ∅

2 S ← i′ ← {(i, ǫ, ǫ) : i ∈ I}

3 while S 6= ∅

4 do p′ = (q, x, y)← head(S); Dequeue(S)

5 if (q ∈ F and |x|+ |y| = 0)

6 then F ′ ← F ′ ∪ {p′}; ρ′(p′)← ρ(q)

7 else if (q ∈ F and |x|+ |y| > 0)

8 then q′ ← (f, cdr (x), cdr (y))

9 E′ ← E′ ∪ (p′, car (x), car (y), ρ[q], q′)

10 if (q′ 6∈ Q′)

11 then Q′ ← Q′ ∪ {q′}; Enqueue(S, q′)

12 for each e ∈ E[q]

13 do if (|x i[e]| > 0 and |y o[e]| > 0)

14 then q′ ← (n[e], cdr(x i[e]), cdr (y o[e]))

15 E′ ← E′ ∪ {(p′, car(x i[e]), car(y o[e]), w[e], q′)}

16 else q′ ← (n[e], x i[e], y o[e])

17 E′ ← E′ ∪ {(p′, ǫ, ǫ, w[e], q′)}

18 if (q′ 6∈ Q′)

19 then Q′ ← Q′ ∪ {q′}; Enqueue(S, q′)

20 return T ′

To simplify the presentation of the algorithm, we augment Q and F with a new

state f and set: ρ[f ] = 1 and E[f ] = ∅. We denote by car(x) the first symbol of

a string x if x is not empty, ǫ otherwise, and denote by cdr(x) the suffix of x such

that x = car (x) cdr (x).

Each state of the resulting transducer T ′ corresponds to a triplet (q, x, y) where

q ∈ Q is a state of the original machine T and where x ∈ Σ∗ and y ∈ ∆∗ are strings

over the input and output alphabet of T .

The algorithm maintains a queue S that contains at any time the set of states of

T ′ to examine. Each time through the loop of the lines 3-19, a new state p′ = (q, x, y)

12
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Figure 3: (a) Weighted transducer T1 over the tropical semiring. (b) Equivalent
synchronized transducer T2. (c) Synchronized weighted transducer T3 equivalent to
T1 and T2 obtained by ǫ-removal from T2.

is extracted from S (line 4) and its outgoing transitions are computed and added to

E′. The state p′ is final iff q is final and x = y = ǫ and in that case the final weight

at p′ is simply the final weight at the original state q (lines 5-6). If q is final but

the string x and y are not both empty, then the algorithm constructs a sequence of

transitions from p′ to (f, ǫ, ǫ) to consume the remaining input and output strings x

and y (lines 7-11).

For each transition e of q, an outgoing transition e′ is created for p′ with weight

w[e]. The input and output labels of e′ are both ǫ if x i[e] or y o[e] is the empty

string, the first symbol of these strings otherwise. The remaining suffixes of these

strings are stored in the destination state q′ (lines 12-19). Note that in all cases, the

transitions created by the steps of the algorithm described in lines 14-17 have zero

delay. The state q′ is inserted in S if it has never been found before (line 18-19).

Figures 3(a)-(b) illustrate the synchronization algorithm just presented.

Lemma 3 Let (q, x, y) correspond to a state of T ′ created by the algorithm. Then,

either x = ǫ or y = ǫ.

Proof. Let p′ = (q, x, y) be a state extracted from S, it is not hard to verify that

if x = ǫ or y = ǫ, then the destination state of a transition leaving p′ created by the

algorithm is of the form q′ = (r, ǫ, y′) or q′ = (r, x′, ǫ). Since the algorithm starts

with the states (i, ǫ, ǫ), i ∈ I, by induction, for any state p′ = (q, x, y) created either

x = ǫ or y = ǫ. 2

Lemma 4 Let π′ be a path in T ′ created by the synchronization algorithm such that

n[π′] corresponds to (q′, x′, y′) with q′ 6= f . Then, the delay of π′ is zero.

Proof. By construction, the delay of each transition created at lines 14-17 is zero.

Since the delay of a path is the sum of the delays of its transitions, this proves the

lemma. 2
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Lemma 5 Let (q′, x′, y′) correspond to a state of T ′ created by the algorithm with

q′ 6= f . Then, either x′ ∈ s[q′] or y′ ∈ s[q′].

