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and Güler Şahin gave all the blessings and support with love. My sisters and brothers
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Abstract

Automata-based Model Counting String Constraint Solver for Vulnerability Analysis

by

Abdulbaki Aydın

Most common vulnerabilities in modern software applications are due to errors in

string manipulation code. String constraint solvers are essential components of program

analysis techniques for detecting and repairing vulnerabilities that are due to string

manipulation errors. In this dissertation, we present an automata-based string constraint

solver for vulnerability analysis of string manipulating programs.

Given a string constraint, we generate an automaton that accepts all solutions that

satisfy the constraint. Our string constraint solver can also map linear arithmetic con-

straints to automata in order to handle constraints on string lengths. By integrating our

string constraint solver to a symbolic execution tool, we can check for string manipulation

errors in programs. Recently, quantitative and probabilistic program analyses techniques

have been proposed which require counting the number of solutions to string constraints.

We extend our string constraint solver with model counting capability based on the obser-

vation that, using an automata-based constraint representation, model counting reduces

to path counting, which can be solved precisely. Our approach is parameterized in the

sense that, we do not assume a finite domain size during automata construction, result-

ing in a potentially infinite set of solutions, and our model counting approach works for

arbitrarily large bounds.

We have implemented our approach in a tool called ABC (Automata-Based model

Counter) using a constraint language that is compatible with the SMTLIB language

specification used by satisfiability-modulo-theories solvers. This SMTLIB interface fa-
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cilitates integration of our constraint solver with existing symbolic execution tools. We

demonstrate the effectiveness of ABC on a large set of string constraints extracted from

real-world web applications.

We also present automata-based testing techniques for string manipulating programs.

A vulnerability signature is a characterization of all user inputs that can be used to ex-

ploit a vulnerability. Automata-based static string analysis techniques allow automated

computation of vulnerability signatures represented as automata. Given a vulnerability

signature represented as an automaton, we present algorithms for test case generation

based on state, transition, and path coverage. These automatically generated test cases

can be used to test applications that are not analyzable statically, and to discover attack

strings that demonstrate how the vulnerabilities can be exploited. We experimentally

compare different coverage criteria and demonstrate the effectiveness of our test genera-

tion approach.
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Chapter 1

Introduction

Support for string manipulation in programming languages has been increasing due to the

common usage of strings in modern software applications. For example, many modern

software applications are web applications, and most of what web applications do is string

processing. Common uses of string manipulation in modern software development are as

follows:

• Input validation and sanitization: Most modern software applications are web-

based and the user inputs to web applications typically come in the string form.

The input string entered by the user is parsed by the web application and can

be used as the input parameter for the action that is executed in response to the

user’s request. Web applications are globally accessible and any user can interact

with them from all over the world. A user can input a string in an undesired

format or a malicious user can input a string that contains hidden commands.

Application developers cannot trust that user input is valid and safe; they need to

validate and/or sanitize user input to keep application and its data in a consistent

state and to avoid vulnerabilities. Input validation rejects user input if it is not in

desired format or if it contains harmful string patterns. Input sanitization modifies
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Introduction Chapter 1

user input string to transform it into a safe and valid input parameter to the

web application. Both input validation and sanitization involves extensive string

manipulation since user inputs are typically in string form.

• Database query generation: Many modern software applications have a back-end

database component to store data. Many user interactions with the application

can trigger database queries, which are constructed at runtime using string manip-

ulation.

• Formatted data generation: Modern software applications commonly use well-

known data formats to store, exchange, or describe data. XML and JSON are two

of the widely used data formats. HTML is the most common format worldwide

to describe web documents and to display user input forms in web applications.

Creation of such data formats involves extensive string manipulation.

• Dynamic code generation: Many modern software applications are highly dynamic

where application code is generated on the fly based on user input. In case of web

applications, dynamically generated code can correspond to client side code (e.g.,

JavaScript) or in some cases it can correspond to server side code. In both cases,

dynamic code generation requires string manipulation.

In all use cases listed above, errors in string manipulation code can have disastrous

effects. Analyzing string manipulation code is extremely important in order to avoid

failures in modern software. String analysis aims to automatically analyze string manip-

ulation code to check its correctness, based on the developer’s expectations. It is a static

program analysis technique that determines the values that a string expression can take

during program execution. String analysis can be used to solve many problems in modern

software systems that relate to string manipulation. It can be applied, e.g., to identify

2



Introduction Chapter 1

security vulnerabilities by checking if a security sensitive function receives an input that

contains an exploit [1, 2, 3, 4], to identify set of user inputs that reaches to a sensitive

function with certain values [5], to generate test cases from set of string values of a string

expression [6], to identify data format generation errors [7], to identify the set of queries

that are sent to back-end database [8, 2], to identify set of dynamically generated code

(e.g., client-side code) [9, 10, 11], and to generate patches for string manipulation code

(e.g., patching input validation and sanitization functions) [12, 13].

Like many other program-analysis problems, it is not possible to solve the string

analysis problem precisely (i.e., it is not possible to precisely determine the set of string

values that can reach a program point). However, one can compute over- or under-

approximations of possible string values. If the approximations are precise enough, they

can enable us to demonstrate existence or absence of bugs in string manipulating code.

String analysis has been an active research area in the last decade, resulting in a

wide variety of string-analysis techniques such as, grammar-based string analysis [7, 14],

automata-based symbolic string analysis [15, 16, 17, 18, 19], string constraint solving

[20, 21, 22, 23, 24, 25], string abstractions [26, 27], relational string analysis [28], vulner-

ability detection using string analysis [1, 2, 29], differential string analysis [30, 13], and

automated repair using string analysis [12, 13]. Two main string analysis approaches

are 1) symbolic verification techniques based on fixpoint computations, and 2) symbolic

execution techniques based on constraint solving.

There are two recent research directions that aim to extend symbolic execution be-

yond assertion checking. One of them is quantitative information flow, where the goal is

to determine how much secret information is leaked from a given program [31, 32, 33, 34],

and another one is probabilistic symbolic execution where the goal is to compute proba-

bilities of program execution paths in order to establish reliability of the given program

[35, 36]. Interestingly, both of these approaches require the same basic extension to con-
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Introduction Chapter 1

straint solving: They require a model-counting constraint solver that not only determines

if a constraint is satisfiable, but also computes the number of satisfying instances. This

is known as the model counting problem.

In this dissertation, we show that automata-based techniques are effective in handling

mixed string and integer constraint solving and model counting problems that arise in

symbolic analysis of string manipulating programs.

The rest of this dissertation presents the following contributions:

• In Chapter 2 we provide background information on the state of the art techniques

and give examples of model counting applications.

• In Chapter 3 we present a core string constraint language and demonstrate that

this constraint language can capture string constraints from multiple programming

languages.

• In Chapter 4 we discuss the techniques we developed for mapping string constraints

to automata.

• In Chapter 5 we discus the techniques we developed for handling relational and

mixed constraints using multi-track automata.

• In Chapter 7 we discuss automata-based model counting.

• In Chapter 8 we discuss the ABC tool and provide experiments demonstrating the

effectiveness of automata-based string constraint solving and model-counting.

• In Chapter 9 we discuss automata-based test case generation for string manipulat-

ing programs.

Finally, in Chapter 10, we conclude the work.

4



Chapter 2

Background

Analysis of string manipulating programs has been studied extensively in recent years.

In this chapter, we first provide illustrative examples of the two commonly used string

analysis techniques: symbolic verification and symbolic execution. Then, we discuss cur-

rent string constraint solving techniques. Lastly we provide examples of model counting

applications to motivate our work.

2.1 Symbolic Verification

Symbolic verification is a general program analysis technique to verify correctness of

programs. In symbolic verification, programs are analyzed symbolically using an abstrac-

tion that depends on the verification problem. String manipulation errors that relate to

input validation or sanitization can be detected using symbolic verification techniques.

Input validation or sanitization is crucial for web applications. If input validation

or sanitization is not used, inputs that violate the expected format can easily cause an

application to crash since the user input becomes the input parameter of the action that

is executed based on the user request. Moreover, during action execution, user input can

5
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1 <?php

2 function escdata ($data) {

3 global $dbc;

4 if (ini_get(’magic_quotes_gpc’)) {

5 $data = stripslashes($data);

6 }

7 return mysql_real_escape_string(trim ($data), $dbc);

8 }

9

10 function xss_clean ($var) {

11 $var = preg_replace(’/[Jj][Aa][Vv][Aa][Ss][Cc][Rr][Ii][Pp][Tt]/’, ’

java script’, $var );

12 return $var;

13 }

14

15 $titlee = escdata(xss_clean($_POST[’title’]) );

16 echo "<p>Title:<br />" . $titlee . "</p>";

17 ?>

Figure 2.1: A PHP sanitization example.

be passed as a parameter to security sensitive operations such as sending a query to the

back-end database. In order to ensure the security of the application, the user inputs

that flow into security sensitive functions must be correctly validated and sanitized.

Due to global accessibility of web applications, malicious users all around the world can

exploit a vulnerable application, so any existing vulnerability in a web application is

likely to be exploited by some malicious user somewhere. Given the significance of this

security threat, one would expect web application developers to be extremely careful in

writing input validation and sanitization functions. Unfortunately, web applications are

notorious for security vulnerabilities such as SQL injection and cross-site scripting (XSS)

that are due to improper input validation and sanitization.

