
Stack Size Analysis for

Interrupt-driven Programs 1

Krishnendu Chatterjee a Di Ma c Rupak Majumdar e

Tian Zhao d Thomas A. Henzinger a,b Jens Palsberg e,∗

aDepartment of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720, USA

{c krish,tah}@eecs.berkeley.edu
bSchool of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne, Switzerland
cDepartment of Computer Science

Purdue University, West Lafayette, IN 47907, USA
madi@cs.purdue.edu

dDepartment of Computer Science
University of Wisconsin, Milwaukee, WI 53211, USA

tzhao@cs.uwm.edu
eDepartment of Computer Science

University of California, Los Angeles, CA 90095, USA
{rupak,palsberg}@cs.ucla.edu

Abstract

We study the problem of determining stack boundedness and the exact maximum
stack size for three classes of interrupt-driven programs. Interrupt-driven programs
are used in many real-time applications that require responsive interrupt handling.
In order to ensure responsiveness, programmers often enable interrupt processing in
the body of lower-priority interrupt handlers. In such programs a programming error
can allow interrupt handlers to be interrupted in a cyclic fashion to lead to an un-
bounded stack, causing the system to crash. For a restricted class of interrupt-driven
programs, we show that there is a polynomial-time procedure to check stack bound-
edness, while determining the exact maximum stack size is PSPACE-complete. For
a larger class of programs, the two problems are both PSPACE-complete, and for
the largest class of programs we consider, the two problems are PSPACE-hard and
can be solved in exponential time. While the complexities are high, our algorithms
are exponential only in the number of handlers, and polynomial in the size of the
program.

Key words: Program analysis, stack bounds, interrupt programs.

Preprint submitted to Elsevier Science 27 April 2004

1 Introduction

Most embedded software runs on resource-constrained processors, often for
economic reasons. Once the processor, RAM, etc. have been chosen for an
embedded system, the programmer has to fit everything into the available
space. For example, on a Z86 processor, the stack exists in the 256 bytes of
register space, and it is crucial that the program does not overflow the stack,
corrupting other data. Estimating the stack size used by a program is therefore
of paramount interest to the correct operation of these systems. A tight upper
bound is necessary to check if the program fits into the available memory,
and to prevent precious system resources (e.g., registers) from being allocated
unnecessarily.

Stack size analysis is particularly challenging for interrupt-driven software.
Interrupt-driven software is often used in embedded real-time applications
that require fast response to external events. Such programs usually have a
fixed number of external interrupt sources, and for each interrupt source, a
handler that services the interrupt. When an external interrupt occurs, control
is transferred automatically to the corresponding handler if interrupt process-
ing is enabled. To maintain fast response, interrupts should be enabled most of
the time, in particular, higher-priority interrupts are enabled in lower-priority
handlers. Interrupt handling uses stack space: when a handler is called, a re-
turn address is placed on the stack, and if the handler itself gets interrupted,
then another return address is placed on the stack, and so on. A programming
error occurs when the interrupt handlers can interrupt each other indefinitely,
leading to an unbounded stack. Moreover, since stack boundedness violations
may occur only for particular interrupt sequences, these errors are difficult
to replicate and debug, and standard testing is often inadequate. Therefore,
algorithms that statically check for stack boundedness and automatically pro-
vide precise bounds on the maximum stack size will be important development
tools for interrupt-driven systems.

In this paper, we provide algorithms for the following two problems (defined
formally in Section 2.3) for a large class of interrupt-driven programs:

• Stack boundedness problem. Given an interrupt-driven program, the
stack boundedness problem asks if the stack size is bounded by a finite
constant. More precisely, given a program p, the stack boundedness problem
returns “yes” if there exists a finite integer K such that on all executions of

∗
A preliminary version of this paper appeared in the Proceedings of the Static Anal-

ysis Symposium (SAS 2003), Lecture Notes in Computer Science 2694, Springer-
Verlag, pages 109–126, 2003.
∗ Corresponding Author

2

the program p, the stack size never grows beyond K, and “no” if no such
K exists.
• Exact maximum stack size problem. Given an interrupt-driven pro-

gram, the exact maximum stack size problem asks for the maximum possible
stack size. More precisely, given a program p, the exact maximum stack size
problem returns an integer K such that for all executions of the program
p, the stack size never grows beyond K, and such that there is a possible
schedule of interrupts and an execution of the program p such that the stack
size becomes K; the problem returns ∞ if there is an execution where the
stack can grow unbounded.

We model interrupt-driven programs in the untyped interrupt calculus of Pals-
berg and Ma [4]. The interrupt calculus contains essential constructs for pro-
gramming interrupt-driven systems. For example, we have found that the cal-
culus can express the core aspects of seven commercial micro-controllers from
Greenhill Manufacturing Ltd. A program in the calculus consists of a main
part and some interrupt handlers. In the spirit of such processors as the Intel
MCS-51 family (8051, etc.), Motorola Dragonball (68000 family), and Zilog
Z86, the interrupt calculus supports an interrupt mask register (imr). An imr
value consists of a master bit and one bit for each interrupt source. For ex-
ample, the Motorola Dragonball processor can handle 22 interrupt sources.
An interrupt handler is enabled, if both the master bit and the bit for that
interrupt handler is set. When an interrupt handler is called, a return address
is stored on the stack, and the master bit is automatically turned off. At the
time of return, the master bit is turned back on (however, the handler can
turn the master bit on at any point). A program execution has access to:

• the interrupt mask register, which can be updated during computation,
• a stack for storing return addresses, and
• a memory of integer variables; output is done via memory-mapped I/O.

Each element on the stack is a return address. When we measure the size of
the stack, we simply count the number of elements on the stack. Our analy-
sis is approximate: when doing the analysis, we ignore the memory of integer
variables and the program statements that manipulate this memory. In partic-
ular, we assume that both branches of a conditional depending on the memory
state can be taken. Of course, all the problems analyzed in this paper become
undecidable if integer variables are considered in the analysis, since we can
then easily encode two-counter machines.

We consider three versions of Palsberg and Ma’s interrupt calculus, here pre-
sented in increasing order of generality:

• Monotonic programs. These are interrupt calculus programs that satisfy
the following monotonicity restriction: when a handler is called with an imr

3

Calculus Problem Complexity Reference

Monotonic Stack boundedness NLOGSPACE-complete Theorem 7

Exact maximum stack size PSPACE-complete Theorems 13,25

Monotonic Stack boundedness PSPACE-complete Theorems 22,25

(enriched) Exact maximum stack size PSPACE-complete Theorems 13,25

Enriched Stack boundedness PSPACE-hard, EXPTIME Theorems 22,30

Exact maximum stack size PSPACE-hard, EXPTIME Theorems 13,30
Table 1
Complexity results

value imr b, then it returns with an imr value imr r such that imr r ≤ imr b,
where ≤ is the logical bitwise implication ordering. In other words, every
interrupt that is enabled upon return of a handler must have been enabled
when the handler was called (but could have possibly been disabled during
the execution of the handler).
• Monotonic enriched programs. This calculus enriches Palsberg and

Ma’s calculus with conditionals on the interrupt mask register. The mono-
tonicity restriction from above is retained.
• Enriched programs. These are programs in the enriched calculus, without

the monotonicity restriction.

We summarize our results in Table 1. We have determined the complexity of
stack boundedness and exact maximum stack size both for monotonic pro-
grams and for monotonic programs enriched with tests. For general programs
enriched with tests, we have a PSPACE lower bound and an EXPTIME upper
bound for both problems; tightening this gap remains an open problem. While
the complexities are high, our algorithms are polynomial (linear or cubic) in
the size of the program, and exponential only in the number of interrupts. In
other words, our algorithms are polynomial if the number of interrupts is fixed.
Since most real systems have a fixed small number of interrupts (for example
Motorola Dragonball processor handles 22 interrupt sources), and the size of
programs is the limiting factor, we believe the algorithms should be tractable
in practice. Experiments are needed to settle this.

We reduce the stack boundedness and exact stack size problems to state
space exploration problems over certain graphs constructed from the interrupt-
driven program. We then use the structure of the graph to provide algorithms
for the two problems. Our first insight is that for monotonic programs, the
maximum stack bounds are attained without any intermediate handler re-
turn. The polynomial-time algorithm for monotonic programs is reduced to
searching for cycles in a graph; the polynomial-space algorithm for determin-
ing the exact maximum stack size of monotonic enriched programs is based
on finding the longest path in a (possibly exponential) acyclic graph. Finally,

4

we can reduce the stack boundedness problem and exact maximum stack size
problem for enriched programs to finding context-free cycles and context-free
longest paths in graphs. Our EXPTIME algorithm for enriched programs is
based on a novel technique to find the longest context-free path in a DAG. Our
lower bounds are obtained by reductions from reachability in a DAG (which is
NLOGSPACE-complete), satisfiability of quantified boolean formulas (which
is PSPACE-complete), and reachability for polynomial-space Turing Machines
(which is PSPACE-complete). We also provide algorithms that determine,
given an interrupt-driven program, whether it is monotonic. In the nonen-
riched case, monotonicity can be checked in polynomial time (NLOGSPACE);
in the enriched case, in co-NP. In Section 2, we recall the interrupt calculus
of Palsberg and Ma [4]. In Section 3, we consider monotonic programs, in
Section 4, we consider monotonic enriched programs, and in Section 5, we
consider enriched programs without the monotonicity restriction.

1.1 Related Work

Brylow, Damgaard, and Palsberg [1] do stack size analysis of a suite of micro-
controller programs by running a context-free reachability algorithm for model
checking. They use, essentially, the same abstraction that our EXPTIME al-
gorithm uses for enriched programs. Our paper gives more algorithmic details
and clarifies that the complexity is exponential in the number of handlers.

Palsberg and Ma [4] present a type system and a type checking algorithm for
the interrupt calculus that guarantees stack boundedness and certifies that the
stack size is within a given bound. Each type contains information about the
stack size and serves as documentation of the program. However, this requires
extensive annotations from the programmer (especially since the types can be
exponential in the number of handlers), and the required type information is
absent in legacy programs. Our work can be seen as related to type inference
for the interrupt calculus. In particular, we check stack properties of programs
without annotations. From our algorithms, we should be able to infer the types
of [4]. It remains to be seen whether our algorithms can be as successful on
legacy programs as the algorithm of Brylow, Damgaard, and Palsberg [1].

Regehr, Reid, and Webb [8] integrated a stack size analysis in the style of
[1] with aggressive abstract interpretation of ALU operations and conditional
branches, and they showed how global function inlining can significantly de-
crease the stack space requirements.

Hughes, Pareto, and Sabry [3,7] use sized types to reason about liveness, ter-
mination, and space boundedness of reactive systems. However, they require
types with explicit space information, and do not address interrupt handling.

5

Wan, Taha, and Hudak [11] present event-driven Functional Reactive Pro-
gramming (FRP), which is designed such that the time and space behavior of
a program are necessarily bounded. However, the event-driven FRP programs
are written in continuation-style, and therefore do not need a stack. Hence
stack boundedness is not among the resource issues considered by Wan et al.

Context free reachability has been used in interprocedural program analysis
[9]. Recently, Reps, Schwoon, and Jha [10] consider context-free reachability
on weighted pushdown graphs to check security properties.