Proof. By induction on the length of π′, it is easy to prove that there is a path

π′ from state (q, x, y) to (q′, x′, y′) iff there is a path from q to q′ with input label

x−1i[π′]x′, output label y−1o[π′]y′, and weight w[π′].

Thus, the algorithm constructs a path π′ in T ′ from (i, ǫ, ǫ), i ∈ I, to (q′, x′, y′),

q′ 6= f iff there exists a path π in T from i to q′ with input label i[π] = i[π′]x′,

output label o[π] = o[π′]y′ and weight w[π] = w[π′]. By lemma 4, |i[π′]| = |o[π′]|.

Thus, if x′ = ǫ, y′ is the string delay of π. Similarly, if y′ = ǫ, x′ is the string delay

of π. By lemma 3, x′ = ǫ or y′ = ǫ, thus y′ ∈ s[q] or x′ ∈ s[q]. 2

The following theorem proves the correctness and termination of the algorithm.

Theorem 1 The synchronization algorithm presented terminates with any input

weighted transducer T with bounded delays and produces an equivalent synchronized

transducer T ′.

Proof. By lemmas 4 and 5, if (q′, x′, y′) is a state created by the algorithm with

q′ 6= f , then either x′ = ǫ and y′ ∈ s[q] or y′ = ǫ and x′ ∈ s[q]. If T has bounded

delays, by lemma 2 s[q] is finite, thus the algorithm produces a finite number of

states of the form (q′, x′, y′) with q′ 6= f .

Let (q, x, ǫ) be a state created by the algorithm with q ∈ F and |x| > 0. x =

x1 · · ·xn is thus a string delay at q. The algorithm constructs a path from (q, x, ǫ)

to (f, ǫ, ǫ) with intermediate states (f, xi · · ·xn, ǫ). Since string delays are bounded,

at most a finite number of such states are created by the algorithm. A similar result

holds for states (q, ǫ, y) with q ∈ F and |y| > 0. Thus, the algorithm produces a

finite number of states and terminates if T has bounded delays.

By lemma 4, paths π′ in T ′ with destination state (q, x, y) with q 6= f have zero

delay and the delay of a path from a state (f, x, y) to (f, ǫ, ǫ) is strictly monotonic.

Thus, the output of the algorithm is a synchronized transducer. This ends the proof

of the theorem. 2

The algorithm creates a distinct state (q, x, ǫ) or (q, ǫ, y) for each string delay

x, y ∈ s[q] at state q 6= f . The paths from a state (q, x, ǫ) or (q, ǫ, y), q ∈ F , to

(f, ǫ, ǫ) are of length |x| or |y|. The length of a string delay is bounded by d[T ].

Thus, there are at most |Σ|≤d[T ] + |∆|≤d[T ] = O(|Σ|d[T ] + |∆|d[T ]) distinct string

delays at each state. Thus, in the worst case, the size of the resulting transducer

T ′ is:

O((|Q|+ |E|)(|Σ|d[T ] + |∆|d[T ])) (17)

The string delays can be represented in a compact and efficient way using a suffix

tree. Indeed, let U be a tree representing all the input and output labels of the

paths in T found in a depth-first search of T . The size of U is linear in that of T

and a suffix tree V of U can be built in time proportional to the number of nodes of

U times the size of the alphabet [20], that is in O((|Σ|+ |∆|)·(|Q|+ |E|)). Since each

string delay x is a suffix of a string represented by U , it can be represented by two

nodes n1 and n2 of V and a position in the string labeling the edge from n1 to n2.

The operations performed by the algorithm to construct a new transition require
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either computing xa or a−1x where a is a symbol of the input or output alphabet.

Clearly, these operations can be performed in constant time: xa is obtained by

going down one position in the suffix tree, and a−1x by using the suffix link at node

n1. Thus, using this representation, the operations performed for the construction

of each new transition can be done in constant time. This includes the cost of

comparison of a newly created state (q′, x′, ǫ) with an existing state (q, x, ǫ), since

the comparison of the string delays x and x′ can be done in constant time. Thus,

the worst case space and time complexity of the algorithm is:

O((|Q|+ |E|)(|Σ|d[T ] + |∆|d[T ])) (18)

This is not a tight evaluation of the complexity since it is not clear if the worst

case previously described can ever occur, but the algorithm can indeed produce an

exponentially larger transducer in some cases.