As an illustrative example, Figure 2.1 represents a simplified version of a real world

input sanitization example from a database driven knowledge base management applica-

6
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tion called Andy’s PHP Knowledge Base 1 to avoid XSS attacks. User input is read

at line 15 from global parameter $ POST[’title’] and first passed onto xss clean

function. Next, the result of xss clean function call is passed onto escdata function

for further sanitization. Finally, the resulting string is used to generate an HTML code

as a response to the user request. Unfortunately, sanitization done on the input string is

not sufficient enough to avoid XSS attacks. It allows malicious users to inject arbitrary

javascript code (via user input), which leads to <script tag to flow into a sink (i.e., a

security sensitive function).

Automata-based static string analysis, which is a type of symbolic verification tech-

nique, has been used to check for vulnerabilities such as XSS [29]. Automata-based

analysis encodes the set of string values that string variables can take at any point dur-

ing program execution as automata. This information can be used to verify that string

values are sanitized properly and to detect programming errors and security vulnerabili-

ties.

Automata-based static string analysis works on top of a data dependency graph of

the program that is being analyzed. A data dependency graph is a directed graph rep-

resenting dependencies between program points as a flow from program entry points to

security sensitive functions (i.e., sinks). Figure 2.2 shows the data dependency graph for

the PHP code presented in Figure 2.1. In the example, echo function is treated as a

security sensitive function (i.e., a sink) and the data dependency graph represents all pro-

gram points that affect possible string values that appear as a parameter to the selected

sensitive function. The data nodes are represented with light blue rectangles and the op-

eration nodes are represented with ellipses in the data dependency graph. Each node in

the graph has a subscript that represents topological sort order of the node. Automata-

based symbolic string analysis creates an automaton for each node by traversing the data

1http://aphpkb.org/
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"java script" :11
2

$ POST[’title’] :11
3

/[Jj][Aa][Vv][Aa]
[Ss][Cc][Rr][Ii]
[Pp][Tt]/ :11

1

preg replace :11
4

stripslashes :5
5

trim :5
6

$dbc :7
7

mysql real escape string :5
8

$titlee :16
10

"<p>Title:<br />" :16

9

. :16
11

"</p>" :16
12

. :16
13

echo :16
14

param#2 param#3param#1

param#1

param#1

param#1

param#1 param#2

param#1 param#2

param#1 param#2

Figure 2.2: Data dependency graph of the example code in Figure 2.1.
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dependency graph in topological order. First node in the example corresponds to the reg-

ular expression pattern /[Jj][Aa][Vv][Aa][Ss][Cc][Rr][Ii][Pp][Tt]/ and

an automaton that accepts the set of strings defined by the regular expression is cre-

ated for this node. Similarly, an automaton that accepts the string "java script"

is created for the second node. Third node corresponds to a public user input. A user

can enter any string value as an input to a web application. In other words, public in-

puts are initially unrestricted, thus an automaton that accepts any string is generated

for the third node. Fourth node is an operation node which corresponds to PHP built-

in function preg replace. Automata-based string analysis uses symbolic versions

of built-in string manipulating functions. These symbolic functions accept automata

as inputs (characterizing possible input strings) and return an automaton as the result

(characterizing all possible output strings based on the given input strings). Symbolic

version of preg replace function accepts the first three automata generated for the

first three nodes as parameters. It computes an automaton for the fourth node as a result

of the symbolic computation. There may be cases where a node receives data flows from

different sources for the same target. trim node, the sixth node in this example, gets

two different flows; one from the result of preg replace node and one from the result

of stripslashes node for its only parameter. In such cases, union of all the automata

that are computed for source nodes is passed as a parameter to target node. Automata

computation for each node continues in the same way described above in topological

order until an automaton is created for each node in the data dependency graph. Note

that seventh node in the graph does not have any effect on string values. Such nodes

are discarded during automata computation. For the sink node, echo call at line 16, an

automaton that represents all the values that flow into the sink function is generated.

To do vulnerability check one has to specify harmful strings that can exploit a security

vulnerability at the sink location. Harmful input strings can be specified with a regular

9
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expression which is also known as an attack pattern. To simplify our discussion with the

running example, we can assume an attack pattern as a set of all strings that contain

an open script tag (e.g., /.*<.*/). An automaton that accepts all strings defined by

the attack pattern is generated. Vulnerability check is done by checking the emptiness

of the intersection of the attack pattern automaton and the sink node automaton. In

the example we have, the intersection automaton is not empty. In that case, symbolic

string analysis conclude that the application is vulnerable to certain attacks defined by

the attack pattern.

As shown in the example, automata-based string analysis techniques can be used to

check for security vulnerabilities in web applications. Automata-based symbolic string

analysis can handle more complex programs such as the ones with loop constructs. A

loop in a program may correspond to a cycle in the data dependency graph. In such cases,

strongly connected components are identified in the data dependency graph. Automata-

based symbolic string analysis provides a widening operator [37, 29] defined on automata

to approximate fixpoint computations to handle loops. A strongly connected component

can be treated as a single node in the data dependency graph by computing an automaton

for it with the help of the automata widening operator. With that, cyclic data dependency

graphs can be handled, i.e., programs with loop constructs can be analyzed. Automata-

based symbolic string analysis can also handle unbounded strings, because set of string

values are represented by regular languages. With the advantages of automata-based

symbolic string representation, the vulnerability analysis described here can be extended

to other types of vulnerabilities using similar techniques.

10
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2.2 Symbolic Execution

Symbolic execution is a program analysis technique to determine what input values

cause each path of a program to execute [38]. Symbolic execution assumes symbolic

values for the program inputs rather than using concrete values as normal execution of

the program would. Expressions encountered during symbolic execution are expressed

as functions of the symbolic variables. At any point during symbolic execution, program

state is described with the value of the program counter and with a symbolic expressions

known as the path condition (PC). A PC is a constraint on input values that must be

satisfied in order for a program to reach the location that PC corresponds. The set of all

possible executions of a program is represented by a symbolic execution tree.

Figure 2.3 shows a Java string manipulation example originally presented as a com-

mand injection example in an earlier work [39] and used as a string constraint solving

example in Symbolic Path Finder2 (SPF). It is part of the WU-FTPD implementation

of the file transfer protocol. It is originally written in C programming language and the

example is converted from the original version. If the input command contains substring

"%n" an exception is thrown at line 22. In the original implementation, this situation

would allow user to alter program stack and gain privileged access to server running the

program. This example demonstrates one application of symbolic execution, it checks

feasibility of program execution paths that may lead to a vulnerability.

Figure 2.4 represents the symbolic execution tree of site exec function in the

example. Symbolic execution tree is built on the fly based on a traversal strategy (e.g.,

depth-first, breadth-first). Symbolic execution tree of our running example is created by

exploring program paths with depth-first exploration strategy. Blue rectangles represent

updates on string expressions and diamonds represent branch points encountered during

2http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

11
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1 public void site_exec(String cmd) {

2 String p = "home/ftp/bin";

3 int j, sp = cmd.indexOf(’ ’);

4

5 if (sp == -1) {

6 j = cmd.lastIndexOf(’/’);

7 } else {

8 j = cmd.lastIndexOf(’/’, sp);

9 }

10

11 String r = cmd.substring(j);

12 int l = r.length() + p.length();

13

14 if (l > 32) {

15 return;

16 }

17

18 String buf = p + r;

19 boolean t = buf.contains("%n");

20

21 if (t == true) {

22 throw new Exception("THREAT");

23 }

24

25 execute(buf);

26 return;

27 }

Figure 2.3: A Java string manipulation example.

12
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cmd=CMD, p=P, j=J, sp=SP, r=R, l=L, buf=BUF, t=T

P = "home/ftp/bin" :2

SP = CMD.indexOf(’ ’) :3

SP == -1 :5

J = CMD.lastIndexOf(’/’) :6

R = CMD.substring(J) :11

L = R.length()+P.length() :12

J = CMD.lastIndexOf(’/’, SP) :8

R = CMD.substring(J) :11

L = R.length()+P.length() :12

L > 32 :14 L > 32 :14

return :15

BUF = P + R :18

T = BUF.contains("%n") :19

return :15

BUF = P + R :18

T = BUF.contains("%n") :19

T == true :21 T == true :21

throw new Exception :22

execute(BUF) :25

return :26

throw new Exception :22

execute(BUF) :25

return :26

PC0 : true

PC1 : SP = −1 PC6 : SP 6= −1

PC2 : SP = −1∧
L > 32

PC3 : SP = −1∧
L ≤ 32

PC7 : SP 6= −1∧
L > 32

PC8 : SP 6= −1∧
L ≤ 32

PC4 : SP = −1∧
L ≤ 32 ∧ T

PC5 : SP = −1∧
L ≤ 32 ∧ ¬T

PC9 : SP 6= −1∧
L ≤ 32 ∧ T

PC10 : SP 6= −1∧
L ≤ 32 ∧ ¬T

Figure 2.4: Symbolic execution tree of the example code in Figure 2.3.

13



Background Chapter 2

symbolic execution. Initially, all program variables are replaced with symbolic variables,

cmd=CMD, p=P, j=J, sp=SP, r=R, l=L, buf=BUF, t=T and initial PC is set

to true, PC0 = true. At line 3 symbolic variable P is assigned to concrete string with

value "home/ftp/bin". At line 4 symbolic variable SP is assigned to a function of

symbolic variable CMD. Line 6 corresponds to a branch point where it checks the condition

on symbolic variable SP. In order to continue with the symbolic execution, PC is updated

with constraints on the symbolic variables for alternative paths, i.e., PC1 : SP = −1

and later on PC6 : SP 6= −1 are generated. Satisfiability of PC1 is checked using string

constraint solvers; if it is satisfiable, symbolic execution continues to explore deeper.