Hillebrand, Kanellakis, Mairson, Vardi [2] studied a boundedness problem that
is related to ours, namely whether the depth of recursion of a given Datalog
program is independent of the input. They showed that several variations of the
problem are undecidable. Our boundedness problem focuses on whether the
“depth of recursion” (that is, stack size) is finite under all possible inputs. The
two boundedness problems are different. The problem studied by Hillebrand et
al. is to decide whether the depth of recursion is always the same. Our problem
is about whether the “depth of recursion” is bounded across all inputs. Note
that our problem will allow the “depth of recursion” to vary with the input, as
long as there is a common bound that works for all inputs. A further difference
is that the input to a Datalog program is a finite database, while the “input”
to an interrupt-calculus program is an infinite stream of interrupts.

2 The Interrupt Calculus

2.1 Syntax

We recall the (abstract) syntax of the interrupt calculus of [4]. We use x to
range over a set of program variables, we use imr to range over bit strings,
and we use c to range over integer constants.

(program) p ::= (m, h̄)

(main) m ::= loop s | s ; m

(handler) h ::= iret | s ; h

(statement) s ::= x = e | imr = imr ∧ imr | imr = imr ∨ imr |

if0 (x) s1 else s2 | s1 ; s2 | skip

(expression) e ::= c | x | x+ c | x1 + x2

The pair p = (m, h̄) is an interrupt program with main program m and in-
terrupt handlers h̄. The over-bar notation h̄ denotes a sequence h1 . . . hn of

6

handlers. We use the notation h̄(i) = hi. We use a to range over m and h.

2.2 Semantics

We use R to denote a store, that is, a partial function mapping program
variables to integers. We use σ to denote a stack generated by the grammar
σ ::= nil | a :: σ. We define the size of a stack as |nil| = 0 and |a :: σ| = 1+|σ|.

We represent the imr as a bit sequence imr = b0b1 . . . bn, where bi ∈ {0, 1}. The
0th bit b0 is the master bit, and for i > 0, the ith bit bi is the bit for interrupts
from source i, which are handled by handler i. Notice that the master bit is
the most significant bit, the bit for handler 1 is the second-most significant bit,
and so on. This layout is different from some processors, but it simplifies the
notation used later. For example, the imr value 101b means that the master
bit is set, the bit for handler 1 is not set, and the bit for handler 2 is set. We
use the notation imr(i) for bit bi. The predicate enabled is defined as

enabled(imr , i) = (imr(0) = 1) ∧ (imr(i) = 1), i ∈ 1..n.

We use 0 to denote the imr value where all bits are 0. We use ti to denote the
imr value where all bits are 0’s except that the ith bit is set to 1. We will use ∧
to denote bitwise logical conjunction, ∨ to denote bitwise logical disjunction,≤
to denote bitwise logical implication, and ¬ to denote bitwise logical negation.
Notice that enabled(t0 ∨ ti, j) is true if i = j, and false otherwise. The imr
values, ordered by ≤, form a lattice with bottom element 0.

A program state is a tuple 〈h̄, R, imr , σ, a〉 consisting of interrupt handlers h̄,
a store R, an interrupt mask register imr , a stack σ of return addresses, and
a program counter a. We refer to a as the current statement; it models the
instruction pointer of a CPU. The interrupt handlers h̄ do not change during
computation; they are part of the state to ensure that all names are defined
locally in the semantics below. We use P to range over program states. If
P = 〈h̄, R, imr , σ, a〉, then we use the notation P.stk = σ. For p = (m, h̄),
the initial program state for executing p is Pp = 〈h̄, λx.0, 0, nil,m〉, where the
function λx.0 is defined on the variables that are used in the program p.

A small-step operational semantics for the language is given by the reflexive,

7

transitive closure of the relation → on program states:

〈h̄, R, imr , σ, a〉→ 〈h̄, R, imr ∧ ¬t0, a :: σ, h̄(i)〉

if enabled(imr , i)

(1)

〈h̄, R, imr , a :: σ′, iret〉→ 〈h̄, R, imr ∨ t0, σ
′, a〉 (2)

〈h̄, R, imr , σ, loop s〉→ 〈h̄, R, imr , σ, s; loop s〉 (3)

〈h̄, R, imr , σ, x = e; a〉→ 〈h̄, R{x 7→ evalR(e)}, imr , σ, a〉 (4)

〈h̄, R, imr , σ, imr = imr ∧ imr ′; a〉→ 〈h̄, R, imr ∧ imr ′, σ, a〉 (5)

〈h̄, R, imr , σ, imr = imr ∨ imr ′; a〉→ 〈h̄, R, imr ∨ imr ′, σ, a〉 (6)

〈h̄, R, imr , σ, (if0 (x) s1 else s2); a〉→ 〈h̄, R, imr , σ, s1; a〉 if R(x) = 0 (7)

〈h̄, R, imr , σ, (if0 (x) s1 else s2); a〉→ 〈h̄, R, imr , σ, s2; a〉 if R(x) 6= 0 (8)

〈h̄, R, imr , σ, skip; a〉→ 〈h̄, R, imr , σ, a〉 (9)

where the function evalR(e) is defined as:

evalR(c) = c evalR(x+ c) = R(x) + c

evalR(x) = R(x) evalR(x1 + x2) = R(x1) +R(x2).

Rule (1) models that if an interrupt is enabled, then it may occur. The rule
says that if enabled(imr , i), then it is a possible transition to push the current
statement on the stack, make h̄(i) the current statement, and turn off the
master bit in the imr. Notice that we make no assumptions about the inter-
rupt arrivals; any enabled interrupt can occur at any time, and conversely, no
interrupt has to occur. Rule (2) models interrupt return. The rule says that
to return from an interrupt, remove the top element of the stack, make the re-
moved top element the current statement, and turn on the master bit. Rule (3)
is an unfolding rule for loops. It implies that interrupt calculus programs do
not terminate, a feature common in reactive systems. Rules (4)–(9) are stan-
dard rules for statements. Let →∗ denote the reflexive transitive closure of
→.

A program execution is a sequence Pp → P1 → P2 → · · · → Pk of program
states. Consider a program execution γ of the form Pp →∗ Pi → Pi+1 →∗
Pj → Pj+1 with Pi = 〈h̄, R, imr b, σ, a〉 and Pj = 〈h̄, R′, imr ′, σ′, a′〉. The han-
dler h̄(i) is called in γ with imr b from state Pi and returns with imrr from
state Pj if

Pi → Pi+1 = 〈h̄, R, imr b ∧ ¬t0, a :: σ, h̄(i)〉 and enabled(imr b, i),

Pj → Pj+1 = 〈h̄, R′, imr r, σ, a〉 and σ′ = a :: σ,

8

imr = imr or 111b

loop { imr = imr or 111b }

handler 1 {

imr = imr and 101b

imr = imr or 100b

iret

}

handler 2 {

imr = imr and 110b

imr = imr or 010b

imr = imr or 100b

imr = imr and 101b

iret

}

Fig. 1. A program in the interrupt calculus

and Pk.stk 6= σ for all i < k ≤ j. We say that there is no handler call in
γ between Pi and Pj if for all i ≤ k < j, the transition Pk → Pk+1 is not
a transition of the form (1). Similarly, given an execution Pp →∗ Pi →∗ Pj,
there is no handler return between Pi and Pj if for all i ≤ k < j, the transition
Pk → Pk+1 is not a transition of the form (2).

2.3 Stack Size Analysis

We consider the following problems of stack size analysis.

• Stack boundedness problem Given an interrupt program p, the stack
boundedness problem returns “yes” if there exists a finite integer K such
that for all program states P ′, if Pp →∗ P ′, then |P ′.stk| ≤ K; and returns
“no” if there is no such K.

• Exact maximum stack size problem For a program state P we define
maxStackSize(P) as the least K ≥ 0 such that for all P ′, if P →∗ P ′,
then |P ′.stk| ≤ K; and “infinite” in case no such K exists. The exact
maximum stack size problem is given an interrupt program p and returns
maxStackSize(Pp).

Figure 1 shows an example of a program in the real interrupt calculus syntax,
where “∧” and “∨” are represented by “and” and ”or” respectively. The bit
sequences such as 111b are imr constants. Notice that each of the two handlers
can be called from different program points with different imr values. The
bodies of the two handlers manipulate the imr, and both are at some point
during the execution open to the possibility of being interrupted by the other
handler. However, the maximum stack size is 3. This stack size happens if
handler 1 is first called with 111b, then handler 2 with 101b, and then handler
1 again with 110b, at which time there are three return addresses on the stack.

We shall analyze interrupt programs under the usual program analysis as-
sumption that all paths in the program are executable. More precisely, our
analysis assumes that each data assignment statement x = e in the program
has been replaced by skip, and each conditional if0 (x) s1 else s2 has been

9

replaced by if0 (∗) s1 else s2, where ∗ denotes nondeterministic choice. While
this is an overapproximation of the actual set of executable paths, we avoid
trivial undecidability results for deciding if a program path is actually exe-
cutable. In the following, we assume that the relation → is defined on this
abstract program.

3 Monotonic Interrupt Programs

We first define monotonic interrupt programs and then analyze the stack
boundedness and exact maximum stack size problems for such programs. A
handler hi of program p is monotonic if for every execution γ of p, if hi is
called in γ with an imr value imr b and returns with an imr value imr r, then
imrr ≤ imrb. The program p is monotonic if all handlers h1 . . . hn of p are
monotonic. The handler hi of p is monotonic in isolation if for every execu-
tion γ of p, if hi is called in γ with an imr value imr b from a state Pi and
returns with an imr value imr r from a state Pj such that there is no handler
call between Pi and Pj, then imr r ≤ imr b.

We first show that a program p = (m, h̄) is monotonic iff every handler hi ∈ h̄
is monotonic in isolation. Moreover, a handler hi is monotonic in isolation iff,
whenever hi is called with imr value t0∨ti from state Pi and returns with imr r
from state Pj, with no handler calls between Pi and Pj, then imrr ≤ t0 ∨ ti.
These observations can be used to efficiently check if an interrupt program is
monotonic: for each handler, we check that the return value imr r of the imr
when called with t0 ∨ ti satisfies imr r ≤ t0 ∨ ti.

Lemma 1 A program p = (m, h̄) is monotonic iff every handler hi ∈ h̄ is
monotonic in isolation.

Proof. If there is a handler h which violates monotonicity in isolation then h
is not monotonic and hence the program p is not monotonic. For the converse,
suppose that all handlers are monotonic in isolation, but the program p is not
monotonic. Consider an execution sequence γ which violates the monotonicy
condition. In γ, we can choose a handler h which is called with an imr value
imr b and returns with an imr value imr r such that

imr b 6≥ imr r (10)

but any handler h′ which was called from within h with an imr value imr bh′
returned with an imr value imr rh′ satisfying imr rh′ ≤ imr bh′ . From γ we now
construct a simpler execution sequence γ′ which also violates the monotonicity
condition. We construct γ′ by omitting from γ all calls from within h. In γ′

there are no calls between the call to h and the return of h. Each of the omitted

10

calls are monotonic, so in γ′ h will return with an imr value imr′r such that

imr r ≤ imr ′r (11)

Since in this sequence no handler is called from h and h is monotonic in
isolation it follows that:

imr ′r ≤ imr b (12)

From (10), (11), and (12), we have a contradiction. Hence p is monotonic.