Note that the algorithm does not depend on the queue discipline used for S

and that the construction of the transitions leaving a state p′ = (q, x, y) of T ′ only

depends on p′ and not on the states and transitions previously constructed. Thus,

the transitions of T ′ can be naturally computed on-demand. We have precisely given

an on-the-fly implementation of the algorithm and incorporated it in a general-

purpose finite-state machine library (FSM library) [32, 31]. Note also that the

additive and multiplicative operations of the semiring are not used in the definition

of the algorithm. Only 1, the identity element of ⊗, was used for the definition

of the final weight of f . Thus, to a large extent, the algorithm is independent of

the semiring K. In particular, the behavior of the algorithm is identical for two

semirings having the same identity elements, such as for example the tropical and

log semirings.

4.4. ǫ-Removal

The result of the synchronization algorithm may contain ǫ-transitions (transi-

tions with both input and output empty string) even if the input contains none.

An equivalent weighted transducer with no ǫ-transitions can be computed from T ′

using a general ǫ-removal algorithm [28]. Figure 3(c) illustrates the result of that

algorithm when applied to the synchronized transducer of Figure 3(b).

Since ǫ-removal does not shift input and output labels with respect to each other,

the result of its application to T ′ is also a synchronized transducer.

Note that the synchronization algorithm does not produce any ǫ-cycle if the

original machine T does not contain any. Thus, in that case, the computation of

the ǫ-closures in T can be done in linear time [28] and the total time complexity

of ǫ-removal is O(|Q′|2 + (T⊕ + T⊗)|Q′| · |E′|), where T⊕ and T⊗ denote the cost

of the ⊕, ⊗ operations in the semiring K. Also, on-the-fly synchronization can be

combined with on-the-fly ǫ-removal to directly create synchronized transducers with

no ǫ-transition on-the-fly.

A by-product of the application of synchronization followed by ǫ-removal is that

the resulting transducer is normalized.
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Definition 10 Let π and π′ be two paths of a transducer T with the same input

and output labels: i[π] = i[π′] and o[π] = o[π′]. We say that π = e1 · · · en and

π′ = e′1 · · · e
′
n′ are identical if they have the same number of transitions (n = n′)

with the same labels: i[ek] = i[e′k] and o[ek] = o[e′k] for k = 1, . . . , n. T is said to

be normalized if any two paths π and π′ with the same input and output labels are

identical.

Note that the definition does not require the weights of two identical paths to be

the same.

Lemma 6 Let T be a synchronized transducer and assume that T has no ǫ-transition.

Then, T is normalized.

Proof. Let π and π′ be two paths with the same input and output labels. Since

T is synchronized and has no ǫ-transition, π and π′ have the same delay. More

precisely, the delay varies in the same way along these two paths, thus they are

identical. 2

5. General algorithm for computing the edit-distance of two unweighted

automata

The edit-distance d(X, Y ) of two sets of strings X and Y each represented by an

unweighted automaton can be computed using the general algorithm of composition

of transducers and a single-source shortest-paths algorithm [32]. The algorithm

applies similarly in the case of an arbitrarily complex edit-distance defined by a

weighted transducer over the tropical semiring.

Let A1 and A2 be two (unweighted) automata representing the sets X and Y .

By definition, the edit-distance of X and Y , or equivalently that of A1 and A2, is

defined by:

d(A1, A2) = inf {d(x, y) : x ∈ Dom(A1), y ∈ Dom(A2)} (19)

5.1. Alignment costs in the tropical semiring

Let Ψ be the formal power series defined over the alphabet Ω and the tropical

semiring by: (Ψ, (a, b)) = c((a, b)) for (a, b) ∈ Ω.

Lemma 7 Let ω = (a0, b0) · · · (an, bn) ∈ Ω∗ be an alignment, then (Ψ∗, ω) is exactly

the cost of the alignment ω.