Otherwise, if a path condition is unsatisfiable, symbolic execution does not continue for

that path and it backtracks and checks satisfiability of alternative PCs.

In the example, the symbolic execution tree shows six different feasible paths repre-

sented by path constraints PC2, PC4, PC5, PC7, PC9, and PC10. Among those PC4

and PC9 characterizes concrete program executions that can exploit the vulnerability

with the following conditions:

PC4 : SP = −1 ∧ L ≤ 32 ∧ T

PC9 : SP 6= −1 ∧ L ≤ 32 ∧ T

where each PC can be expanded by writing them as function of symbolic variable CMD:

14
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PC4 : CMD .indexOf(′ ′) = −1 ∧ CMD .substring(CMD .lastIndexOf(′/′)).length() +

“home/ftp/bin”.length() ≤ 32 ∧ (“home/ftp/bin”+

CMD .substring(CMD .lastIndexOf(′/′))).contains(“%n”)

PC9 : CMD .indexOf(′ ′) 6= −1 ∧ CMD .substring(CMD .lastIndexOf(′/′,CMD

.indexOf(′ ′))).length() + “home/ftp/bin”.length() ≤ 32 ∧ (“home/ftp/bin”+

CMD .substring(CMD .lastIndexOf(′/′,CMD .indexOf(′ ′)))).contains(“%n”)

Expanded versions of path constraints PC4 and PC9 shows that string constraints

can be mixed with integer constraints. There are also complex string functions such

as lastIndexOf and substring where the result of the former can be a parameter to the

latter as in the above PCs. Type of the constraints that we get from the example shows

that string constraint solving is essential for symbolic execution of string manipulating

programs.

2.3 String Constraint Solving

Symbolic execution can be applied to string manipulating programs. However, sym-

bolic execution of string manipulating programs is difficult since solving string constraints

is a challenging problem. String constraint solving is challenging due to two main reasons:

1) String constraints are usually mixed with integer constrains which requires solving in-

teger constraints together with string constraints. 2) With the increasing usage of strings

in modern software development, programming languages provide increasingly complex

string operations that need to be handled by string constraint solvers.

Several string constraint solvers (satisfiability checkers) have been proposed in re-
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cent years. There are two main approaches: 1) bit-vector based bounded checking

[26, 14, 20, 22], and 2) satisfiability modulo theories (SMT) based constraint solving

[21, 40, 41, 24, 23]. Bit-vector based solvers support core string operations such as

equality, membership, concatenation, and string length equations. Additional complex

operations can be encoded using core string operations to some extent. SMT based con-

straint solvers support core string operations, and, can also support some complex string

operations. Both approaches are good at solving string constraints with length equa-

tions, i.e., bounding the length of the strings allows satisfiability checkers to solve length

equations efficiently. Bit-vector based solvers have limited support for mixed string con-

straints. Compared to the bit-vector based approaches, SMT solvers support several

different theories and they are more expressive in terms of mixed constraints.

Theories supported by SMT solvers are standardized by SMTLIB3 community. There

are no standards defined for string theory yet. String constraint solving is still an active

research area that is evolving.

2.4 Model Counting

Model counting is an extension to constraint solving where instead of just answering

to the question “Does there exist a model that satisfies a given constraint?” it also tries

to answer “How many models are there that satisfies a given constraint?” We provide

an example below to demonstrate a use case for model counting.

How strong is my password policy? Consider the example in Figure 2.5 which is a

C string manipulation example that is originally presented as a use case of model counting

[42]. On UNIX, users use the passwd utility to change their passwords. The example

3http://smtlib.cs.uiowa.edu/
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1 static int string_checker_helper (const char* p1, const char* p2) {

2 if (strcasestr(p2, p1) != NULL || strcasestr(p1, p2) {

3 return 1;

4 }

5 return 0;

6 }

7

8 static int string_checker (const char* p1, const char* p2) {

9 ...

10 int ret = string_checker_helper(p1, p2); ...

11 char* p = reverse_of(p1); ...

12 ret |= string_checker_helper(p, p2); ...

13 return ret;

14 }

15

16 static const char* obscure_msg(const char* old_p, const char* new_p, const

struct passed* pw) {

17 ...

18 if (old_p && old_p[0] != ’\0’){

19 if (string_checker(new_p, old_p)) {

20 return "similar to old password";

21 }

22 }

23 ...

24 return NULL;

25 }

Figure 2.5: A Java string manipulation example.
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is a simplified version of a C code called obscure which is used by passwd utility

to check the password strength. At line 1, string checkher helper functions

checks if any of the parameters is a substring of the other one (strcasestr function

works as a case insensitive substring check). At line 8, string checker function

calls string checkher helper function twice; first with the original parameters

and then by reversing the input parameter p1. If strength check fails, obscure msg

function warns user for the similarity to the old password.

Suppose an attacker learns old password and the constraints imposed on new password

by obscure utility. The model counting question is, how many possible new password

values are there for the attacker to try?

Let us assume old password is “abc-16” and attacker is trying to estimate the number

of all possible new passwords. The obscure function checks if one does not contain the

other or its reverse in a case insensitive manner. The example code updates the password

only if the new password is not too similar to the old one. A symbolic execution tool can

identify PCs that result in password update, i.e., the relation between new password and

old password can be expressed in terms of a PC. For example, the following is a path

constraint that leads to password update:

strcasestr(NEW P, "abc-16") = NULL ∧

strcasestr("abc-16", NEW P) = NULL ∧

strcasestr(NEW P, "61-cba") = NULL ∧

strcasestr("61-cba", NEW P) = NULL

A string model counter can count number of solutions to symbolic variable NEW P

that satisfies the given PC. This information can be used for inferring the value of the new

password if an attacker knows the value of the old password. Using model counting, one

18
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can assess the likelihood of an attacker guessing the new password, hence, can evaluate

the strength of the password policy.
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Chapter 3

Constraint Language

In this chapter we present a core string constraint language that can be used to represent

string and numeric constraints that result from string analysis. We designed this language

to be rich enough to capture constraints from multiple languages. We demonstrate

mapping of string expressions from multiple languages (Java and PHP) to our core string

constraint language.

3.1 Language Semantics

We define the set of string and linear integer arithmetic constraints using the abstract

grammar presented in Figure 3.1. In our constraint language, ϕ denotes a formula, β

denotes an integer term, γ denotes a string term, ρ denotes a constant regular expression,

n denotes an integer constant, > and ⊥ denote constants true and false, and vi, vs

denote integer and string variables, respectively. An atomic constraint refers to a formula

without any boolean connective. ϕZ and ϕS denote atomic integer and string constraints,

respectively. Notice that an integer term produced from the production rule β may

contain string terms γ and vice versa; a constraint produced in this way is called a mixed
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ϕ −→ ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕZ | ϕS | > | ⊥

ϕZ −→ β = β | β < β | β > β

ϕS −→ γ = γ | γ < γ | γ > γ | match(γ, ρ) | contains(γ, γ) | begins(γ, γ) | ends(γ, γ)

β −→ vi | n | β+β | β−β | β×n | length(γ) | toint(γ) | indexof(γ, γ) | lastindexof(γ, γ)

γ −→ vs | ρ | γ · γ | reverse(γ) | tostring(β) | charat(γ, β) | toupper(γ) | tolower(γ)
| substring(γ, β, β) | replacefirst(γ, γ, γ) | replacelast(γ, γ, γ) | replaceall(γ, γ, γ)

ρ −→ ε | s | ρ · ρ | ρ p ρ | ρ∗

Figure 3.1: Constraint language grammar.

constraint.

We define Σ to denote the set of all characters (i.e., the alphabet), s ∈ Σ∗ denote a

string value and ε denotes empty string. A character is a string that has length one. The

string operations “·”, “p”, “∗” correspond to regular expression operations concatenation,

alternation, and Kleene closure, respectively. Other regular expression operators (e.g.,

closure, repetition) can be defined using the existing ones. “<” and “>” operations on

string terms correspond to lexicographical string comparisons.

A predicate operation refers to a string or an integer operation that returns a boolean

value. “=”, “<”, “match”, and “contains” are examples of predicate operations. A term

operation refers to a string or an integer operation that returns a string or an integer

value. “+”, “·”, “length”, and “substring” are examples of term operations.

The set of variables present in ϕ is given by V(ϕ). A model for ϕ is an assignment of

all variables in V(ϕ) such that ϕ evaluates to true. The truth set of a formula ϕ, denoted

JϕK, is the set of all models of ϕ. Our eventual goal is to determine the set JϕK and its

size.

Let s, t, v be string values, i, j, n be integer values, and p be a regular expression where
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L(p) denote set of strings (i.e., the language) defined by the regular expression p. Let

|s| denote the length of string s; i.e., length(s) = |s|. We define the semantics of string

related operations as follows:

• match(v, p) returns true if v matches the regular expression expression p; otherwise,

returns false. Let L(p) denote set of strings (i.e., the language) defined by the

regular expression p, then we define the semantics of match as follows:

match(v, p)⇔ v ∈ L(p)

• contains(v, t) returns true if the string t is a substring of the string v; otherwise,

returns false.

contains(v, t)⇔ ∃s1, s2 ∈ Σ∗ : v = s1ts2

• begins(v, t) returns true if the string v begins with the string t; otherwise, returns

false.

begins(v, t)⇔ ∃s ∈ Σ∗ : v = ts

• ends(v, t) returns true if the string v ends with the string t; otherwise, returns false.

ends(v, t)⇔ ∃s ∈ Σ∗ : v = st

• length(v) returns the length of the string v.