Lemma 2 Given a program p = (m, h̄), a handler hi ∈ h̄ is monotonic in
isolation iff when hi is called with imr value t0 ∨ ti from program state Pi,
and returns with imr value imrr from program state Pj, with no handler calls
between Pi and Pj, then imrr ≤ t0 ∨ ti.

Proof. If the right-hand side of the “iff” is not satisfied, then hi is not mono-
tonic in isolation. Conversely, suppose the right-hand side of the “iff” is satis-
fied but hi is not monotonic in isolation. Suppose further that hi is called with
the imr value imr b and it follows some sequence of execution in the handler
hi to return imr ′r, with imr b 6≥ imr ′r. Hence there is a bit j such that the
j-th bit is on in imr ′r but the j-th bit is off in imr b. Since the conditionals do
not depend on imr , the same sequence of execution can be followed when the
handler is called with t0 ∨ ti. In this case, the return value imr r will have the
j-th bit on, and hence t0 ∨ ti 6≥ imr r. This is a contradiction.

Proposition 3 It can be checked in linear time (NLOGSPACE) if an inter-
rupt program is monotonic.

Proof. It follows from Lemma 1 that checking monotonicity of a program p can
be achieved by checking monotonicity of the handlers in isolation. It follows
from Lemma 2 that checking monotonicity in isolation for a handler hi can
be achieved by checking if hi is monotonic when called with ti. Thus checking
monotonicity is just checking the return value of the imr when called with
ti. This can be achieved in polynomial time by a standard bitvector dataflow
analysis. Since the conditionals do not test the value of imr , we can join the
dataflow information (i.e., bits of the imr) at merge points. It is clear that
finding bit by bit the return value when called with ti can be achieved in
NLOGSPACE.

3.1 Stack Boundedness

We now analyze the complexity of stack boundedness of monotonic programs.
Our main insight is that the maximum stack size is achieved without any in-
termediate handler returns. First observe that if handler h is enabled when
the imr is imr 1, then it is enabled for all imr imr 2 ≥ imr 1. We argue the case

11

where the maximum stack size is finite, the same argument can be formalized
in case the maximum stack size is infinite. Fix an execution sequence that
achieves the maximum stack size. Let h be the last handler that returned in
this sequence (if there is no such h then we are done). Let the sequence of
statements executed be s0, s1, . . . si−1, si, . . . sj, sj+1, . . . where si was the start-
ing statement of h and sj the iret statement of h. Suppose h was called with
imr b and returned with imr r such that imr r ≤ imr b. Consider the execution
sequence of statements s0, s1, . . . si−1, sj+1, . . . with the execution of handler h
being omitted. In the first execution sequence the imr value while executing
statement sj+1 is imr r and in the second sequence the imr value is imr b. Since
imr r ≤ imr b then repeating the same sequence of statements and same se-
quence of calls to handlers with h omitted gives the same stack size. Following
a similar argument, we can show that all handlers that return intermediately
can be omitted without changing the maximum stack size attained.

Lemma 4 For a monotonic program p, let Pmax be a program state such that
Pp →∗ Pmax and for any state P ′, if Pp →∗ P ′ then |Pmax.stk| ≥ |P ′.stk|.
Then there is a program state P ′′ such that Pp →∗ P ′′, |P ′′.stk| = |Pmax.stk|,
and there is no handler return between Pp and P ′′.

We now give a polynomial-time algorithm for the stack boundedness problem
for monotonic programs. The algorithm reduces the stack boundedness ques-
tion to the presence of cycles in the enabled graph of a program. Let h1 . . . hn
be the n handlers of the program. Given the code of the handlers, we build
the enabled graph G = 〈V,E〉 as follows.

• There is a node for each handler, i.e., V = {h1, h2, . . . hn}.
• Let the instructions of hi be Ci = i1, i2, . . . im. There is an edge between

(hi, hj) if any of the following conditions holds.
(1) There is l, k such that l ≤ k, the instruction at il is imr = imr ∨ imr with

t0 ≤ imr, the instruction at ik is imr = imr∨ imr with tj ≤ imr and for all
statements im between il and ik, if im is imr = imr ∧ imr then t0 ≤ imr.

(2) There is l, k such that l ≤ k, the instruction at il is imr = imr ∨ imr with
tj ≤ imr, the instruction at ik is imr = imr∨ imr with t0 ≤ imr and for all
statements im between il and ik, if im is imr = imr ∧ imr then tj ≤ imr.

(3) We have i = j and there is l such that the instruction at il is imr =
imr∨ imr with t0 ≤ imr and for all statements im between i1 and il, if im
is imr = imr ∧ imr then ti ≤ imr. This gives a self-loop (hi, hi).

Since we do not model the program variables, we can analyze the code of hi
and detect all outgoing edges (hi, hj) in time linear in the length of hi. We
only need to check that there is an ∨ statement with an imr constant with
jth bit 1 and then the master bit is turned on with no intermediate disabling
of the jth bit or vice versa. Hence the enabled graph for program p can be
constructed in time n2 × |p| (where |p| denotes the length of p).

12

Lemma 5 Let Gp be the enabled graph for a monotonic interrupt program p.
If Gp has a cycle, then the stack is unbounded, that is, for all positive integers
K, there is a program state P ′ such that Pp →∗ P ′ and |P ′.stk| > K.

Proof. Consider a cycle C = 〈hi1 , hi2 , . . . , hik , hi1〉 such that for any two con-
secutive nodes in the cycle there is an edge between them in Gp. Consider
the following execution sequence. When hi1 is executed, it turns hi2 and the
master bit on. Then, an interrupt of type hi2 occurs. When hi2 is executed,
it turns on hi3 and the master bit. Then, an interrupt of type hi3 occurs, and
so on. Hence hi1 can be called with hi1 on stack and the sequence of calls can
be repeated. If there is a self-loop at the node hi, then hi can occur infinitely
many times. This is because handler hi can turn the master bit on without
disabling itself, so an infinite sequence of interrupts of type hi will make the
stack grow unbounded.

Since cycles in the enabled graph can be found in NLOGSPACE, the stack
boundedness problem for monotonic programs is in NLOGSPACE. Note that
the enabled graph of a program can be generated on the fly in logarithmic
space. Hardness for NLOGSPACE follows from the hardness of DAG reacha-
bility.

Lemma 6 Stack Boundedness for monotonic interrupt programs is
NLOGSPACE-hard.

Proof. We reduce reachability in a DAG to the Stack Boundedness checking
problem. Given a DAG G = (V,E) where V = {1, 2, ..., n} we write a program
p with n handlers h1, h2, ..., hn as follows:

• The code of handler hi disables all handlers and then enables all its succes-
sors in the DAG and the master bit.
• the handler hn disables all the other handlers and enables itself and the

master bit and then disables itself.

Hence the enabled graph of the program will be a DAG with only the node
n with a self-loop. So the stack size is bounded iff n is not reachable. Hence
stack boundedness checking is NLOGSPACE-hard.

Theorem 7 Stack boundedness for monotonic interrupt programs can be
checked in time linear in the size of the program and quadratic in the num-
ber of handlers. The complexity of stack boundedness for monotonic interrupt
programs is NLOGSPACE-complete.

In case the stack is bounded, we can get a simple upper bound on the stack
size as follows. Let Gp be the enabled graph for a monotonic interrupt program
p. If Gp is a DAG, and the node hi of Gp has order k in topological sorting
order, then we can prove by induction that the corresponding handler hi of p

13

can occur at most 2(k−1) times in the stack.

Lemma 8 Let Gp be the enabled graph for a monotonic interrupt driven pro-
gram p. If Gp is a DAG, and the node hi of Gp has order k in topological
sorting order, then the corresponding handler hi of p can occur at most 2(k−1)

times in the stack.

Proof. We prove this by induction. Let hi be the node with order 1. It has no
predecessors in the enabled graph. No node in the enabled graph has a self-
loop, since our assumption is that the enabled graph Gp is a DAG. Hence hi
must turn its bit off before turning the master bit on. Hence when hi occurs in
the stack its bit is turned off. As no other handler turns it on when the master
bit is on (since otherwise there would have been an edge to hi) it cannot occur
more than once in the stack. This proves the base case.

Consider a node h with order k. By hypothesis, all nodes with order j where
j ≤ k − 1 can occur at most 2(j−1) times in the stack. Now when the node h
occurs in the stack its bit is turned off. So before it occurs again in the stack,
one of the predecessors of h must occur in the stack. Hence the number of
times h can occur in the stack is given by

1 +
∑

Number of times its predecessors can occur

≤ 1 +
∑k−1
i=1 2(i−1)

= 2(k−1).

We get the following bound as an immediate corollary of Lemma 8. Let p =
(m, h̄) be a monotonic interrupt driven program with n handlers, and with
enabled graph Gp. If Gp is a DAG, then for any program state P ′ such that
Pp →∗ P ′, we have |P ′.stk| ≤ 2n − 1. This is because the maximum length of
the stack is given by the sum of the number of times a individual handler can
be in the stack. By Lemma 8 we know a node with order j can occur at most
2j−1 times. Hence the maximum length of the stack is given by

n∑
i=1

2(i−1) = 2n − 1

In fact, this bound is tight: there is a program with n handlers that achieves
a maximum stack size of 2n − 1. We show that starting with an imr value
of all 1’s one can achieve the maximum stack length of 2n − 1 while keeping
the stack bounded. We give an inductive strategy to achieve this. With one
handler which does not turn itself on we can have a stack length 1 starting
with imr value 11. By induction hypothesis, using n−1 handlers starting with

14

Algorithm 1 Function MaxStackLengthBound

Input: An interrupt program p
Output: If the stack size is unbounded then ∞,

else an upper bound on the maximum stack size
1. Build the Enabled Graph G from the Program p
2. If G has a cycle then the Maximum Stack Length is ∞.
3. If G is a DAG then topologically sort and order nodes of G
4.1 For i← 1to |V [G]|

4.2 For a node h with order i
N [h]= 1 +

∑
N [hj] where hj is a predecessor of h

5. Upper Bound on Maximum Length of Stack=
∑
N [h] for all handlers h

imr value all 1’s we can achieve a stack length of 2n−1−1. Now we add the nth
handler and modify the previous n− 1 handlers such that they do not change
the bit for the nth handler. The n-th handler turns on every bit except itself,
and then turns on the master bit. The following sequence achieves a stack
size of 2n − 1. First, the first n − 1 handlers achieve a stack size of 2n−1 − 1
using the inductive strategy. After this, the nth handler is called. It enables
the n− 1 handlers but disables itself. Hence the sequence of stack of 2n−1 − 1
can be repeated twice and the n the handler can occur once in the stack in
between. The total length of stack is thus 1 + (2n−1− 1) + (2n−1− 1) = 2n− 1.
Since none of the other handlers can turn the nth handler on, the stack size
is in fact bounded.

We now give a polynomial time procedure to give an upper bound on the stack
size if it is bounded. If the stack can possibly grow unbounded we report infi-
nite. If the stack is bounded we compute an upper bound N [h] on the number
of times a handler h can occur in the stack. The algorithm MaxStackLength-
Bound is shown in Algorithm 1.