Proof. By definition of the +-multiplication of power series in the tropical semir-

ing:

(Ψ∗, ω) = min
u0···uk=ω

(Ψ, u0) + · · ·+ (Ψ, uk) (20)

= (Ψ, (a0, b0)) + · · ·+ (Ψ, (an, bn)) (21)

=

n
∑

i=0

c((ai, bi)) = c(ω) (22)
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Figure 4: (a) Weighted transducer T over the tropical semiring representing Ψ∗

with the edit cost function c1 and Σ = {a, b}. (b) Weighted transducer T1 over
the tropical semiring. (c) Weighted transducer T2 over the tropical semiring, with
[[T ]] = [[T1 ◦ T2]].

This proves the lemma. 2

Ψ∗ is a rational power series as the closure of the polynomial power series Ψ [37,

4]. Thus, by the theorem of Schützenberger [38], there exists a weighted automaton

A defined over the alphabet Ω and the semiring T realizing Ψ∗. A can also be

viewed as a weighted transducer T with input and output alphabets Σ. Figure 4(a)

shows the simple finite-state transducer T realizing Ψ∗ in the particular case of the

edit cost function c1 and with Σ = {a, b}.

5.2. Algorithm

By definition of composition of transducers and by lemma 7, the weighted trans-

ducer A1 ◦ T ◦A2 contains a successful path corresponding to each alignment ω of

a string accepted by A1 and a string accepted by A2 and the weight of that path is

c(ω).

Theorem 2 Let U be the weighted transducer over the tropical semiring obtained

by: U = A1 ◦T ◦A2. Let π be a shortest path of U from the initial state to the final

states. Then, π is labeled with one of the best alignments of a string accepted by A1

and a string accepted by A2 and: d(A1, A2) = w[π].

Proof. The result follows directly the previous remark. 2

The theorem provides an algorithm for computing the best alignment between

the strings of two unweighted automata A1 and A2 and for computing their edit-

distance d(A1, A2). Any single-source shortest-paths algorithm applied to U can be

used to compute the edit-distance and a best alignment. Note that this computation

can be done on-the-fly since composition admits a natural on-the-fly implementa-
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tion.

Clearly, |T | is quadratic in the size of the alphabet: |T | = O(|Σ|2), thus the

total complexity of the compositions needed to compute U is: O(|Σ|2|A1||A2|). As

we will see later, this can be reduced to just |U | = O(|A1||A2|) with an appropriate

factoring of the transducer T and order of application of composition.

When U is acyclic, as in the case where A1 and A2 are both acyclic, the total

time complexity of the computation of the best alignment and the edit-distance

d(A1, A2) is O(|A1||A2|) since we can then use Lawler’s linear-time single-source

shortest paths algorithm [24, 6]. In the general case, the total complexity of the

algorithm is O(|E|+ |Q| log |Q|), where E denotes the set of transitions and Q the

set of states of U , using Dijkstra’s algorithm implemented with Fibonacci heaps

[11, 6].

In particular, the time complexity of the computation of the edit-distance for

two strings x and y is O(|x||y|). The classical dynamic programming algorithm for

computing the edit-distance of two strings can in fact be viewed as a special instance

of the more general algorithm just presented. Many of the pruning strategies used

in the string case can be adapted to the general case of automata.

In practice, it is often beneficial to factor the edit-distance transducer T into two

transducers T1 and T2 such that T1 ◦ T2 is equivalent to T . Figures 4(b)-(c) show

an example of a factoring of T . The symbol s can be interpreted as representing

substitutions and deletions, the symbol i insertions. Similarly, a symmetric factoring

using three distinct symbols, s, i, and d, representing substitutions, insertions, and

deletions can be defined, but the total size of that symmetric factoring is slightly

more than the factoring given by Figures 4(b)-(c).

When the alphabet size |Σ| is large, this provides a more compact representation

of T since the size of T is in O(|Σ|2) while that of T1 and T2 are linear (O(|Σ|)). We

can further reduce the alphabet of Ti, i = 1, 2, by restricting it to just those symbols

appearing in Ai. A simple way to do that is to give an on-demand representation

of Ti, i = 1, 2. A transition of Ti is expanded only when needed during composition

with Ai. In this way, the time complexity of computation of the transducer A1 ◦T1

as well as the size of that transducer are linear in |A1| since each transition of A1

labeled with a leads just to a transition labeled with (a : a) and a transition labeled

with (a : s) in the composed machine, with a transition labeled with (ǫ : i) at each

state. Similarly, the time and space complexity of the computation of T2 ◦A2 is in

O(|A2|). Thus, if we compose the transducers obtained after factoring of T in the

order corresponding to the parentheses below:

(A1 ◦ T1) ◦ (T2 ◦A2) (23)

with an on-demand implementation of T1 and T2, the time and space complexity of

the algorithm is in O(|A1||A2|).