(length(v) = 0⇔ v = ε) ∧

(length(v) = n⇔ ∃s0, s1, . . . , sn−1 ∈ Σ: v = s0s1 . . . sn−1)

• toint(v) returns the corresponding integer value of the string v. Let f = {(‘0’, 0),
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(‘1’, 1), (‘2’, 2), (‘3’, 3), (‘4’, 4), (‘5’, 5), (‘6’, 6), (‘7’, 7), (‘8’, 8), (‘9’, 9)} be a function that

maps each digit character to the corresponding integer value, then we define the

semantics of toint as follows:

toint(v) = n⇔ ∃s0, s1, . . . , si ∈ {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’} :

(v = s0s1 . . . si ∧ n =
i∑

j=0

f(sj)× 10i−j) ∨

(v = ‘-’s0s1 . . . si ∧ n = −
i∑

j=0

f(sj)× 10i−j)

• indexof(v, t) returns the index within the string v of the first occurrence of the

string t. If t is not a substring of v, it returns −1.

(indexof(v, t) = −1 ⇔ ¬contains(v, t) ∧

(indexof(v, t) = 0 ⇔ t = ε) ∧

(indexof(v, t) = n ⇔ ∃s1, s2 ∈ Σ∗ : v = s1ts2 ∧ ¬contains(s1, t) ∧ n = |s1|)

• lastindexof(v, t) returns the index within the string v of the last occurrence of the

string t, If t is not a substring of v, it returns −1.

(lastindexof(v, t) = −1 ⇔ ¬contains(v, t) ∧

(lastindexof(v, t) = |v| ⇔ t = ε) ∧

(lastindexof(v, t) = n ⇔ ∃s1, s2 ∈ Σ∗ : v = s1ts2 ∧ ¬contains(s2, t) ∧ n = |s1|)

• reverse(v) returns the reverse of the string v.

reverse(v) = t⇔ ∃s0, s1, . . . , si ∈ Σ: v = s0s1 . . . si ∧ t = si . . . s1s0
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• tostring(n) returns the corresponding string value of the integer n. Let f = {(0, ‘0’),

(1, ‘1’), (2, ‘2’), (3, ‘3’), (4, ‘4’), (5, ‘5’), (6, ‘6’), (7, ‘7’), (8, ‘8’), (9, ‘9’)} be a function that

maps each single digit natural number to the corresponding string representation,

then we define the semantics of tostring as follows:

tostring(n) = v ⇔ ∃n0, n1, . . . , ni ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} :

(n =
i∑

j=0

nj × 10i−j ∧ v = f(n0)f(n1) . . . f(ni)) ∨

(n = −
i∑

j=0

nj × 10i−j ∧ v = f(n0)f(n1) . . . f(ni))

• charat(v, i) returns the character that appears at the index i of the string v. The

semantics of charat is defined as follows:

charat(v, i) = t⇔ ∃s0, s1, . . . , sn ∈ Σ: v = s0s1 . . . sn ∧ 0 ≤ i ≤ n ∧ t = si

• toupper(v) transforms all characters of the string v into upper-case characters and

returns the result. Let f = {(‘a’, ‘A’), (‘b’, ‘B’), (‘c’, ‘C’), . . . , (‘z’, ‘Z’), (‘A’, ‘A’),

. . .)} be a function that maps each character to its upper-case representation. If a

character does not have an upper-case representation, it is mapped to itself. We

define the semantics of toupper as follows:

toupper(v) = t⇔ ∃s0, s1, . . . , si ∈ Σ: v = s0s1 . . . si ∧ t = f(s0)f(s1) . . . f(si)

• tolower(v) transforms all characters of the string v into lower-case characters and

returns the result. Let f = {(‘a’, ‘a’), . . . , (‘A’, ‘a’), (‘B’, ‘b’), . . . , (‘Z’, ‘z’), . . .)} be

a function that maps each character to its lower-case representation. If a character
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does not have an lower-case representation, it is mapped to itself. We define the

semantics of tolower as follows:

tolower(v) = t⇔ ∃s0, s1, . . . , si ∈ Σ: v = s0s1 . . . si ∧ t = f(s0)f(s1) . . . f(si)

• substring(v, i, n) returns the substring of the string v that starts at the index i

(inclusive) and spans n characters (or until the end of the string, whichever comes

first). We define the semantics of substring as follows:

substring(v, i, n) = t⇔ ∃s1, s2 ∈ Σ∗ : v = s1ts2 ∧ |s1| = i ∧ (|t| = n ∨ s2 = ε)

• replacefirst(v, p, t) finds the first substring of the string v that matches the regular

expression p and replaces it with the target string t and returns the result. If more

than one substring of string v matches the regular expression p at the same start

index, the longest matching substring is chosen for replacement. If the regular

expression p does not match any substring of the string v, string v is returned. We

define the semantics of replacefirst as follows:

(replacefirst(v, p, t) = v ⇔ ∀s1, s2 ∈ Σ∗ : ¬match(v, s1ps2) ∧

(replacefirst(v, p, t) = s⇔ ∃m, s1, s2 ∈ Σ∗ : v = s1ms2 ∧match(m, p) ∧ s = s1ts2 ∧

(s1 = ε ∨ (∀s3 ∈ Σ∗, s4 ∈ Σ+ : s1 = s3s4 ∧ ¬match(s3, p) ∧ ¬match(s4m, p))) ∧

(s2 = ε ∨ (∀s5 ∈ Σ+, s6 ∈ Σ∗ : s2 = s5s6 ∧ ¬match(ms5, p))))

• replacelast(v, p, t) finds the last substring of the string v that matches the regular

expression p and replaces it with the target string t and returns the result. If more

than one substring of string v matches the regular expression p at the same start
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index, the longest matching substring is chosen for replacement. If the regular

expression p does not match any substring of the string v, string v is returned. We

define the semantics of replacelast as follows:

(replacelast(v, p, t) = v ⇔ ∀s1, s2 ∈ Σ∗ : ¬match(v, s1ps2)) ∧

(replacelast(v, p, t) = s⇔ ∃m, s1, s2 ∈ Σ∗ : v = s1ms2 ∧match(m, p) ∧ s = s1ts2 ∧

(s1 = ε ∨ (∀s3 ∈ Σ∗, s4 ∈ Σ+ : s1 = s3s4 ∧ ¬match(s4m, p))) ∧

(s2 = ε ∨ (∀s5 ∈ Σ+, s6 ∈ Σ∗ : s2 = s5s6 ∧ ¬match(s6, p) ∧ ¬match(ms5, p))))

• replaceall(v, p, t) replaces all substrings of the string v that matches the regular

expression p with the target string t and returns the result. If more than one

substring of the string v matches the regular expression at the same start index,

the longest matching substring is chosen for replacement. If regular expression p

does not match any substring of the string v, string v is returned. Let L(p) denote

set of strings (i.e., the language) defined by the regular expression p, then we define
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the semantics of replaceall as follows:

(replaceall(v, p, t) = v ⇔ ∀s1, s2 ∈ Σ∗ : ¬match(v, s1ps2)) ∧

(replaceall(v, p, t) = t⇔ v = ε ∧ ε ∈ L(p)) ∧

(replaceall(v, p, t) = s⇔ ∃s1 ∈ Σ+, s2 ∈ Σ∗ : v = s1s2 ∧match(s1, p) ∧

(s2 = ε ∨ (∀s3 ∈ Σ+, s4 ∈ Σ∗ : s2 = s3s4 ∧ ¬match(ms3, p))) ∧

∃s5 ∈ Σ∗ : s5 = replaceall(s2, p, t) ∧ s = ts5) ∧

(replaceall(v, p, t) = s⇔ ∃s1 ∈ Σ, s2 ∈ Σ∗ : v = s1s2 ∧

(s2 = ε ∨ (∀s3 ∈ Σ+, s4 ∈ Σ∗ : v = s1s3s4 ∧ ¬match(s1s3, p))) ∧

∃s5 ∈ Σ∗ : s5 = replaceall(v1, p, t) ∧

((ε ∈ L(p) ∧ s = ts1s5) ∨ (ε /∈ L(p) ∧ s = s1s5)))

String operations that are not directly available in our constraint language can be

defined using existing operations. As an example, we can define generic left trim and

right trim operations as follows:

• ltrim(v, p) trims the characters that matches the regular expression p from the

beginning of string v and returns the result. The semantics of ltrim can be defined

as follows:

(ltrim(v, p) = v ⇔ ¬begins(v, p)) ∧

(ltrim(v, p) = t⇔ begins(v, p) ∧ t = replacefirst(s, p, ””))

• rtrim(v, p) trims the characters that matches the regular expression p from the end
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of string v and returns the result. The semantics of rtrim can be defined as follows:

(rtrim(v, p) = v ⇔ ¬ends(s, p)) ∧

(rtrim(v, p) = t⇔ ends(v, p) ∧ t = replacelast(s, p, ””))

3.2 Mapping of Java String Expressions to the Con-

straint Language

Java is one of the most widely used programming language in modern software ap-

plication development. It provides extensive support for string manipulation. Java stan-

dard libraries provide String, StringBuffer, StringBuilder, CharSequence,

and Character classes that include string manipulation methods. String variables in

our constraint language can be used to represent instances of these classes. Table 3.1

lists example mappings of Java string expressions to our constraint language.