Lemma 9 Function MaxStackLengthBound correctly checks the stack bound-
edness of interrupt driven programs, that is, if MaxStackLengthBound returns
∞ then there is some execution of the program that causes the stack to be
unbounded. It also gives an upper bound on the number of times a handler
can occur in the stack, that is, if MaxStackBound(p) is N , then the maximum
stack size on any execution sequence of p is bounded above by N .

Proof. It follows from Lemma 5 that if the enabled graph has a cycle then the
stack can grow unbounded. This is achieved by Step 2 of MaxStackLength-
Bound. It follows from Lemma 8 that the maximum number of times a handler
can occur in the stack is one plus the sum of the number of times its prede-
cessors can occur. This is achieved in Step 4 of MaxStackLengthBound.

Lemma 10 Function MaxStackLengthBound runs in time polynomial in size

15

of the interrupt driven program.

Proof. The enabled graph can be built in time h2×PC where h is the number
of handlers and PC is the number of program statements. Steps 2,3 and 4 can
be achieved in time linear in the size of the enabled graph, and hence in time
linear in the size of the program.

While MaxStackLengthBound is simple, one can construct simple examples
to show that it may exponentially overestimate the upper bound on the stack
size. We show next that this is no accident: we now prove that the exact maxi-
mum stack size problem problem is PSPACE-hard. There is a matching upper
bound: the exact maximum stack size problem can be solved in PSPACE.
We defer this algorithm to Section 4, where we solve the problem for a more
general class of programs.

3.2 Maximum Stack Size

We now prove that the exact maximum stack size problem is PSPACE-hard.
We start with a little warm-up: first we show that the problem is both NP-hard
and co-NP hard. We show this by showing that the problem is DP-hard, where
DP is the class of all languages L such that L = L1 ∩ L2 for some language
L1 in NP and some language L2 in co-NP [6] (note that DP is not the class
NP ∩ co-NP [5,6]). We reduce the problem of EXACT-MAX Independent Set
of a Graph and its complement to the problem of finding the exact maximum
size of the stack of programs in interrupt calculus. The EXACT-MAX IND
problem is the following:

EXACT-MAX IND = {〈G, k〉 the size of the maximum independent set is k}

EXACT-MAX IND is DP-complete [5]. Given an undirected graph G = 〈V,E〉
where V = {1, 2, ..., n}, we construct an interrupt-driven program as follows.
We create a handler hi for every node i. Let Ni = {j : (i, j) ∈ E} be the
neighbors of node i in G. The code of hi disables itself and all the handlers of
Ni and then turns the master bit on. The main program enables all handlers
and then enters an empty loop. Consider the maximum stack size and the
handlers in it. First observe that once a handler is disabled, it is never re-
enabled. Hence, no handler can occur twice in the stack, as every handler
disables itself and no other handler turns it on. Let hi and hj be two handlers
in the stack such that hi occurs before hj. Then (i, j) 6∈ E, since if (i, j) ∈ E
then hi would have turned hj off, and thus hj could not have occurred in the
stack (since hj is never re-enabled). Hence if we take all the handlers that
occur in the stack the corresponding nodes in the graph form an independent
set. Consider an independent set I in G. All the handlers corresponding to
the nodes in I can occur in the stack as none of these handlers is disabled by

16

any other. We have thus proved given a stack with handlers we can construct
an independent set of size equal to the size of the stack. Conversely, given
an independent set we can construct a stack size equal to the size of the
independent set. Hence the EXACT-MAX IND problem can be reduced to the
problem of finding the exact maximum size of the stack. Hence the problem
of finding exact stack size in DP-hard. It follows that it is NP-hard and co-NP
hard.

We now give the proof of PSPACE-hardness, which is considerably more tech-
nical. We define a subclass of monotonic interrupt calculus which we call
simple interrupt calculus and show the exact maximum stack size problem is
already PSPACE-hard for this class. It follows that exact maximum stack size
is PSPACE-hard for monotonic interrupt-driven programs.

For imr ′, imr ′′ where imr ′(0) = 0 and imr ′′(0) = 0, define H(imr ′; imr ′′) to
be the interrupt handler

imr = imr ∧ ¬imr ′;

imr = imr ∨ (t0 ∨ imr ′′);

imr = imr ∧ ¬(t0 ∨ imr ′′);

iret.

A simple interrupt calculus program is an interrupt calculus program where
the main program is of the form

imr = imr ∨ (imrS ∨ t0);

loop skip

where imrS(0) = 0 and every interrupt handler is of the form H(imr ′; imr ′′).
Intuitively, a handler of a simple interrupt calculus program first disables
some handlers, then enables other handlers and enables interrupt handling.
This opens the door to the handler being interrupted by other handlers. After
that, it disables interrupt handling, and makes sure that the handlers that
are enabled on exit are a subset of those that were enabled on entry to the
handler.

For a handler hi of the form H(imr ′; imr ′′), we define function fi(imr) =
imr ∧ (¬imr ′)∨ imr ′′. Given a simple interrupt calculus program p, we define
a directed graph G(p) = (V,E) such that

• V = { imr | imr(0) = 0 },
• E = { (imr , fi(imr), i) | ti ≤ imr} is a set of labeled edges from imr to
fi(imr) with label i ∈ {1..n}.

The edge (imr , fi(imr), i) in G(p) represents the call to the interrupt handler

17

h(i) when imr value is imr . We define imrS as the start node of G(p) and
we define M(imr) as the longest path in G(p) from node imr . The notation
M(imr) is ambiguous because it leaves the graph unspecified; however, in all
cases below, the graph in question can be inferred from the context.

Lemma 11 For a simple interrupt calculus program p, we have that

maxStackSize(Pp) = |M(imrS)|.

Proof. By definition, the state of a simple interrupt program p = (m, h̄) is of
the form 〈h̄, 0, imr , σ, a〉 and stack size of p increases whenever an interrupt is
handled and we have state transition of the form

〈h̄, 0, imr , σ, a〉 → 〈h̄, 0, imr ∧ ¬t0, a :: σ, h̄(i)〉 if imr ≥ ti ∨ t0.

Let ai, i ∈ {1..4} represent the four statements in the body of an interrupt
handler such that any handler is of the form a1; a2; a3; a4. By definition of
simple interrupt program., the master bit is enabled only between a2 and
a3, where calls to other handlers may occur. Also, after a call to a interrupt
handler returns, the imr value is always less than or equal to the imr value
before the call. Thus, during a call to handler hi with initial imr value equal
to imr , the only possible states where interrupts maybe be handled are of
the form 〈h̄, 0, imr ′, σ, a3; a4〉, where imr ′ ≤ fi(imr). Then, we only need to
examine state transitions of the following form to compute maxStackSize(Pp):

〈h̄, 0, imr , σ, a〉 →∗ 〈h̄, 0, imr ′, a :: σ, a3; a4〉,

where imr ′ ≤ fi(imr) ∀i, such that ti ∨ t0 ≤ imr .

Let P = 〈h̄, 0, imr , σ, a〉 and P ′ = 〈h̄, 0, imr ′, σ, a〉. By an easy induction on
execution sequences, we have that maxStackSize(P) ≤ maxStackSize(P ′) if
imr ≤ imr ′. Therefore, it is sufficient to consider state transitions of the form

〈h̄, 0, imr , σ, a〉 →∗ 〈h̄, 0, fi(imr), a :: σ, a3; a4〉,

where imr ≥ ti ∨ t0. In the main loop, the possible states where interrupts
may be handled are of the form

〈h̄, 0, imrS ∨ t0, nil, loop skip〉 and 〈h̄, 0, imrS ∨ t0, nil, skip; loop skip〉.

Let a0 be the statements of the form loop skip or skip;loop skip. To compute
maxStackSize(Pp), we only need to consider transitions of the form

〈h̄, 0, imrS ∨ t0, σ, a0〉 →∗ 〈h̄, 0, fi(imrS) ∨ t0, a0 :: σ, a3; a4〉,

18

where imrS ≥ ti, and

〈h̄, 0, imr , σ, a3; a4〉 →∗ 〈h̄, 0, fj(imr), a3; a4 :: σ, a′3; a′4〉,

where imr ≥ tj ∨ t0.

It is now clear that we can just use imr ∧ ¬t0 to represent states that
we are interested in with starting states represented by imrS. The above
two kinds of transitions can be uniquely represented by edges of the form
(imrS, fi(imrS), i), (imr ∧ ¬t0, fj(imr ∧ ¬t0), j) in graph G(p). Therefore,
maxStackSize(Pp) is equal to the length of the longest path in G(p) from
the start node imrS.

Lemma 12 For a simple interrupt calculus program p, and a subgraph of
G(p), we have that if imr ≤ imr 1 ∨ imr 2, then |M(imr)| ≤ |M(imr 1)| +
|M(imr 2)|.

Proof. The lemma follows from the following claim. If imr ≤ imr 1∨ imr 2, and
P is a path from node imr to imr ′, then we can find a path P1 from imr 1 to
imr ′1 and a path P2 from node imr 2 to imr ′2 such that |P | = |P1| + |P2| and
imr ′ ≤ imr ′1 ∨ imr ′2.

Given this claim, the lemma following from the following reasoning. We can
apply the above claim to the situation with M(imr) as the path P from imr
to 0. Since |M(imr 1)| ≥ |P1| and |M(imr 2)| ≥ |P2|, we have |M(imr)| ≤
|M(imr 1)|+ |M(imr 2)|.

We now prove the claim. We proceed by induction on the length of P . The
base case of |P | = 0 is trivially true. Suppose the claim is true for |P | = k and
that P ′ is P appended with an edge to imr ′′. We need to prove the case of P ′.
Since P ends at imr ′, there exists ti ≤ imr ′ such that imr ′′ = fi(imr ′). By the
induction hypothesis, ti ≤ imr ′ ≤ imr ′1 ∨ imr ′2. Thus, there exists a ∈ {1, 2}
such that ti ≤ imr ′a. Suppose that ti ≤ imr ′1 (the case of ti ≤ imr ′2 is similar
and is omitted). We can let P ′1 be P1 appended with an edge to imr ′′1 where
imr ′′1 = fi(imr ′1). By definition of fi, we have fi(imr ′) ≤ fi(imr ′1)∨imr ′2. Thus,
we have |P ′| = |P |+ 1 = |P1|+ 1 + |P2| = |P ′1|+ |P2| and imr ′′ ≤ imr ′′1 ∨ imr ′2.

We now show PSPACE-hardness for simple interrupt calculus. Our proof is
based on a polynomial-time reduction from the quantified boolean satisfiability
(QSAT) problem [5].

We first illustrate our reduction by a small example. Suppose we are given a
QSAT instance S = ∃x2∀x1 φ with

φ = (l11 ∨ l12) ∧ (l21 ∨ l22) = (x2 ∨ ¬x1) ∧ (x2 ∨ x1).

19

h(x2) h(x̄2)

h(x1) h(x̄1)h(w2) h(w̄2)

h(l12) h(l21) h(l22)h(l11)h(w1) h(w̄1)

? ?