This algorithm is very general. It extends to the case of automata the classical

edit-distance computation and it also generalizes the classical definition of edit-

distance. Indeed, any weighted transducer with non-negative weights can be used
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here without modifying the algorithm.f Edit-distance transducers with arbitrary

topologies, arbitrary number of states and transitions can be used instead of the

specific one-state edit-distance transducer used in most applications. More gen-

eral transducers assigning non-negative costs to transpositions or to more general

weighted context-dependent rules [33] can be used to model complex edit-distances.

6. General algorithm for computing the edit-distance of two weighted

automata

Our algorithm is based on weighted composition, determinization, ǫ-removal,

and synchronization. For numerical stability, in most applications, − log proba-

bilities are used rather than probabilities. Thus, in this section we will consider

automata over the log semiring. Let A1 and A2 be two acyclic weighted automata

over the log semiring L defined over the same alphabet Σ. Recall from definition 6

that their edit-distance is given by:

d(A1, A2) =
∑

x,y

exp(−[[A1]](x) − [[A2]](y))d(x, y) (24)

=
∑

x,y

exp {−([[A1]](x) + [[A2]](y)− log d(x, y))} (25)

= exp(−
⊕

log
x,y

([[A1]](x) + [[A2]](y)− log d(x, y))) (26)

We will present an algorithm for computing -log of that edit-distance:

− log(d(A1, A2)) =
⊕

log
x,y

[[A1]](x) + [[A2]](y)− log d(x, y) (27)

We first show that the cost of the alignment of two strings can be computed using

a simple weighted transducer over the log semiring.

6.1. Alignment costs in the log semiring

Let Ψ be the formal power series defined over the alphabet Ω and the log semiring

by: (Ψ, (a, b)) = − log(c((a, b))) for (a, b) ∈ Ω, and let S be the formal power series

S over the log semiring defined by:

S = Ω∗ + Ψ + Ω∗ (28)

S is a rational power series as a +-product and closure of the polynomial power

series Ω and Ψ [37, 4]. Thus, by the theorem of Schützenberger [38], there exists a

weighted automaton A defined over the alphabet Ω and the semiring L realizing S.

A can also be viewed as a weighted transducer T with input and output alphabets

Σ. Figure 5 shows the simple finite-state transducer T realizing S in the particular

case of the edit cost function c1 and with Σ = {a, b}.

fTransducers with negative weights can be used as well if they do not lead to negative cycles
in U , but the single-source shortest-paths problems of Bellman-Ford would need to be used then
in general, which can make the algorithm less efficient in general.
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Figure 5: Weighted transducer over the log semiring representing S with the edit
cost function c1 and Σ = {a, b}. The transition weights and the final weight at state
1 are all equal to 0, since − log(c1(x, y)) = 0 for x 6= y.

Lemma 8 Let ω = (a0, b0) · · · (an, bn) ∈ Ω∗ be an alignment, then (S, ω) is equal

to -log of the cost of ω.

Proof. By definition of the +-multiplication of power series in the log semiring:

(S, ω) =
⊕

log

u (ai,bi) v=ω

(Ω∗, u) + (Ψ, (ai, bi)) + (Ω∗, v) (29)

=

n
⊕

log
i=0

− log(c((ai, bi))) = − log(

n
∑

i=0

c((ai, bi))) = − log c(ω) (30)

This proves the lemma. 2

The lemma is a special instance of a more general property that can be easily

proved in the same way: given an alphabet Σ and a rational set X ⊆ Σ∗, the power

series Σ∗ + X + Σ∗ over the log semiring is rational and associates to each string

x ∈ Σ∗ -log of the number of occurrences of an element of X in x.

6.2. Algorithm

Let A1 and A2 be two acyclic weighted automata defined over the alphabet Σ

and the log semiring L, and let T be the weighted transducer over the log semiring

associated to S.