Semantics of some of the string expressions in Java cannot be expressed precisely

using the operations provided in our constraint language. For example, the translation for

the Java expression v.equalsIgnoreCase(t) defined in Table 3.1 works precisely

for an alphabet Σ (i.e., character encoding) with the following condition: ∀c1, c2 ∈ Σ :

c1 = c2 ⇔ (toupper(c1) = toupper(c2) ∧ tolower(c1) = tolower(c2)). However, there

can be character encodings in Java that does not hold the condition we defined for the

translation of the v.equalsIgnoreCase(t). More general cases can be handled by

adding more specific operations into our language.
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Java String Expression Constraint Language
s.length() length(s)
s.isEmpty() length(s) = 0
s.charAt(i) charat(s, i)
s.equals(t) s = t
s.equalsIgnoreCase(t) s = t ∨ toupper(s) = toupper(t) ∨ tolower(s) = tolower(t)
s.startsWith(t) begins(s, t)
s.startsWith(t,n) 0 ≤ n ∧ n ≤ |s| ∧ begins(substring(s, n, |s| − n), t)
s.endsWith(t) ends(s, t)
s.indexOf(t) indexof(s, t)
s.indexOf(t,n) indexof(substring(s, n, |s| − n), t)
s.lastIndexOf(t) lastindexof(s, t)
s.lastIndexOf(t,n) lastindexof(substring(s, 0, n+ 1), t)
s.substring(i) substring(s, i, |s|)
s.substring(i,j) substring(s, i, j − i)
s.concat(t) s · t
s.replace(t,r) replaceall(s, t, r)
s.matches(p) match(s, p)
s.contains(t) contains(s, t)
s.replaceFirst(p,r) replacefirst(s, p, r)
s.replaceAll(p,r) replaceall(s, p, r)
join(s,t,w,y) t · s · w · s · y
s.toLowerCase() tolower(s)
s.toUpperCase() toupper(s)
s.trim() ltrim(rtrim(s, p · p∗), p · p∗)
valueOf(i) tostring(i)
s.delete(i,j) substring(s, 0, i) · substring(s, j, |s| − j)
s.replace(i,j,t) substring(s, 0, i) · t · substring(s, j, |s| − j)
s.insert(i,t) substring(s, 0, i) · t · substring(s, i+ 1, |s| − i− 1)

Table 3.1: Examples of Java string expressions to constraint language translation.
s, r, t, w, and y can be instances of String, StringBuffer, StringBuilder,
CharSequence, and Character classes. p is a string that represents a valid regular
expression. b is a boolean and n, i, and j are integers.
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PHP String Expression Constraint Language
addslashes(s) replaceall(s, replaceall(s, “\”, “\\”), “’”, “\’”) . . .
chr(i) tostring(i)
htmlspecialchars(s) replaceall(s, replaceall(s, ”&”, ”&amp; ”), ” < ”, ”&lt; ”) . . .
lcfirst(s) replacefirst(s, charat(s, 0), tolower(charat(s, 0))
ltrim(s, p) ltrim(s, p · p∗)
ord(s) toint(s)
rtrim(s, p) rtrim(s, p · p∗)
str replace(p, t, s) replaceall(s, p, t)
strcmp(s, t) s = t
strlen(s) length(s)
strpbrk(s, p) substring(s, indexof(s, t))
strpos(s, t) indexof(s, t)
strrpos(s, t) lastindexof(s, t)
strtolower(s) tolower(s)
strtoupper(s, t) toupper(s)
substr replace(s, t, i, j) substring(s, 0, i) · t · substring(s, j, |s| − j)
substr(s, i, j) substring(s, i, j − i)
trim(s, p) trim(s, p)
ucfirst(s) replacefirst(s, charat(s, 0), toupper(charat(s, 0))
preg replace(p, r, s) replaceall(s, p, r)

Table 3.2: PHP string expressions to constraint language translation. r, s, and t are
string instances. p is a string that represents a valid regular expression. i and j are
integers.

3.3 Mapping of PHP String Expressions to the Con-

straint Language

PHP is another popular web application development language. Since web appli-

cations do extensive string manipulation, PHP comes with a good support of string

manipulation functions. Table 3.2 lists mappings of the PHP string expressions to our

constraint language.

We have shown that our constraint language can handle a wide range of string expres-

sions. The list of mappings we have can be extended to other programming languages

that support string manipulation.
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Automata-based Constraint Solving

In this chapter, we discuss how to construct automata for string and integer constraints

such that the constructed automata accept the set of solutions for the given constraints.

We first introduce preliminary definitions and then we discuss the details of the automata-

based constraint solving.

Given a formula ϕ, let ϕ[s/v] denote the formula that is obtained from ϕ by replacing

all appearances of variable v ∈ V(ϕ) with the constant s. We define the truth set of the

formula ϕ for variable v as Jϕ, vK = {s | ϕ[s/v] is satisfiable}.

In our constraint solving approach, we map string and integer constraints to Deter-

ministic Finite Automaton (DFA). A DFA A is a 5-tuple (Q,Σ, δ, q0, F ), where Q is the

set of states, Σ is the input alphabet, δ : Q × Σ → Q is the state transition function,

q0 ∈ Q is the initial state, and F ⊆ Q is the set of final, or accepting, states. Throughout

the dissertation, whenever we refer to an automaton, we assume it is a DFA.

Given an automaton A, let L(A) denote the set of strings accepted by A. We define

∩ operation on automata such that A1 ∩ A2 generates an automaton that accepts the

language defined by L(A1) ∩ L(A2). Similarly, ∪ operation on automata, A1 ∪ A2, gen-

erates an automaton that accepts the language defined by L(A1) ∪ L(A2). We define ¬

31



Automata-based Constraint Solving Chapter 4

operation on automata such that ¬A generates an automaton that accepts the language

defined by Σ∗ \L(A). All three operations (∩, ∪, ¬) can be implemented using automata

product and automata complement operations.

Let
7→
A denote a dictionary such that, given a formula ϕ,

7→
A = {v1 7→ A1, v2 7→

A2, . . . , vn 7→ An}, where v1, v2, . . . , vn ∈ V(ϕ), is a mapping between variables and the

corresponding automata. We denote the set of variables in a dictionary
7→
A as V(

7→
A). We

define [ ] operator to access the elements of a dictionary, e.g., given a dictionary
7→
A,

7→
A[v]

returns the corresponding automaton from the dictionary. Let AΣ∗ denote an automaton

that accepts any value, i.e., L(AΣ∗) = Σ∗. If a variable v is not contained in a dictionary
7→
A,

7→
A[v] automatically inserts the mapping v 7→ AΣ∗ and returns a dictionary with the

only mapping v 7→ AΣ∗ or returns the automaton AΣ∗ depending on the context.

Given a dictionary
7→
A and a set of variables V ,

7→
A[V ] returns a dictionary where it

contains only the variables in the set V . If there are variables in V that do not have

mappings in the dictionary
7→
A, they are added to the returned dictionary and mapped to

the AΣ∗ automaton.

Let
7→
A1 = {v1 7→ A1v1 , v2 7→ A1v2 , . . . , vn 7→ A1vn} and

7→
A2 = {v1 7→ A2v1 , v2 7→

A2v2 , . . . , vn 7→ A2vn}. We extend ∩ operation such that
7→
A1 ∩

7→
A2 returns a dictionary

7→
A∩ where

7→
A∩ = {v1 7→ A1v1 ∩ A2v1 , v2 7→ A1v2 ∩ A2v2 , . . . , vn 7→ A1vn ∩ A2vn}. Similarly,

7→
A1∪

7→
A2 returns a dictionary

7→
A∪ where

7→
A∪ = {v1 7→ A1v1∪A2v1 , v2 7→ A1v2∪A2v2 , . . . , vn 7→

A1vn ∪ A2vn}.

Given a formula ϕ and a variable v, our goal is to construct an automaton A, such

that L(A) = Jϕ, vK. If the set of variables V(ϕ) has more than one variable, we construct

an automaton for each variable in V(ϕ). Let
7→
A represents the automata generated for

each variable in V(ϕ). If ∃v ∈ V(ϕ) : L(
7→
A[v]) = ∅, we say formula ϕ is unsatisfiable,

otherwise, the formula might be satisfiable.

Note that, when there are multiple variables, one can specify constraints with non-
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regular truth sets. For example, given the formula ϕ ≡ x = y·y, Jϕ, xK is not a regular set,

so we cannot construct an automaton precisely recognizing its truth set. In such cases,

we generated an automaton A that over-approximates the truth set (i.e., L(A) ⊇ Jϕ, xK).

4.1 Mapping Formulae to Automata

Let us define an automata constructor function A (Algorithm 1) such that, given a

formula ϕ, A(ϕ) generates an automaton for each variable v in V(ϕ) by traversing the

syntax tree of the formula.

Some parts of our algorithms work by iteratively updating a set of current solutions

for the variables, which we denote by
7→
Acontext. Before processing any part of the given con-

straint, any variable can take on any value, i.e., initially all variables are unconstrained.