�
�
��=

PPPPPPPq

��������)

Z
Z
ZZ~

������

�
�
�

@
@
@R

HHHH
HHj

XXXXXXXXXz

��������)

�
�
�
��+

S
S
Sw

�
�
��

HHHH
HHj

Fig. 2. Enable relation of interrupt handlers

We construct a simple interrupt program p = (m, h̄) with an imr register,
where h̄ = {h(xi), h(x̄i), h(wi), h(w̄i), h(lij) | i, j = 1, 2} are 12 handlers. The
imr contains 13 bits: a master bit, and each remaining bit 1-1 maps to each
handler in h̄. Let D = {xi, x̄i, wi, w̄i, lij | i, j = 1, 2}. We use tx, where x ∈ D,
to denote the imr value where all bits are 0’s except the bit corresponding to
handler h(x) is set to 1. The initial imr value imrS is set to imrS = tx2 ∨ tx̄2 .

We now construct h̄. Let E(h(x)), x ∈ D, be the set of handlers that h(x)
enables. This enable relation between the handlers of our example is illustrated
in Figure 2, where there is an edge from h(xi) to h(xj) iff h(xi) enables h(xj).
Let D(h(x)), x ∈ D, be the set of handlers that h(x) disables. Let L = {h(lij) |
i, j = 1, 2}. The D(h(x)),x ∈ D, are defined as follows:

D(h(x2)) =D(h(x̄2)) = {h(x2), h(x̄2)} (13)

D(h(x1)) = {h(x1)} D(h(x̄1)) = {h(x̄1)} (14)

D(h(w2)) =D(h(w̄2)) = {h(x1), h(x̄1)} ∪ {h(wi), h(w̄i) | i = 1, 2} ∪ L(15)

D(h(w1)) =D(h(w̄1)) = {h(w1), h(w̄1)} ∪ L (16)

D(h(lij)) = {h(li1), h(li2)} ∪ {h(wk) | lij = ¬xk} ∪ {h(w̄k) | lij = xk}.(17)

If h(x) = H(imr′; imr′′), then imr ′ =
∨
h(y)∈E(h(x)) ty and imr ′′ =∨

h(z)∈D(h(x)) tz, where x, y, z ∈ D. We claim that the QSAT instance S is
satisfiable iff |M(imrS)| = 10, where imrS = tx2 ∨ tx̄2 . We sketch the proof as
follows.

Let imrL =
∨
h(l)∈L tl, where l ∈ D. From (17) and Figure 2, it can be shown

that |M(imrL)| = 2. From Figure 2, we have E(h(x1)) = {h(w1)} ∪ L; and
together with (16), and (17), it can be shown that

|M(tx1)| = 1 + |M(tw1 ∨ imrL)| ≤ 2 + |M(imrL)| = 4

and the equality holds iff ∃j1, j2 ∈ 1, 2, such that l1j1 , l2j2 6= ¬x1, because other-
wise handler h(w1) would be surely disabled. Similarly, it can be shown that
|M(tx̄1)| ≤ 4, and that

|M(tx1 ∨ tx̄1)| ≤ |M(tx1)|+ |M(tx̄1)| ≤ 8,

where the equality holds iff ∃j1, j2, such that l1j1 , l2j2 6= ¬x1 and ∃j′1, j
′
2, such that

20

l1j′1
, l2j′2
6= x1. From Figure 2, we have E(h(x2)) = {h(w2), h(x1), h(x̄1)}. Thus,

|M(tx2)| = 1 + |M(tw2 ∨ tx1 ∨ tx̄1)| ≤ 2 + |M(tx1 ∨ tx̄1)| = 10,

and it can be shown from (15) and (17), that the equality holds iff ∃j1, j2
such that lij1 , lij2 6= ¬x2,¬x1 and ∃j′1, j

′
2 such that lij′1 , lij′2 6= ¬x2, x1, which im-

plies that both x2 = true, x1 = true and x2 = true, x1 = false are satisfiable truth
assignments to φ. Similarly, it can be shown that |M(tx̄2)| = 10 iff both
x2 = false, x1 = true and x2 = false, x1 = false are satisfiable truth assignments
to φ.

From (13), we have |M(tx2 ∨ tx̄2)| = max(|M(tx2)|, |M(tx̄2)|). Therefore,
|M(imrS)| = 10 iff there exists x2 such that for all x1, φ is satisfiable, or equiv-
alently iff S is satisfiable. For our example, S is satisfiable since ∃x2 = true such
that ∀x1, φ is satisfiable. Correspondingly, |M(imrS)| = |M(x2)| = 10.

Theorem 13 The exact maximum stack size problem for monotonic interrupt
programs is PSPACE-hard.

Proof. We will do a reduction from the QSAT problem. Suppose we are given
an instance of QSAT problem

S = ∃xn∀xn−1 . . . ∃x2∀x1 φ,

where φ is a 3SAT instance in conjunctive normal form of n variables xn, . . . , x1

and L boolean clauses. Let φij be the jth literal of the ith clause in φ and
φ =

∧L
i=1

∨3
j=1 φij. We construct a program p = (m, h̄) and h̄ = {h(i) | i ∈

{1 . . . 3L+ 4n} }.

As before, we define a graph G(p) = (V,E) such that V = {imr | imr(0) = 0}
and E = {(imr , fi(imr), i) | ti ≤ imr}, where fi(imr) = imr ∧ ¬imr ′ ∨ imr ′′

iff h(i) = H(imr ′; imr ′′).

For clarity, we define three kinds of indices: dij = 3(i − 1) + j, where i ∈
{1..L}, j ∈ {1..3}; qai = 3L + 4i − 3 + a, and wai = 3L + 4i − 1 + a, where
i ∈ {1..n}, a ∈ {0, 1}.

Let

D= {di1, di2, di3 | ∀i ∈ {1..L}}
Dij = {di1, di2, di3} ∪ {wak | (a = 1 ∧ φij = xk) ∨ (a = 0 ∧ φij = ¬xk)}
Wi = {waj | ∀j ∈ {1..i},∀a ∈ {0, 1}}
Qi = {qaj | ∀j ∈ {1..i},∀a ∈ {0, 1}}.

We will use the abbreviation

21

imr 0 =
∨
i∈D

ti, imrk = tq0
k
∨ tq1

k
∀k ∈ {1..n}.

Assume that n is even. For all a ∈ {0, 1}, let

fqa
2k−1

(x) =x ∧ ¬tqa
2k−1
∨ (imr 2k−2 ∨ twa

2k−1
), ∀k ∈ {1..n/2}

fqa
2k

(x) =x ∧ ¬imr 2k ∨ (imr 2k−1 ∨ twa
2k

), ∀k ∈ {1..n/2}
fwa

k
(x) =x ∧ ¬

∨
i∈D∪Qk−1∪Wk

ti, ∀k ∈ {1..n}

fdij(x) =x ∧ ¬
∨

k∈Dij
tk, ∀i ∈ {1..L}, j ∈ {1, 2, 3}.

Given an imr value r, we define the graph Gr(p) to be the subgraph of G(p)
such that any edge labeled dij is removed for all i, j such that φij = ¬xk and
tw0

k
≤ r, or φij = xk and tw1

k
≤ r. We useMr(imr) to denote the longest path

in Gr(p) from imr . We organize the proof as a sequence of claims.

Claim 14 ∀k ∈ {1..n
2
}, |Mr(imr 2k)| = maxa∈{0,1} |Mr(tqa

2k
)|, and

|Mr(imr 0)| ≤ L.

Proof of Claim 14. By definition, we have that ∀a ∈ {0, 1}, fqa
2k

(x) = x ∧
¬imr 2k ∨ (imr 2k−1 ∨ twa

2k
), from which the claim follows.

By definition of fdij , for each i ∈ {1..L}, M(imr 0) can contain at most one
edge with label dij, where j ∈ {1, 2, 3}. Thus, |M(imr 0)| ≤ L.

Claim 15 |Mr(imr 2k−1)| = ∑
b∈{0,1} |Mr(tqb

2k−1
)|.

Proof of Claim 15. From Lemma 12, we have |Mr(imr 2k−1)| ≤∑
b∈{0,1} |Mr(tqb

2k−1
)|.

Let P be the path from imr 2k−1 to tq1
2k−1

constructed from Mr(tq0
2k−1

) by

replacing any node imr on Mr(tq0
2k−1

) with imr ∨ tq1
2k−1

. It is straightforward

to show that if edge (imr , imr ′, i) is on Mr(tq0
2k−1

), then (imr ∨ tq1
2k−1

, imr ′ ∨
tq1

2k−1
, i) is on P . If we concatenate P with Mr(tq1

2k−1
), then we have a path

from imr 2k−1 of length |Mr(tq0
2k−1

)|+ |Mr(tq1
2k−1

)|.

Claim 16 |M(imrn)| ≤ 2n/2(6 + L)− 6.

Proof of Claim 16. It is sufficient to prove that |M(imr 2k)| ≤ 2k(6 + L) − 6.
For all a ∈ {0, 1} we have:

22

|M(tqa
2k

)|= 1 + |M(imr 2k−1 ∨ twa
2k

)|
≤ 2 + |M(imr 2k−1)|
= 2 +

∑
b∈{0,1}

|M(tqb
2k−1

)|

= 4 +
∑

b∈{0,1}
|M(imr 2k−2 ∨ twb

2k−1
)|

≤ 6 + 2|M(imr 2k−2)|

|M(imr 2k)|= max
a∈{0,1}

(|M(tq0
2k

)|, |M(tq1
2k

)|)

≤ 6 + 2|M(imr 2k−2)|

From the last inequality and Claim 14, it is straightforward to show the claim
by induction on k.

Claim 17 For any r and a ∈ {0, 1}, |Mr(tqa
2k

)| = 2k(6+L)−6 iff ∀b ∈ {0, 1},
|Mr′(tqb

2k−1
)| = 2k−1(6 + L)− 4, where r′ = r ∨ twa

2k
.

Proof of Claim 17. Suppose that |Mr(tqa
2k

)| = 2k(6+L)−6. The pathMr(tqa
2k

)
must contain the edge with label wa2k because otherwise

|Mr(tqa
2k

)|= 1 + |Mr(imr 2k−1 ∨ twa
2k

)|
= 1 + |Mr(imr 2k−1)|
≤ 1 + |M(imr 2k−1)| ≤ 2k(6 + L)− 7.

By definition of fqa
2k

, for any node imr on the path Mr(imr 2k−1 ∨ tqa
2k

), we
have fwa

2k
(imr) = 0. Thus, the edge labeled wa2k can only be the last edge on

Mr(tqa
2k

). By definition of fdij , the longest path from imr 2k−1∨ twa
2k

containing
edge labeled wa2k does not contain any edge labeled dij for all i, j such that
φij = x2k if a = 1, and φij = ¬x2k if a = 0. This path is the same path in
Gr′(p), where r′ = r ∨ twa

2k
. Therefore,

|Mr(tqa
2k

)| = 2k(6 + L)− 6 = |Mr′(tqa
2k

)|
= 1 + |Mr′(imr 2k−1 ∨ twa

2k
)|

≤ 1 + |Mr′(imr 2k−1)|+ |Mr′(twa
2k

)|
= 2 +

∑
b∈{0,1}

|Mr′(tqb
2k−1

)|, and

∑
b∈{0,1}

|Mr′(tqb
2k−1

)| ≥ 2k(6 + L)− 8.