Let M = A1 ◦ T ◦ A2. M can be viewed as a weighted automaton over the

alphabet Ω.
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Lemma 9 Let ω ∈ Ω∗ be an alignment such that h(w) = (x, y) with x ∈ Dom(A1)

and y ∈ Dom(A2), then:

[[M ]](w) = − log c(ω) + [[A1]](x) + [[A2]](x) (31)

Proof. By definition of composition, [[M ]](w) represents the value associated

by S to the alignment ω with weight W = [[A1]](x) + [[A2]](x). By lemma 8 and

the definition of power series, S associates to an alignment ω with weight W the

following: − log c(ω) + W . 2

The transducer of Figure 5 can be factored into two transducers T1 and T2

in a way similar to what was described for the edit-distance of Figure 4(a) by

introducing auxiliary symbols such as s and i representing substitutions, deletions,

and insertions, and the remarks made about that factoring and the computation of

the composed machine apply similarly to this transducer.

The automaton M may contain several paths labeled with the same alignment

ω. M is acyclic as the result of the composition of T with acyclic automata, thus

it can be determinized. Denote by detL(M) the result of that determinization in

the log semiring. By definition of determinization, detL(M) is equivalent to M but

contains exactly one path for each alignment ω between two strings x ∈ Dom(A1)

and y ∈ Dom(A2).

We need to keep for each pair of strings x and y only one path, the one corre-

sponding to the alignment ω of x and y with the minimal cost c(ω) or equivalently

maximal [[M ]](w). We will use determinization in the tropical semiring, detT , to do

so. However, to apply this algorithm we first need to ensure that the transducer

is normalized so that paths corresponding to different alignments ω but with the

same h(ω) be merged by the automata determinization detT . By lemma 6, one way

to normalize the automaton consists of using the synchronization algorithm, synch,

followed by ǫ-removal in the log semiring, rmǫL.

Theorem 3 Let N be the deterministic weighted automaton defined by:

N = − det
T

(− rmǫ
L

(synch(det
L

(A1 ◦ T ◦A2)))) (32)

Then for any x ∈ Dom(A1) and y ∈ Dom(A2):

[[N ]](x, y) = [[A1]](x) + [[A2]](y)− log d(x, y) (33)

Proof. Let ω ∈ Ω∗ be an alignment such that h(w) = (x, y) with x ∈ Dom(A1)

and y ∈ Dom(A2), then, by lemma 8:

rmǫ
L

(synch(det
L

(A1 ◦ T ◦A2)))(ω) = [[A1]](x) + [[A2]](y)− log c(ω) (34)

Since rmǫL(synch(detL(A1◦T ◦A2))) is normalized, by definition of determinization

in the tropical semiring, for any x ∈ Dom(A1) and y ∈ Dom(A2):

[[N ]](x, y) = max
h(ω)=(x,y)

[[A1]](x) + [[A2]](y)− log c(ω) (35)

= [[A1]](x) + [[A2]](y)− log d(x, y) (36)
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Since N is deterministic when viewed as a weighted automaton, the shortest

distance from the initial state i to the final states F in the log semiring is exactly

what we intended to compute:
⊕

π∈P (i,F )

w[π] =
⊕

log
x,y

[[A1]](x) + [[A2]](y)− log d(x, y) = − log(d(A1, A2)) (37)

This shortest distance can be computed in linear time using a generalization of the

classical single-source shortest paths algorithm for acyclic graphs [29]. Thus, the

theorem shows that the edit-distance of two automata A1 and A2 can be computed

exactly using general weighted automata algorithms. Note that all the algorithms

used, determinization, synchronization, ǫ-removal, admit an on-the-fly implementa-

tion. Thus N can be computed on-the-fly.

The worst case complexity of the algorithm is exponential but in practice several

techniques can be used to improve its efficiency. First, a heuristic pruning can be

used to reduce the size of the original automata A1 and A2 or that of intermediate

automata and transducers in the algorithm described. Additionally, weighted min-

imization in the tropical and log semirings [27] can be used to optimally reduce the

size of the automata after each determinization. Finally, the automaton A is not

determinizable in the log semiring but it can be approximated by a deterministic

one for example by limiting the number of insertions, deletions or substitutions to

some large but fixed number or by using ǫ-determinization [27]. The advantage of

a deterministic A is that it is unambiguous and thus it leads to an unambiguous

machine M in the sense that no two paths of M correspond to the same alignment.