So given a formula ϕ, initially
7→
Acontext = {v1 7→ AΣ∗ , v2 7→ AΣ∗ , . . . , vn 7→ AΣ∗} where

v1, v2, . . . , vn ∈ V(ϕ).

Since the negation operator is not monotonic and since we sometimes over-approximate

solution sets for subformulae, in line 3, we convert the given formula to negation nor-

mal form (by pushing negations to atomic formulas). Function A uses the automata

constructor function Aφ (line 6) to construct automata for atomic string and integer

constraints, which is discussed in the following section. Function Aφ computes sound

over-approximations and can handle negated atomic constraints. It accepts an atomic

constraint (ϕS or ϕZ) and initial values for the variables appearing in the given formula as
7→
Acontext and returns a solution automaton for each variable in the given atomic constraint.

Conjunctions and disjunctions are handled with ∩ and ∪ operations, respectively. In

handling conjunctions, due to approximations, intersection may not sufficiently restrict

the values of the variables since the relations among some string variables are lost during

automata construction. In such cases, it is necessary to propagate the constraints on
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Algorithm 1 Automata constructor function
Input: Formula ϕ: input formula
Output: Dictionary

7→
A : an automaton for each variable in V(ϕ)

1: function A(ϕ)
2: if ϕ ≡ ¬ϕ then
3: return A(ToNegationNormalForm(¬ϕ))
4: else if ϕ ≡ ϕS or ϕ ≡ ¬ϕS or ϕ ≡ ϕZ or ϕ ≡ ¬ϕZ then
5:

7→
Acontext ← {v1 7→ AΣ∗ , v2 7→ AΣ∗ , . . . , vn 7→ AΣ∗} where v1, v2, . . . , vn ∈ V(ϕ)

6: return Aφ(ϕ,
7→
Acontext)

7: else if ϕ ≡ ϕ1 ∨ ϕ2 then
8: return A(ϕ1)[V(ϕ)] ∪ A(ϕ2)[V(ϕ)]
9: else if ϕ ≡ ϕ1 ∧ ϕ2 then

10: return Refine(ϕ,A(ϕ1)[V(ϕ)] ∩ A(ϕ2)[V(ϕ)])
11: end if
12: end function

a variable that is inferred by one side of the conjunction to the other side of the con-

junction. We do this using the function Refine at line 10, which takes the input formula

and the result automata of the intersection as parameters and returns automata which

(possibly) provide a better approximations. It updates the automata iteratively on ev-

ery intersection by solving the atomic constraints that may cause over-approximations

(Algorithm 2).

Algorithm 2 Automata refinement

Input: Formula ϕ: a formula, Dictionary
7→
A : an initial automaton for each variable in V(ϕ)

Output: Dictionary
7→
A : an updated automaton for each variable in V(ϕ)

1: function Refine(ϕ,
7→
A)

2: for each φ ∈ {atomic sub constraint of ϕ with possible over-approximation} do

3:
7→
A←

7→
A ∩ Aφ(ϕφ,

7→
A[V(ϕφ)])[V(ϕ)]

4: end for
5: return

7→
A

6: end function

Let us consider the following illustrative example ϕ ≡ ¬match(v, (ab)∗)∧ length(v) ≥

1 over the alphabet Σ = {a, b} before going into details of the automata constructor

function Aφ for atomic constraints.

Figure 4.1 shows syntax tree of the formula. Given the atomic constraint ϕ1 ≡

¬match(v, (ab)∗) and the initial value for the variable v as
7→
Acontext = {v 7→ AΣ∗}, au-
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∧

¬match

v (ab)∗

≥

length

v

1

Figure 4.1: Syntax tree of the formula ϕ ≡ ¬match(v, (ab)∗) ∧ length(v) ≥ 1.
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a, bA1
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a, b

a, bA2

0 1 2
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a

a, bA

=

Figure 4.2: Automata constructed for the formula ϕ ≡ ¬match(v, (ab)∗) ∧ length(v) ≥ 1.

tomata constructor function Aφ generates an automaton A1 (Figure 4.2) for variable v

and returns it as
7→
A1 = {v 7→ A1}. Next, given the atomic constraint ϕ2 ≡ length(v) ≥ 1

and the initial value for the variable v as
7→
Acontext = {v 7→ AΣ∗}, the function Aφ generates

an automaton A2 (Figure 4.2) for variable v and returns it as
7→
A2 = {v 7→ A2} Finally,

conjunction is handled by intersecting automata generated for the atomic constraints

(
7→
A =

7→
A1 ∩

7→
A2) as shown in Figure 4.2. Since atomic constraints ϕ1 and ϕ2 are han-

dled precisely, Refine function call does not result in any change on the final automaton

computed for variable v.

Next, we will discuss the details of the automata construction for atomic constraints.
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4.2 Handling Atomic Constraints

For a given atomic formula ϕ (ϕS or ϕZ) and
7→
Acontext, automata constructor function

Aφ (Algorithm 3) constructs automata (a dictionary with automata)
7→
A where ∀v ∈ V(ϕ) :

L(
7→
A[v]) ⊇ Jϕ, vK. Function Aφ first constructs an automaton for each term appearing

in the predicate operation (?, where ? ∈ {=, <,>,match, contains, begins, ends}) using

the function ATermCons described in Algorithm 4. Then, it constructs an automaton for

the predicate (?) using the automata construction function A?. We provide the details

of the function A? in the next sub section. Parameters of a predicate operation can be

any term (γ, β, ρ). Hence, the function A? introduces auxiliary variables that represents

the parameters of the terms. Function Aφ propagates the results of the string predicate

operation to the variables appearing in the formula using the function ATermProp described

in Algorithm 5.

Algorithm 3 Automata constructor for atomic constraints
Input: Formula ϕ: an atomic constraint,

Dictionary
7→
Acontext : an initial automaton for each variable in V(τ)

Output: Dictionary
7→
A : an updated automaton for each variable in V(τ)

1: function Aφ(ϕ,
7→
Acontext)

2:
7→
A← {}

3: if ϕ ≡ τ1 ? τ2 then . ? ∈ {=, <,>,match, contains,begins, ends}.
4:

7→
A← A?(ATermCons(τ1,

7→
Acontext),ATermCons(τ2,

7→
Acontext))

5: else if ϕ ≡ ¬(γ1 ? γ2) then

6:
7→
A← A?(ATermCons(τ1,

7→
Acontext),ATermCons(τ2,

7→
Acontext))

7: end if
8: for each (v, τ) ∈ {(a, b) | a ∈ V(b) ∧ b ∈ {τ1, τ2} ∧ ϕ ≡ τ1 ? τ2} do
9:

7→
A←

7→
A[V(ϕ)] ∩ ATermProp(v, τ,

7→
A[vτ ],

7→
Acontext)[V(ϕ)]

10: end for
11: return

7→
A

12: end function

Let us consider the atomic constraints ϕ1 ≡ ¬match(v, (ab)∗) and ϕ2 ≡ length(v) ≥

1 where the syntax tree is shown in Figure 4.1. Function Aφ generates automata in

Figure 4.3 for the terms in the atomic formulae. The algorithm first processes the formula

ϕ1 and then processes the formula ϕ2. Initially, the variable v is unconstrained and term
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∧

¬match

0

a, b

0 1

a

b

≥

0

a, b

0

a, b

0 1
a, b

Figure 4.3: Automata construction for the terms in atomic the atomic formulae
ϕ1 ≡ ¬match(v, (ab)∗) and ϕ2 ≡ length(v) ≥ 1.

automaton constructor ATermProp generates an automaton that accepts any string for the

variable v in ϕ1. An automaton that accepts the language of the regular expression is

generated.

Given the automata generated for the parameters of the string predicate operation

¬match, the automata constructor function Amatch constructs an automaton for the first

parameter of the string predicate operation (Figure 4.4).

Term propagation is necessary when we construct solution automaton for the term

τ . This means that the relation between the term value and the values of variables

in V(τ) is lost (i.e., over-approximated) during term automata construction. Once an

automaton for the predicate operation is constructed, ATermProp propagates the result

to each variable of V(τ). Figure 4.3 shows automata constructed for each term using

automata constructor function ATermProp. For the atomic constraint ϕ1, it copies the

result of the string predicate operation and associates it with the variable x.

Similarly, automata for the atomic constraint ϕ2 is constructed (Figure 4.3), and after

computing the automata based on the predicate operation ≥, the automaton generated

37



Automata-based Constraint Solving Chapter 4

∧

¬match

0 1 2

b

a

b

a

a, b

(01)∗

≥

0 1
a, b

a, b

0 1
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Figure 4.4: Automata propagation for the terms in atomic the atomic formulae
ϕ1 ≡ ¬match(v, (ab)∗) and ϕ2 ≡ length(v) ≥ 1.

for the length term is propagated back to the variable x (Figure 4.4).

We now discuss the functions ATermCons and ATermProp that are used during string

automata construction. Given a term τ and
7→
Acontext, the function ATermCons generates an

automaton by recursive decomposition into subformulae (Algorithm 4). If τ is a regular

expression term ρ, an automaton Aρ is constructed using standard regular expression

DFA constructions. If τ is an integer constant, An is constructed to recognize all strings

of length n. For string variable terms, the current set of values for the variable is extracted

from
7→
Acontext.