Since

23

|Mr′(tqb
2k−1

)|= 1 + |Mr′(imr 2k−2 ∨ twb
2k−1

)|
≤ 2 + |Mr′(imr 2k−2)|
≤ 2 + |M(imr 2k−2)| = 2k−1(6 + L)− 4,

we have ∀b ∈ {0, 1}, |Mr′(tqb
2k−1

)| = 2k−1(6 + L)− 4.

Conversely, assume that for all b ∈ {0, 1}, |Mr′(tqb
2k−1

)| = 2k−1(6 + L) − 4

where r′ = r ∨ twa
2k

. From Claim 2, we know that |Mr′(imr 2k−1)| =∑
b∈{0,1} |Mr′(tqb

2k−1
)| = 2k(6 + L)− 8.

Let P be a path from imr 2k−1∨ twa
2k

to twa
2k

constructed fromMr′(imr 2k−1) by
replacing any node imr onMr′(imr 2k−1) with imr ∨ twa

2k
. It is straightforward

to show that if edge (imr , imr ′, i) is onMr′(imr 2k−1), then (imr ∨ twa
2k
, imr ′∨

twa
2k
, i) is on P as well.

If we concatenate P withMr′(twa
2k

), then we have a path from imr 2k−1 ∨ twa
2k

in graph Gr′(p) of length 2k(6 + L) − 7. Thus, |Mr(tqa
2k

)| = |Mr′(tqa
2k

)| =

2k(6 + L)− 6.

Claim 18 For any r′ and b ∈ {0, 1}, we have |Mr′(tqb
2k−1

)| = 2k−1(6 +L)− 4

iff |Mr′′(imr 2k−2)| = 2k−1(6 + L)− 6, where r′′ = r′ ∨ twb
2k−1

.

Proof of Claim 18. The proof is similar to the proof of Claim 17, we omit the
details.

Claim 19 |M(imrn)| = 2n/2(6+L)−6 iff ∃an∀an−1 . . . ∃a2∀a1 ∈ {0, 1}, such
that for r =

∨
k∈{1..n} twak

k
, |Mr(imr 0)| = L.

Proof of Claim 19. From Claim 14, we know that |Mr(imr 2k)| = 2k(6+L)−6
iff ∃a ∈ {0, 1} such that |Mr(tqa

2k
)| = 2k(6 + L) − 6. Together with Claim 17

and Claim 18, we have that for k ∈ {1..n/2}, |Mr(imr 2k)| = 2k(6 + L)− 6 iff
there exists a ∈ {0, 1} such that forall b ∈ {0, 1}, we have |Mr′′(imr 2k−2)| =
2k−1(6 + L)− 6, where r′′ = r ∨ twa

2k
∨ twb

2k−1
.

It is straightforward to prove by induction from k = n/2 to 1, that

|M(imrn)| = 2n/2(6 + L)− 6 iff ∃an∀an−1 . . . ∃a2k∀a2k−1,

such that |Mr(imr 2k−2)| = 2k−1(6 + L)− 6, where r =
∨n
i=2k−1 twaii .

The claim follows when k = 1.

Claim 20 S is satisfiable iff ∃an∀an−1 . . . ∃a2∀a1 ∈ {0, 1}, we have
|Mr(imr 0)| = L, where r =

∨n
k=1 twak

k
.

24

Proof of Claim 20. It is sufficient to prove that φ is satisfiable iff ∃an, . . . , a1 ∈
{0, 1}, such that for r =

∨n
k=1 twak

k
, we have |Mr(imr 0)| = L.

Suppose we have an, . . . , a1 such that r =
∨n
k=1 twak

k
, |Mr(imr 0)| = L. We

can construct a truth assignment T by defining T (xk) = true if ak = 0 and
T (xk) = false if ak = 1. By definition of fdij , for each i ∈ {1..L}, there exists
a j such that the edge labeled dij is on Mr(imr 0). By definition of Mr, if an
edge labeled dij is onMr(imr 0) and φij = xk, then ak = 0, and T (xk) = true;
and if φij = ¬xk, then ak = 1 and T (xk) = false. T (φij) = true in both cases.
Therefore, T satisfies φ.

Conversely, suppose T satisfies φ. We can construct r =
∨n
k=1 twak

k
from T

by defining ak = 0 if T (xk) = true and ak = 1 if T (xk) = false. For each
i ∈ {1..L}, there exists j such that T (φij) = true, which means that the edge
labeled dij can be on the path Mr(imr 0). Therefore, |Mr(imr 0)| = L.

We now proceed with the proof of the theorem. We conclude

S is satisfiable

iff ∃an∀an−1 . . . ∃a2∀a1: for r =
∨n
k=1 twak

k
, |Mr(imr 0)| = L (Claim 20)

iff |M(imrS)| = 2n/2(6 + L)− 6, where imrS = imrn (Claim 19)

iff maxStackSize(Pp) = 2n/2(6 + L)− 6 (Lemma 11),

so the exact maximum stack size problem is PSPACE-hard.

Notice that we can combine the last part of the proof of Theorem 13 with
Claim 16 to get that S is not satisfiable iff maxStackSize(Pp) < 2n/2(6+L)−6.

4 Monotonic Enriched Interrupt Programs

We now introduce an enriched version of the interrupt calculus, where we allow
conditionals on the interrupt mask register. The conditional can test if some
bit of the imr is on, and then take the bitwise or of the imr with a constant bit
sequence; or it can test if some bit of the imr is off, and then take the bitwise
and of the imr with a constant. The syntax for enriched interrupt programs is
given by the syntax from Section 2 together with the following clauses:

(statement) s ::= · · · | if(bit i on) imr = imr ∨ imr

| if(bit i off) imr = imr ∧ imr

25

The small-step operational semantics is given below:

〈h̄, R, imr , σ, if(bit i on)imr = imr ∨ imr ′; a〉 → 〈h̄, R, imr ∨ imr ′, σ, a〉
if imr(i) = 1

〈h̄, R, imr , σ, if(bit i on)imr = imr ∨ imr ′; a〉 → 〈h̄, R, imr , σ, a〉
if imr(i) = 0

〈h̄, R, imr , σ, if(bit i off)imr = imr ∧ imr ′; a〉 → 〈h̄, R, imr ∧ imr ′, σ, a〉
if imr(i) = 0

〈h̄, R, imr , σ, if(bit i off)imr = imr ∨ imr ′; a〉 → 〈h̄, R, imr , σ, a〉
if imr(i) = 1

Unlike the conditional statement if0 (x) s1 else s2 on data that has been
overapproximated, our analysis will be path sensitive in the imr-conditional.

Proposition 21 Monotonicity of enriched interrupt programs can be checked
in time exponential in the number of handlers (in co-NP).

Proof. It follows from Lemma 1 that a program is monotonic iff each handler
is monotonic in isolation. To check nonmonotonicity, we guess a handler and
an imr value that shows it is nonmonotonic, and check in polynomial time
that the handler is not monotonic for that imr.

For monotonic enriched interrupt programs, both the stack boundedness prob-
lem and the exact maximum stack size problem are PSPACE-complete. To
show this, we first show that the stack boundedness problem is PSPACE-
hard by a generic reduction from polynomial-space Turing machines. We fix a
PSPACE-complete Turing machine M . Given input x, we construct in poly-
nomial time a program p such that M accepts x iff p has an unbounded stack.
We have two handlers for each tape cell (one representing zero, and the other
representing one), and a handler for each triple (i, q, b) of head position i, con-
trol state q, and bit b. The handlers encode the working of the Turing machine
in a standard way. The main program sets the bits corresponding to the ini-
tial state of the Turing machine, with x written on the tape. Finally, we have
an extra handler that enables itself (and so can cause an unbounded stack)
which is set only when the machine reaches an accepting state. We provide
the formal proof below.

Theorem 22 The stack boundedness problem for monotonic enriched inter-
rupt programs is PSPACE-hard.

Proof. Fix a PSPACE-complete Turing Machine M which on any input x uses
at most r(|x|) space to decide whether M accepts x, where r is a polynomial.
Given any input x, the TM M always halts and answers accept or reject. It is
PSPACE-complete to decide given M and x whether M(x) accepts or rejects

26

[5]. Let the states of M be Q = {q1, q2, ..., qt} with qt as the accepting state.
Given such a machine M and an input x we reduce the problem of whether qt
is reachable to the stack boundedness analysis of a interrupt driven program
such that the stack size is infinite iff qt is reachable. We construct, from M
and x a monotone interrupt program p(M,x) such that M accepts x iff the
stack of p(M,x) is unbounded.

Now we describe the imr and handlers. The total number of bits in the imr
is 1 + 2× r(|x|) + 2× |Q| × r(|x|). The first (0th) bit is the master bit. There
are two bits for each position of the tape, so 2r(|x|) bits encode the tape of
the TM M . Further, the imr has one bit for every tuple (i, q, σ) for each tape
position i ∈ {1, . . . , r(|x|)}, TM state q ∈ Q, and symbol σ ∈ {0, 1}.

For k ∈ {1, . . . , r(|x|)}, the k-th tape cell is stored in bits 2k − 1 and 2k. For
all 1 ≤ k ≤ r(|x|), the (2k − 1)-th bit is 1 and 2k-th bit is 0 if the tape cell
in the k-th position of M is 0. Similarly, or all 1 ≤ k ≤ r(|x|), the (2k− 1)-th
bit is 0 and 2k-th bit is 1 if the tape cell in the k-th position of M is 1.

The bit for (i, q, σ) bit is turned on when the head of M is in the i-th cell,
the control is in state q and σ is written in the i-th cell. Formally, the bit
(2r(|x|) + 2kr(|x|) + 2i − 1) is 1 if the head of TM M is in position i, the
TM is in state qk, and the ith tape cell reads 0. The code for this handler
implements the transition for the TM M corresponding to (qk, 0). Similarly,
the (2r(|x|) + 2kr(|x|) + 2i)-th bit is 1 if the head of TM M is in position i,
the TM is in state qk, and the ith tape cell reads 1. The code for this handler
implements the transition for the TM M corresponding to (qk, 1).

The first 2×r(|x|) handlers which encode the tape cells do not change the sta-
tus of the imr, that is, the body of the handler Hi contains only the statement
iret for i = 1, . . . , 2r(|x|).

We show how to encode the transition of TM M in the code for the handler.
We first introduce some short-hand notation for readability.

• The operation write(σ, i) writes σ in the i-th cell tape of M . This is short-
hand for the following code:

(1) if σ = 0, the code is imr = imr ∧ ¬t2×i; imr = imr ∨ t2×i−1 (recall that
tj denotes the imr with all bits 0’s and only the j-th bit 1).

(2) if σ = 1, the code is imr = imr ∧ ¬t2×i−1; imr = imr ∨ t2×i.
• The operation set(i-th bit on) sets the i-th bit of the imr on. This is short-

hand for imr = imr ∨ ti.
• The operation set(i-th bit off) sets the i-th bit of the imr off. This is short-

hand for imr = imr ∧ ¬ti.

We now give the encoding of the transition relation of the TM.

