whh348 — 1

The Boyer-Moore Majority Vote Algorithm
with a majority of voting rabbits
Wim H. Hesselink, 7th November 2005

The majority vote problem is to determine in any given sequence of votes
whether there is a candidate with more votes than all the others, and if so, to
determine this candidate. The Boyer-Moore majority vote algorithm solves the
problem in time linear in the length of the sequence and constant memory.

It does so in two repetitions. The first repetition eliminates all candidates but
one. The second repetition verifies whether or not the remaining candidate holds
a majority. Given the postcondition of the first repetition, it is easy to implement
the second repetition, and to verify its correctness.

The first repetition is more interesting. In this note we therefore try to develop
the first repetition from its postcondition. We model the sequence of votes by an
array a, and the candidate to be chosen by a variable p, according to the following
declaration.

const n : Nat ;
a: array [0...n) of Candidate ;
var p : Candidate .

The postcondition of the first repetition is that every candidate other than p does
not hold a majority:

Q: (Vqg:q#p = #ilalil=q}<35-n).

In order to establish this postcondition, it is natural to inspect the elements of array
a one by one, and to introduce a loop variable

var k : Nat .

We now define votes(k,q) = #{i | ¢ < k A a[i] = q}. Then we have
Q = (Vqg:q#p = 2-votes(n,q) <n) .

This suggests the generalization
P: (Vq:q#p = 2-votes(k,q) <k).

It is clear that @ follows from P A k = n. On the other hand, P holds trivially for
k =0. When P holds and testing yields a[k] = p, we can increment k and sharpen
the majority estimates since the values votes(k, ¢) remain unchanged for ¢ # p. We
therefore introduce a variable s to indicate the sharpening:

var s: Int .
The sharpening is expressed in the proposed invariant
JO: s>0 AN EkE<n A (Vqg:q#p = s+2-votes(k,q) <k).

We now choose B : k # n as guard of the repetition to be developed. It is easy to
verify that [JOA-B = Q).

In the following analysis, we use the terms incrementation and decrementation
to mean incrementation and decrementation with 1.

When JO A k # n holds and a[k] = p, then JO is preserved when s and k are
incremented. When JOAE # n holds and s > 0 (and a[k] # p), then JO is preserved
when k is incremented and s is decremented. When JO A k # n holds and a[k] # p



whh348 — 2

and s = 0, however, we seem to have to switch to a different favorite candidate, i.e.,
to modify p. Preservation of JO under modification of p requires an upperbound for
the number of votes for the old value of p. It is the intention that the number of
such votes increases with s and k. In this way, we come to the additional invariant

J1: 2-votes(k,p) <s+k.

When J1 Ak < n holds (and alk] = p), then J1 is preserved when s and k are
incremented. When J1 A k < n holds and alk] # p and s > 0, then J1 is preserved
when £ is incremented and s is decremented.

For the remaining case, we observe that JOA J1 A s = 0 is equivalent to

s=0 A k<n A (Vq: 2 votes(k,q) <k).

It is therefore preserved under arbitrary assignments to p, in particular under the
assignment p := a[k]. In that way the troublesome remaining case can be avoided.
We thus get the loop body

S: if s=0 then p:=alk] end;
{JOANJL AN B A (s>0V alk]=p)}
if p=alk] then s:=s+1 else s:=s—1 end;
k:=k+1.

The arguments given above show that S satisfies the Hoare triple
{JOANJIAB} S {JOAJL1}.

The variant function vf = n — k remains nonnegative because of J0. It clearly
decreases under command S. This proves that postcondition @ is established by

k:=0; s:=0;
while k£ #n do S end.

Remark. If the program terminates with the final value s = 0, clearly no candidate
holds a majority. If s > % -n in the postcondition, then p holds a majority. To prove
this, however, we need the additional (but obvious) invariant s < votes(k, p).