If τ corresponds to a term operation (� ∈ {length, . . . , replaceall}), the corresponding

term automata construction function A� is called. The first parameter to the A� func-

tions indicates that we are constructing an automaton for the result of the term when it

is set to 0. We also use the same function to construct automata for different arguments

of a term (in which case the first parameter indicates the index of the argument) which

is used in term propagation.

Now, we discuss the details of the function ATermProp. Given a variable v, a term
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Algorithm 4 Term automata constructor
Input: Term τ : target term,

Dictionary
7→
A : an initial automaton for each variable in V(τ)

Output: Automaton Aτ : an automaton computed based on τ operation
1: function ATermCons(τ,

7→
Acontext)

2: if τ ≡ ρ then
3: return Aρ where L(Aρ) = {s | s ∈ L(ρ)}.
4: else if τ ≡ n then
5: return An where L(An) = {s | |s| = n}.
6: else if τ ≡ vs then
7: return

7→
Acontext[vs]

8: else if τ ≡ vi then
9: return

7→
Acontext[vi]

10: else if τ ≡ �(τ1, . . . , τn) then . � ∈ {length, . . . , replaceall}.
11: return A�(0,ATermCons(τ1,

7→
Acontext), . . . ,ATermCons(τn,

7→
Acontext))

12: end if
13: end function

τ that contains the variable v, an automaton Aτ that characterizes the values of the

term τ , and
7→
Acontext, function ATermProp recursively computes the values of the variable v

that results in the values accepted by the automaton Aτ when the term operation that

corresponds to τ is applied. When a term τ corresponds to a string variable, the updated

set of values for the variable is computed by intersecting the propagated automaton Aτ

with
7→
Acontext.

If a term τ corresponds to a term operation (� ∈ {length, . . . , replaceall}), the cor-

responding term automata propagator function A� is called to construct an automaton

for the subterms that contain the variable v given the automata for the term τ and other

subterms. The first parameter to the A� functions indicates parameter index of the

subterm that we propagate the values through. The next parameter is the automaton

that corresponds to values of the result of the term operation that we want to propagate

back. And the next parameters are the current values of the parameters to the term

operation.
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Algorithm 5 Term automata propagator
Input: Variable v: target variable, Term τ : current term, Automaton Aτ : result of term τ operation,

Dictionary
7→
A : an automaton for each variable in V(τ)

Output: Automaton Av : an automaton for variable V
1: function ATermProp(v, τ, Aτ ,

7→
Acontext)

2: if τ ≡ vs then
3: return Aτ ∩

7→
Acontext[vs]

4: else if τ ≡ vi then
5: return Aτ ∩

7→
Acontext[vi]

6: else if τ ≡ �(τ1, . . . , τn) then . � ∈ {length, . . . , replaceall}.
7: for all i ∈ {k | 1 ≤ k ≤ n ∧ v ∈ V(τk)} do
8: Aτi ← A�(i, Aτ ,ATermCons(τ1,

7→
Acontext), . . . ,ATermCons(τn,

7→
Acontext))

9:
7→
Acontext ←

7→
Acontext ∩ ATermProp(v, τi, Aτi ,

7→
Acontext)[V(

7→
Acontext)]

10: end for
11: return

7→
Acontext[v]

12: end if
13: end function

4.3 Automata Construction Semantics

For a given predicate operation ? where ? ∈ {=, <,>,match, contains, begins, ends}

we use functionsA? (A? for negated predicate operations) to construct automata based on

the predicate operation. For a given term operation � where � ∈ {length, toint, indexof,

lastindexof, reverse, tostring, toupper, tolower, substring, replacefirst, replacelast, replaceall}

we use functions A� to construct automaton based on the term operation. In this section,

we give automata construction semantics for each operation available in our constraint

language.

4.3.1 Semantics for Predicate Operations

Let Aγ be an automaton generated for a string term and Aβ be an automaton gener-

ated for a integer term. Automata constructor function A? takes two automata as input

and refines them based on the predicate operation and returns the refined automata.

Let us define helper functions suffixes, prefixes, maxwords, minword, maxlengths,

minlength that are used to define the semantics of automata constructions. Given an
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automaton A, suffixes(A) returns an automaton that accepts all suffixes of all strings in

L(A). Similarly, given an automaton A, prefixes(A) returns an automaton that accepts

all prefixes of the all strings in L(A). Given a string s, suffixes(A) returns all suffixes of

the string s where L(A) = {s}. Similarly, given a string s, prefixes returns all prefixes

of the string. Given an automaton A, maxwords returns an automaton that accepts

lexicographically largest strings in L(A). Note that, there might be loops between states

of the automaton A. For that reason, lexicographically largest strings can form an infinite

set, which is again represented with an automaton that has loops. Given an automaton A,

minword returns the lexicographically minimum string that is accepted by the automaton.

Given an automaton A, maxlengths returns an automaton that accepts all the strings

that has the same as lengths as the longest length strings in L(A) and minlength returns

all the strings that has the same length with the smallest length string in L(A).

Table 4.1 shows the semantics of the automata constructions for the string predicate

operations. String predicate operations takes two string terms (γ1, γ2) as parameters

(match operation takes a string term and a regular expression term). Given automata

Aγ1 and Aγ2 as parameters, each string predicate operation constructs automata A1 and

A2 for the parameters and returns them in a dictionary with auxiliary variables vγ1 and

vγ2 that correspond to the terms γ1 and γ2.

We define the semantics of the automata construction for the integer predicate oper-

ations as follows: Similar to the string predicate operations, integer predicate operations

takes two integer terms (β1, β2) as parameters. Given automata Aβ1 and Aβ2 as parame-

ters, each integer predicate operation constructs automata A1 and A2 for the parameters

and returns them in a dictionary with auxiliary variables vβ1 and vβ2 that correspond to

the terms β1 and β2. Table 4.2 shows the semantics of the automata constructions for

the string predicate operations.
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Operation Automata Construction Semantics

A=(Aγ1 , Aγ2) L(A1) = L(A2) = {s | s ∈ L(Aγ1) ∧ s ∈ L(Aγ2)

A6=(Aγ1 , Aγ2) L(A1) = {s | ∃t ∈ L(Aγ2) : s 6= t ∧ s ∈ L(Aγ1)
L(A2) = {s | ∃t ∈ L(Aγ1) : s 6= t ∧ s ∈ L(Aγ2)

A<(Aγ1 , Aγ2) L(A1) = {s | ∃t ∈ L(maxwords(Aγ2)) : s ∈ L(Aγ1) ∧ s < t}
L(A2) = {s | s ∈ L(Aγ2) ∧ s > minword(Aγ1)

A≤(Aγ1 , Aγ2) L(A1) = {s | ∃t ∈ L(maxwords(Aγ2)) : s ∈ L(Aγ1) ∧ s ≤ t}
L(A2) = {s | s ∈ L(Aγ2) ∧ s ≥ minword(Aγ1)}

A>(Aγ1 , Aγ2) L(A1) = {s | s ∈ L(Aγ1) ∧ s > minword(Aγ2)}
L(A2) = {s | ∃t ∈ L(maxwords(Aγ1)) : s ∈ L(Aγ2) ∧ s < t}

A≥(Aγ1 , Aγ2) L(A1) = {s | s ∈ L(Aγ1) ∧ s ≥ minword(Aγ2)}
L(A2) = {s | ∃t ∈ L(maxwords(Aγ1)) : s ∈ L(Aγ2) ∧ s ≤ t}

Amatch(Aγ , Aρ) L(A1) = {s | s ∈ L(Aγ) ∧ s ∈ L(Aρ)}
L(A2) = L(Aρ)

Amatch(Aγ , Aρ) L(A1) = {s | s ∈ L(Aγ) ∧ s /∈ L(Aρ)}
L(A2) = L(Aρ)

Abegins(Aγ1 , Aγ2) L(A1) = {s | s ∈ L(Aγ1) ∧ s ∈ L(Aγ2)Σ∗}
L(A2) = {s | s ∈ L(Aγ2) ∧ s ∈ L(prefixes(Aγ1))}

Abegins(Aγ1 , Aγ2) L(A1) = {s | ∃t ∈ L(Aγ2) : s ∈ L(Aγ1) ∧ s /∈ tΣ∗}
L(A2) = {s | ∃t ∈ L(Aγ1) : s ∈ L(Aγ2) ∧ s /∈ L(prefixes(t))}

Aends(Aγ1 , Aγ2) L(A1) = {s | s ∈ L(Aγ1) ∧ s ∈ Σ∗L(Aγ2)}
L(A2) = {s | s ∈ L(Aγ2) ∧ s ∈ L(suffixes(Aγ1))}

Aends(Aγ1 , Aγ2) L(A1) = {s | ∃t ∈ L(Aγ2) : s ∈ L(Aγ1) ∧ s /∈ Σ∗t}
L(A2) = {s | ∃t ∈ L(Aγ1) : s ∈ L(Aγ2) ∧ s /∈ L(suffixes(t))}

Acontains(Aγ1 , Aγ2) L(A1) = {s | s ∈ L(Aγ1) ∧ s ∈ Σ∗L(Aγ2)Σ∗}
L(A2) = {s | s ∈ L(Aγ2) ∧ s ∈ L(suffixes(prefixes(Aγ1)))}

Acontains(Aγ1 , Aγ2) L(A1) = {s | ∃t ∈ L(Aγ2) : s ∈ L(Aγ1) ∧ s /∈ Σ∗tΣ∗}
L(A2) = {s | ∃t ∈ L(Aγ1) : s ∈ L(Aγ2) ∧ s /∈ L(suffixes(prefixes(t)))}