27

Handler Hj {
1. set(j-th bit off);
2. write (σ, i)
3. if(bit (2(i+ 1)) on) { /* Check if the (i+ 1)-th TM cell is 1 */

3.1 set (l-th bit on)
3.2 set (0th bit on) /* set master bit */

}
4. if(bit (2(i+ 1)− 1) on) { /* Check if the (i+ 1)-th TM cell is 0 */

4.1 set ((l − 1)-th bit on)
4.2 set (0th bit on) /* set master bit */

}
5. imr = imr ∧ 000...00..00
6. iret

}

Fig. 3. Code for Turing Machine transition

Main {
1. imr = imr ∨ c

where c is an imr constant which correctly encodes
the starting configuration of M on x.

2. loop skip
}

Fig. 4. Code for the main program

(1) Consider Handler Hj where j = 2r(|x|) + 2kr(|x|) + 2i− 1 and the tran-
sition for (qk, 0) is (qk′ , σ, R). Let l = 2r(|x|) + 2k′r(|x|) + 2(i + 1). The
code for handler Hj is shown in Figure 3. Note that the two consecutive
imror statements in line 3.1 and 3.2 and 4.1 and 4.2 can be folded into a
single imror statement, we separate them for readability. We can encode
the other transition types similarly.

(2) The code for a handler Hj corresponding to an accepting state sets the
master bit on, and returns.

(3) The main program initializes the imr with the initial configuration, and
enters an empty loop. The code for the main program is shown in Figure 4.

Lemma 23 If M accepts x then the stack of p(M,x) grows unbounded.

Proof. We show that there is a sequence of interrupt occurrences such that a
handler corresponding to the accepting state is called. Whenever the l-th or
the (l− 1)-th bit in turned on and the master bit is turned on in lines 3.1,3.2
or 4.1,4.2 of Figure 3, an interrupt of type l or (l− 1) occurs. Hence following
this sequence a handler corresponding to the accepting state is called and then
the stack can grow unbounded as the handler sets the master bit on without
disabling itself.

28

Lemma 24 If M halts without accepting x then the stack of p(M,x) is
bounded.

Proof. If any handler which encodes the transitions of the M(x) returns it
sets all the bits of imr to 0 (Statement 6 in Figure 3). Hence all the following
checks in the statements 3 and 4 will fail and the master bit will not be set
any further. Hence the stack would go empty. So if the stack is unbounded
then no handler which encodes the configuration of the machine M returns.
If the stack is unbounded and the accepting state is not reached then there
is a handler h which encodes the transition of the machine M and it occurs
infinitely many times in the stack. This means one of the configurations of
M(x) can be repeated. This means there is a cycle in the configuration graph
of M(x) and hence it cannot halt. But this is a contradiction, since our TM
always halts. This proves that if the accepting state is not reached then the
stack is bounded.

From Lemmas 23, 24 the theorem follows.

We now give a PSPACE algorithm to check the exact maximum stack size.
Since we restrict our programs to be monotonic it follows from Lemma 4 that
the maximum length of the stack can be achieved with no handler returning
in between. Given a program p with m statements and n handlers, we label
the statements as pc1, . . . pcm. Let PC denote the set of all statements, i.e.,
PC = {pc1, . . . pcm}. Consider the graph Gp where there is a node v for every
statement with all possible imr values (i.e., v = 〈pc, imr〉 for some value among
PC and some imr value). Let v = 〈pc, imr〉 and v′ = 〈pc′, imr′〉 be two nodes
in the graph. There is an edge between v, v′ in G if any of the following two
conditions hold:

• on executing the statement at pc with imr value imr the control goes to pc′

and the value of imr is imr′. The weight of this edge is 0.
• pc′ is a starting address of a handler hi and enabled(imr, i) and imr′ =
imr ∧ ¬t0. The weight of this edge is 1.

We also have a special node in the graph called target and add edges to target
of weight 0 from all those nodes which correspond to a pc ∈ PC which is a
iret statement. This graph is exponential in the size of the input as there are
O(|PC| × 2n) nodes in the graph. The starting node of the graph is the node
with pc1 and imr = 0. If there is a node in the graph which is the starting
address of a handler h and which is reachable from the start node and also self-
reachable then the stack length would be infinite. This is because the sequence
of calls from the starting statement to the handler h is first executed and then
the cycle of handler calls is repeated infinitely many times. As the handler h
is in stack when it is called again the stack would grow infinite. Since there
is a sequence of interrupts which achieves the maximum stack length without

29

any handler returning in between (follows from Lemma 4) if there is no cycle
in Gp we need to find the longest path in the DAG Gp.

Theorem 25 The exact maximum stack size for monotonic enriched inter-
rupt programs can be found in time linear in the size of the program and ex-
ponential in the number of handlers. The complexity of exact maximum stack
size for monotonic enriched interrupt programs is PSPACE.

In polynomial space one can generate in lexicographic order all the nodes
that have a pc value of the starting statement of a handler. If such a node
is reachable from the start node, and also self-reachable, then the stack size
is infinite. Since the graph is exponential, this can be checked in PSPACE. If
no node has such a cycle, we find the longest path from the start node to the
target. Again, since longest path in a DAG is in NLOGSPACE, this can be
achieved in PSPACE. It follows that both the stack boundedness and exact
maximum stack size problems for monotonic enriched interrupt programs are
PSPACE-complete.

5 Nonmonotonic Enriched Interrupt Programs

In this section we consider interrupt programs with tests, but do not restrict
handlers to be monotonic. We give an EXPTIME algorithm to check stack
boundedness and find the exact maximum stack size for this class of programs.
The algorithm involves computing longest context-free paths in context-free
DAGs, a technique that may be of independent interest.

5.1 Longest Paths in Acyclic Context-free Graphs

We define a context-free graph as in [9]. Let Σ be a finite alphabet. A context-
free graph is a tuple G = (V,E,Σ) where V is a set of nodes and E ⊆ (V ×
V × (Σ ∪ {τ})) is a set of labeled edges (and τ is a special symbol not in Σ).

We shall particularly consider the context-free language of matched paren-
theses. Let Σ = {(1, (2, . . . , (k,)1,)2, . . . ,)k} be the alphabet of opening and
closing parentheses. Let L be the language generated by the context-free gram-
mar

M → M(iS | S for 1 ≤ i ≤ k

S → ε | (iS)iS for 1 ≤ i ≤ k

from the starting symbol M . Thus L defines words of matched parentheses
with possibly some opening parentheses mismatched. From this point, we re-
strict our discussion to this Σ and the language L.

30

Algorithm 2 Function LongestContextFreePath

Input: A context-free DAG G, a vertex v1 of G
Output: For each vertex v of G, return the length of the longest

context-free path from v to v1, and
0 if there is no context-free path from v to v1

1. For each vertex vj ∈ V : val [vj] = 0
2. Construct the transitive closure matrix T such that

T [i, j] = 1 iff there is a context-free path from i to j
3. For j = 1 to n:

3.1 For each immediate successor vi of vj such that
the edge evj ,vi from vj to vi satisfies wt(evj ,vi) ≥ 0:
val [vj] = max{val [vj], val [vi] + wt(evj ,vi)}

3.2 For each vertex vi ∈ V :
3.2.1 if(T [i, j]) (vj is context-free reachable from vi)

val [vi] = max{val[vi], val[vj]}

We associate with each edge of G a weight function wt : E → {0,+1,−1}
defined as follows:

• wt(e) = 0 if e is of the form (v, v′, τ),
• wt(e) = −1 if e is of the form (v, v′,)i) for some i,
• wt(e) = 1 if e is of the form (v, v′, (i) for some i.

A context-free path π in a context-free graph G is a sequence of vertices
v1, v2, . . . vk such that for all i = 1 . . . k − 1, there is an edge between vi
and vi+1, i.e., there is a letter σ ∈ Σ ∪ {τ} such that (vi, vi+1, σ) ∈ E and
the projection of the labels along the edges of the path to Σ is a word in
L. Given a context-free path π with edges e1, e2, . . . ek the cost of the path
Cost(π) is defined as

∑
i wt(ei). Note that Cost(π) ≥ 0 for any context-free

path π. A context-free graph G is a context-free DAG iff there is no cycle
C of G such that

∑
e∈C wt(e) > 0. Given a context-free DAG G = (V,E,Σ)

we define an ordering order : V → N of the vertices satisfying the following
condition: if there is a path π in G from vertex vi to vj and Cost(π) > 0 then
order(vj) < order(vi). This ordering is well defined for context-free DAGs. Let
G be a context-free DAG G, and let V = {v1, v2, . . . vn} be the ordering of the
vertex set consistent with order (i.e., order(vi) = i). We give a polynomial-
time procedure to find the longest context-free path from any node vi to v1 in
G.

The correctness proof of our algorithm uses a function Num from paths to N.
Given a path π we define Num(π) as max{order(v) | v occurs in π}. Given
a node v let Lv = {L1, L2, . . . Lk} be the set of longest paths from v to v1.
Then we define Numv1(v) = min{Num(Li) | Li ∈ Lv}. The correctness of the
algorithm follows from the following set of observations.

31

Lemma 26 If there is a longest path L from a node v to v1 such that L
starts with an opening parenthesis (i that is not matched along the path L then
order(v) = Numv1(v).

Proof. Consider any node v′ in the path L. Since the first opening parenthesis is
never matched, the sub-path L(v, v′) of L from v to v′ satisfies Cost(L(v, v′)) >
0. Hence it follows that for all nodes v′ in L, we have order(v′) < order(v).
Thus Numv1(v) = order(v).

Lemma 27 A node v in the DAG G satisfies the following conditions.

• If Numv1(v) = order(v) = j then within the execution of Statement 3.1 of
the j-th iteration of Loop 3 of function LongestContextFreePath, val [v] is
equal to the cost of a longest path from v to v1.

• If order(v) < Numv1(v) = j then by the j-th iteration of Loop 3 of function
LongestContextFreePath val [v] is equal to the cost of a longest path from v
to v1.

Proof. We prove by induction on Numv1(v). The base case holds when
Numv1(v) = 1, since v = v1. We now prove the inductive case. If the value of
the longest path is 0 then it was fixed initially and it cannot decrease. Other-
wise, there is a positive cost longest path from v to v1. We consider the two
cases when order(v) = Numv1(v) and when order(v) < Numv1(v).

Case order(v) = Numv1(v) = j. Let L(v, v1) be a longest path from v to v1

such that Num(L(v, v1)) = order(v). We consider the two possible cases.
(1) The longest path L(v, v1) is such that it starts with a opening paren-

thesis which is never matched. Let v′′ be the successor of v in L(v, v1).
Hence order(v′′) < order(v) = Numv1(v) = j. Also the sub-path
L(v′′, v1) of L(v, v1) is a longest path from v′′ to v1 (since other-
wise we could have a greater cost path from v to v1 by following
the path from v to v′′ and then the path from v′′ to v1). Hence
Numv1(v′′) < Numv1(v) = j. By the induction hypothesis, before
the j-th iteration val [v′′] is equal to the cost of the longest path from
v′′ to v1. Hence during the j-th iteration of Loop 3, when the loop
of statement 3.1 is executed and v′′ is chosen as v’s successor then
val [v] is set to the cost of the longest path from v to v1.

(2) The longest path L(v, v1) goes through a node v′ such that the cost
of the subpath of L(v, v′) of L(v, v1) satisfies Cost(L(v, v′)) = 0
and there is a opening parenthesis from v′ which is not matched in
L(v, v1). Clearly the sub-path L(v′, v1) must be a longest path from
v′ to v1 as otherwise L(v, v1) would not have been a longest path. It
follows from Lemma 26 that Numv1(v′) = order(v′) = k < j. By the
induction hypothesis, by the end of Statement 3.1 of k-th iteration

32

val [v′] is equal to the longest path from v′ to v1. As v can context-free
reach v′ we have during the execution of statement 3.2 of the k-th
iteration val [v] is equal to the longest path from v to v1.