Thus, it is not necessary to apply determinization in the log semiring, detL, to M .

6.3. Edit-distance weighted automaton

In some applications such as speech recognition, one might wish to compute

not just the edit-distance of A1 and A2 but an automaton A3 accepting exactly

the same strings as A1 and such that the weight associated to x ∈ Dom(A3) is

-log of the expected edit-distance of x to A2: [[A3]](x) = − log d(x, A2). In such

cases, the automaton A1 is typically assumed to be unweighted: [[A1]](x) = 0 for all

x ∈ Dom(A1).

More precisely, A2 is then the weighted automaton, or word lattice, output of

the recognizer, and the weight of each sentence is -log of the probability of that

sentence given the acoustic information. However, the word-accuracy of a speech

recognizer is measured by computing the edit-distance of the sentence output of

the recognizer and the reference sentence [40, 26]. This motivates the algorithm

presented in this section. Assuming that all candidate sentences are represented by

some automaton A1 (A1 could represent all possible sentences for example or just

the sentences accepted by A2), one wishes to determine for each sentence in A1 its

expected edit-distance to A2 and thus to compute A3.

Let proj1 be the operation that creates an acceptor from a weighted transducer

by removing its output labels. The following theorem gives the algorithm for com-
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puting A3 based on classical weighted automata algorithms.

Theorem 4 Let A1 be an unweighted automaton and A2 an acyclic weighted au-

tomaton over the log semiring. Then the edit-distance automaton A3 can be com-

puted as follows from N :

A3 = det
L

(proj
1

(N)) (38)

Proof. Since A1 is unweighted, by theorem 3, for any x ∈ Dom(A1) and y ∈

Dom(A2):

[[N ]](x, y) = [[A2]](y)− log d(x, y) (39)

To construct A3 we can omit the output labels of N . proj1(N) may have several

paths labeled with the same input x. If we apply weighted determinization in the

log semiring to it, then, by definition, the weight of a path labeled with x will be

exactly:
⊕

log

y∈Dom(A2)

[[A2]](y)− log d(x, y) = − log[
∑

y∈Dom(A2)

exp(−[[A2]](y) + log d(x, y))]

= − log[
∑

y∈Dom(A2)

exp(−[[A2]](y))d(x, y)] (40)

= − log d(x, A2) (41)

This proves the theorem. 2

Note that A3, just like N , can be computed on-the-fly, since projection and

determinization admit natural on-the-fly implementations.

The weighted automaton A3 can be further minimized using weighted minimiza-

tion to reduce its number of states and transitions [27].

In the log semiring, the weight associated to an alignment with cost zero is

∞ = − log 0. Thus, paths corresponding to the best alignments would simply not

appear in the result. To avoid this effect, one can assign an arbitrary large cost to

perfect alignments.

In speech recognition, using a sentence with the lowest expected word error rate

instead of one with the highest probability can lead to a significant improvement

of the word accuracy of the system [40, 26]. That sentence is simply the label of

a shortest path in A3 and can therefore be obtained from A3 efficiently using a

classical single-source shortest-paths algorithm.

Speech recognition systems often use a re-scoring method. This consists of first

using a simple acoustic and grammar model to produce a word lattice or n-best list,

and then to reevaluate these alternative hypotheses with a more sophisticated model

or by using information sources of a different nature. The weighted automaton or

word lattice A3 can be used advantageously for such re-scoring purposes.

7. Conclusion

We presented general algorithms for computing the edit-distance of unweighted

and weighted automata. These algorithms are based on general and efficient weighted
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automata algorithms over different semirings and classical single-source shortest-

paths algorithms. They demonstrate the power of automata theory and semiring

theory and provide a complex example of the use of multiple semirings in a single

application.

The algorithms presented have applications in many areas such as text process-

ing and computational biology. They can lead to significant improvements of the

word accuracy in large-vocabulary speech recognition as shown by several experi-

ments [40, 26, 16]. They can also be used to compute kernels for classification using

statistical learning techniques such as Support Vector Machines (SVMs) [5, 8, 42, 7]

such as the string kernels used to analyze biological sequences [19, 44, 12].
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