Case order(v) < Numv1(v) = j. Let L(v, v1) be a longest path from v to v1.
The longest path L(v, v1) goes through a node v′ such that the cost of
the subpath of L(v, v′) of L(v, v1) satisfies Cost(L(v, v′)) = 0 and there is
an opening parenthesis from v′ which is not matched in L(v, v1). Clearly
the sub-path L(v′, v1) must be a longest path from v′ to v1 as otherwise
L(v, v1) would not have been a longest path. It follows from Lemma 26
that Numv1(v′) = order(v′) = k. By hypothesis by the end of Statement
3.1 of k-th iteration val [v′] is equal to the cost of the longest path from
v′ to v1. As v can context-free reach v′ we have during the execution of
statement 3.2 of the k-th iteration val [v] is equal to the longest path from
v to v1. As Numv1(v) ≥ order(v′) (since v′ occurs in the path) it follows
by the end of j-th iteration val [v] is equal to the cost of the longest path
from v to v1.

Notice also that every time val [v] is updated (to c, say), it is easy to construct
a witness path that shows that the cost of the longest path is at least c. This
concludes the proof.

From the above two lemmas, we get the following.

Corollary 28 At the end of function LongestContextFreePath(G, v1), for each
vertex v, the value of val [v] is equal to the longest context-free path to v1, and
equal to zero if there is no context-free path to v1.

We now consider the time complexity of the function LongestContextFreePath.
In the Function LongestContextFreePath the statement 3.2.1 gets executed at
most n2 times since the loop on line 3 gets executed n times at most and the
nested loop on line 3.2 also gets executed n times at most. The context-free
transitive closure can be constructed in O(n3) time [12]. Hence the complexity
of our algorithm is polynomial and it runs in time O(n2 + n3) = O(n3).

Theorem 29 The longest context-free path of a context-free DAG can be
found in time cubic in the size of the graph.

To complete our description of the algorithm, we must check if a given context-
free graph is a context-free DAG, and generate the topological ordering order
for a context-free DAG. We give a polynomial-time procedure to check whether
a given context-free graph is a DAG. Let G = (V,E,Σ) be a given context-free
graph, and let V = {1, 2, . . . n}. For every node k ∈ V the graph G can be
unrolled as a DAG for depth |V |, and it can be checked if there is a path π
from k to k such that Cost(π) > 0. Given the graph G and a node k we create
a context-free DAG Gk = (Vk, Ek,Σ) as follows:

33

1. Vk = {k0} ∪ {(i, j) | 1 ≤ i ≤ n− 2, 1 ≤ j ≤ n} ∪ {kn−1}
2. Ek = {〈k0, (1, j), ∗〉 | 〈k, j, ∗〉 ∈ E} ∪{〈(i, j), (i+ 1, j′), ∗〉 | 〈j, j′, ∗〉 ∈ E}

∪{〈(n− 2, j), kn−1, ∗〉 | 〈j, k, ∗〉 ∈ E}
∪{〈k0, (1, k), τ〉} ∪ {〈(i, k), (i+ 1, k), τ〉}

where ∗ can represent a opening parenthesis, closing parenthesis or can be τ .
Notice that the edges in the last line ensure that if there is a cycle of positive
cost from k to itself with length t < n then it is possible to go from k0 to
(n− t− 1, k) and then to reach kn−1 by a path of positive cost.

We can find the longest context-free path from k0 to kn in Gn (by the function
LongestContextFreePath). If the length is positive, then there is a positive cycle
in G from k to k. If for all nodes the length of the longest path in Gn is 0, then
G is a context-free DAG and the longest context-free path can be computed
in G. Given a context-free DAG G we can define order(v) in polynomial time.
If a vertex v can reach v′ and v′ can reach v put them in the same group of
vertices. Both the path from v to v′ and v′ to v must be cost 0 since there
is no cycle of positive cost. Hence the ordering of vertices within a group
can be arbitrary. We can topologically order the graph induced by the groups
and then assign an order to the vertices where vertices in the same group are
ordered arbitrarily.

5.2 Stack Size Analysis

We present an algorithm to check for stack boundedness and exact maximum
stack size. The idea is to perform context-free longest path analysis on the
state space of the program. Given a program p with m statements and n
handlers, we label the statements as pc1, pc2, . . . pcm. Let PC = {pc1, . . . pcm}
as before. We construct a context-free graph Gp = 〈V,E,Σ〉, called the state
graph of p, where Σ = {(1, (2, . . . , (m,)1,)2, . . .)m} as follows:

• V = PC × IMR, where IMR is the set of all 2n possible imr values.
• E ⊆ (V × V × (Σ ∪ {τ}) consists of the following edges.
(1) Handler call: (v, v′, (i) ∈ E iff v = (pci, imr 1) and v′ = (pcj, imr 2) and pcj

is the starting address of some handler hj such that enabled(imr 1, j) and
imr 2 = imr 1 ∧ ¬t0.

(2) Handler return: (v′, v,)i) ∈ E iff v = (pci, imr 1) and v′ = (pcj, imr 2) and
pcj is the iret statement of some handler and imr 1 = imr 2 ∨ t0.

(3) Statement execution: (v, v′, τ) ∈ E iff v = (pci, imr 1) and v′ = (pcj, imr 2)
and executing the statement at pci with imr value imr 1 the control goes
to pcj and the imr value is imr 2.

The vertex (pc1, 0) is the starting vertex of Gp. Let G′p be the induced subgraph
of Gp containing only nodes that are context-free reachable from the start

34

Algorithm 3 Function StackSizeGeneral

Input: Enriched interrupt program p
Output: maxStackSize(Pp)
1. Build the state graph Gp = 〈V,E,Σ〉 from the program p
2. Let V ′ = {v′ | there is a context-free path from the starting vertex to v′}
3. Let G′p be the subgraph of Gp induced by the vertex set V ′

4. If G′p is not a context-free DAG then return “infinite”
5. Else create G′′p = (V ′′, E ′′,Σ) as follows :

5.1 V ′′ = V ′ ∪ {target} and E ′′ = E ′ ∪ {(v, target, τ) | v ∈ V ′}
6. Return the value of the longest context-free path

from the starting vertex to target

node. If G′p is not a context-free DAG then we report that stack is unbounded.
Otherwise, we create a new DAG G′′p by adding a new vertex target and adding
edges to target from all nodes of G′p of weight 0. Then, we find the value of a
longest context-free path from the start vertex to target in the DAG G′′p.

From the construction of the state graph, it follows that there is a context-
free path from a vertex v = (pc, imr) to v′ = (pc′, imr′) in the state graph
Gp if there exists stores R, R′ and stacks σ, σ′ such that 〈h̄, R, imr, σ, pc〉 →∗
〈h̄, R′, imr′, σ′pc′〉. Moreover, if G′p is the reachable state graph then there
exists K such that for all P ′ such that Pp →∗ P ′ we have |P ′.stk| ≤ K iff
G′p is a context-free DAG. To see this, first notice that if G′p is not a context-
free DAG then there is a cycle of positive cost. Traversing this cycle infinitely
many times makes the stack grow unbounded. On the other hand, if the stack
is unbounded then there is a program address that is visited infinitely many
times with the same imr value and the stack grows between the successive
visits. Hence there is a cycle of positive cost inG′p. These observations, together
with Theorem 29 show that function StackSizeGeneral correctly computes the
exact maximum stack size of an interrupt program p.

Theorem 30 The exact maximum stack size of nonmonotonic enriched in-
terrupt programs can be found in time cubic in the size of the program and
exponential in the number of handlers.

Proof. The number of vertices in Gp is m× 2n, for m program statements and
n interrupt handlers. It follows from Theorem 29 and the earlier discussion
that the steps 1, 2, 3, 4, 5, and 6 of StackSizeGeneral can be computed in time
polynomial in Gp. Since Gp is linear in the size of the input program p, and
exponential in the number of handlers, we have a procedure for determining the
exact maximum stack size of nonmonotonic enriched interrupt programs that
runs in O(m38n). This gives an EXPTIME procedure for the exact maximum
stack size problem.

35

While our syntax ensures that all statements that modify the imr are mono-
tonic, this is not a fundamental limitation for the above algorithm. Indeed, we
can extend the syntax of the enriched calculus to allow any imr operations,
and the above algorithm still solves the exact maximum stack size problem,
with no change in complexity.

We leave open whether the exact maximum stack size problem for non-
monotonic interrupts programs, in the nonenriched and enriched cases, is
EXPTIME-hard or PSPACE-complete (PSPACE-hardness follows from The-
orem 22). One can note that the time to execute the algorithms grows expo-
nentially with the number of interrupt handlers, which is typically small, and
cubically with the size of the interrupt handler programs.

Acknowledgments

Palsberg, Ma, and Zhao were supported by the NSF ITR award 0112628.
Henzinger, Chatterjee, and Majumdar were supported by the AFOSR grant
F49620-00-1-0327, the DARPA grants F33615-C-98-3614 and F33615-00-C-
1693, the MARCO grant 98-DT-660, and the NSF grants CCR-0208875 and
CCR-0085949.

References

[1] D. Brylow, N. Damgaard, and J. Palsberg. Static checking of interrupt-driven
software. In ICSE: International Conference on Software Engineering, pp. 47–56.
ACM/IEEE, 2001.

[2] G. G. Hillebrand, P. C. Kanellakis, H. G. Mairson, and M. Y. Vardi. Undecidable
boundedness problems for datalog programs. Journal of Logic Programming
25(2):163–190, 1995.

[3] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems
using sized types. In POPL: Principles of Programming Languages, pp. 410–423.
ACM, 1996.

[4] J. Palsberg and D. Ma. A typed interrupt calculus. In FTRTFT: Formal
Techniques in Real-Time and Fault-tolerant Systems, LNCS 2469, pp. 291–310.
Springer, 2002.

[5] C.H. Papadimitriou. Computational Complexity. Addision-Wesley, 1994.

[6] C.H. Papadimitriou and M. Yannakakis. The complexity of facets (and some
facets of complexity). Journal of Computer and System Sciences 28:244-259,
1984.

36

[7] L. Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of
Technology, 2000.

[8] J. Regehr, A. Reid, and K. Webb, Eliminating stack overflow by abstract
interpretation, In EMSOFT’03: Third International Workshop on Embedded
Software, 2003. To appear.

[9] T.W. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In POPL 95: Principles of Programming Languages, pp.
49–61. ACM, 1995.

[10] T.W. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their
application to interprocedural dataflow analysis. In SAS 03: Static Analysis
Symposium, LNCS 2694, pp. 189–213. Springer, 2003.

[11] Z. Wan, W. Taha, and P. Hudak. Event-driven FRP. In PADL: Practical
Aspects of Declarative Languages, LNCS 2257, pp. 155–172. Springer, 2002.

[12] M. Yannakakis. Graph-theoretic methods in database theory. In PODS:
Principles of Database Systems, pp. 203–242. ACM, 1990.

37