Table 4.1: Semantics of the string predicate automata constructors A? and A?. Op-
erations returns a dictionary {vγ1 7→ A1, vγ2 7→ A2} where A1 and A2 are automata
constructed for terms, vγ1 and vγ2 are auxiliary variables.
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Operation Automata Construction Semantics

A=(Aβ1 , Aβ2) L(A1) = L(A2) = {s | ∃t ∈ Σ∗ : |s| = |t| ∧ t ∈ L(Aβ1) ∧ t ∈ L(Aβ2)}
A6=(Aβ1

, Aβ2
) L(A1) = {s | ∃v ∈ Σ∗, t ∈ L(Aβ2

) : |s| = |v| ∧ v 6= t ∧ v ∈ L(Aβ1
)}

L(A2) = {s | ∃v ∈ Σ∗, t ∈ L(Aβ1
) : |s| = |v| ∧ v 6= t ∧ v ∈ L(Aβ2

)}
A<(Aβ1 , Aβ2) L(A1) = {s | ∃v ∈ Σ∗, t ∈ L(maxlengths(Aβ2)) : |s| = |v| ∧ v ∈ L(Aβ1) ∧

|v| < |t|}
L(A2) = {s | ∃v ∈ Σ∗ : |s| = |v| ∧ v ∈ L(Aβ2

) ∧ |v| > |minlength(Aβ1
)|}

A≤(Aβ1 , Aβ2) L(A1) = {s | ∃v ∈ Σ∗, t ∈ L(maxlengths(Aβ2)) : |s| = |v| ∧ v ∈ L(Aβ1) ∧
|v| ≤ |t|}
L(A2) = {s | ∃v ∈ Σ∗ : |s| = |v| ∧ v ∈ L(Aβ2

) ∧ |v| ≥ |minlength(Aβ1
)|}

A>(Aβ1
, Aβ2

) L(A1) = {s | ∃v ∈ Σ∗ : |s| = |v| ∧ v ∈ L(Aβ1
) ∧ |v| > |minlength(Aβ2

)|}
L(A2) = {s | ∃v ∈ Σ∗, t ∈ L(maxlengths(Aβ1)) : |s| = |v| ∧ v ∈ L(Aβ2) ∧
|v| < |t|}

A≥(Aβ1
, Aβ2

) L(A1) = {s | ∃v ∈ Σ∗ : |s| = |v| ∧ v ∈ L(Aβ1
) ∧ |v| ≥ |minlength(Aβ2

)|}
L(A2) = {s | ∃v ∈ Σ∗, t ∈ L(maxlengths(Aβ1

)) : |s| = |v| ∧ v ∈ L(Aβ2
) ∧

|v| ≤ |t|}

Table 4.2: Semantics of the integer predicate automata constructors A? and A?.
Operations returns a dictionary {vβ1 7→ A1, vβ2 7→ A2} where A1 and A2 are automata
constructed for terms, vβ1 and vβ2 are auxiliary variables.

4.3.2 Semantics for Term Operations

Functions A� are used to generate automata for term operations. The first parameter

to the A� functions indicates that we are constructing an automaton for the result of

the term when it is set to 0. We also use the same function to construct automata for

different parameters of a term (in which case the first parameter indicates the index of the

argument) which is used in term propagation. In the case of term propagation, we provide

the result of the operation as second parameter. Informally, term propagation constructs

and automaton for a parameter of the term operation, given the result of the term

operation and the initial values of the parameters of the term operation. For example,

lets consider the term operation τ ≡ length(Aγ). Given parameter index 1, an automaton

Alength that corresponds to the expected results of the term operation τ , and an automaton

Aγ for the initial values of the parameter; the function call Alength(1, Alength, Aγ) computes

the values of the input parameter at index 1 (there is only one input parameter for length
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Operation Automata Construction Semantics

Alength(0, Aγ) L(A) = {s | ∃t ∈ L(Aγ) : |s| = |t|}
Aindexof(0, Aγ1 , Aγ2) L(A) = {s | ∃t ∈ L(prefixes(Aγ1)), u ∈ L(Aγ2), v ∈ Σ∗ : tuv ∈ L(Aγ1) ∧

@t1 ∈ L(suffixes(prefixes(t))) : t1 = u ∧ |s| = |t|
Alastindexof(0, Aγ1 , Aγ2) L(A) = {s | ∃t ∈ L(suffixes(Aγ1)), u ∈ L(Aγ2), v ∈ Σ∗ : vut ∈ L(Aγ1) ∧

@t1 ∈ L(suffixes(prefixes(t))) : t1 = u ∧ |s| = |v|
Asubstring(0, Aγ , Aβ1

, Aβ2
) L(A) = {s | ∃t ∈ L(Aγ) : ∃t1 ∈ L(prefixes(t)), t2 ∈ Σ∗ : t = t1t2 ∧ |t1| ∈
L(Aβ1) ∧ ∃v ∈ L(suffixes(t2)) : |v| ∈ L(Aβ2) ∧ s = v}

Acharat(0, Aγ , Aβ) L(A) = {s | ∃t ∈ L(Aγ) : ∃t1 ∈ L(prefixes(t)), t2 ∈ Σ∗ : t = t1t2 ∧ |t1| ∈
L(Aβ1

) ∧ ∃v ∈ L(suffixes(t2)) : |v| = 1 ∧ s = v}

Table 4.3: Example semantics of the term automata constructions for the result of a
term. Term operations return an automaton A as a result.

term) that results in values in L(Alength) when length operation is applied.

Table 4.3 and Table 4.4 show examples of automata construction semantics for the

term operations. These constructions are based on pre- and post-image computations in

string analysis similar to the ones used in [29, 13, 5].

We have shown automata construction details for the variables that appear in a given

formula. We provided algorithms to handle boolean connectives and atomic constraints

with complex term operations. The techniques described in this chapter generate an

automaton for each variable. If there are multiple variables in a formula (i.e., relational

constraints in a formula), the automata construction techniques described here cannot

keep the relations precisely. In the next chapter, we discuss how to improve automata

construction for relational constraints in order to present the set of solutions with better

precision.
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Operation Automata Construction Semantics

Alength(1, Alength, Aγ) L(A) = {s | s ∈ L(Aγ) ∧ ∃t ∈ L(Alength) : |s| = |t|}
Aindexof(1, Aindexof , Aγ1 , Aγ2) L(A) = {s | s ∈ L(Aγ1) ∧ ∃t, u, v ∈ Σ∗ : t ∈ L(Aindexof) ∧ u ∈

L(Aγ2) ∧ s = tuv}
Aindexof(2, Aindexof , Aγ1 , Aγ2) L(A) = {s | s ∈ L(Aγ2) ∧ ∃t, v ∈ Σ∗ : t ∈ L(Aindexof) ∧ tsv ∈

L(Aγ1)}
Alastindexof(1, Alastindexof , Aγ1 , Aγ2) L(A) = {s | s ∈ L(Aγ1) ∧ ∃t, u, v ∈ Σ∗ : t ∈ L(Alastindexof) ∧

u ∈ L(Aγ2) ∧ s = tuv}
Alastindexof(2, Alastindexof , Aγ1 , Aγ2) L(A) = {s | s ∈ L(Aγ2)∧∃t, v ∈ Σ∗ : t ∈ L(Alastindexof)∧tsv ∈

L(Aγ1)}
Asubstring(1, Asubstring, Aγ , Aβ1

, Aβ2
) L(A) = {s | s ∈ L(Aγ) ∧ ∃t, u ∈ Σ∗, v ∈ L(Asubstring) : |t| ∈
L(Aβ1

) ∧ |v| ∈ L(Aβ2
) ∧ s = tvu}

Asubstring(2, Asubstring, Aγ , Aβ1 , Aβ2) L(A) = {s | s ∈ L(Aβ1) ∧ ∃t, u ∈ Σ∗, s1 ∈ L(Aγ), v ∈
L(Asubstring) : |v| ∈ L(Aβ2) ∧ s1 = tvu ∧ |s| = |t|}

Asubstring(3, Asubstring, Aγ , Aβ1
, Aβ2

) L(A) = {s | s ∈ L(Aβ2
) ∧ ∃t, u ∈ Σ∗, s1 ∈ L(Aγ), v ∈

L(Asubstring) : |t| ∈ L(Aβ1
) ∧ s1 = tvu ∧ |s| = |v|}

Acharat(1, Acharat, Aγ , Aβ) L(A) = {s | s ∈ L(Aγ) ∧ ∃t, u ∈ Σ∗, v ∈ L(Acharat) : |t| ∈
L(Aβ) ∧ s = tvu}

Acharat(2, Acharat, Aγ , Aβ) L(A) = {s | s ∈ L(Aβ) ∧ ∃t, u ∈ Σ∗, s1 ∈ L(Aγ), v ∈
L(Acharat) : s1 = tvu ∧ |s| = |t|}

Table 4.4: Example semantics of the term automata constructions for the parameters
of a term. Term operations return an automaton A as a result.
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Chapter 5

Relational Constraint Solving

In this chapter, we improve the precision of automata-based constraint solving techniques

by better handling relations between multiple variables. In the previous chapter, we de-

scribed algorithms that, given a formula, generate an automaton for each variable that

characterizes the set of solutions for that variable. Since, in that approach, each vari-

able has its own automaton, the relationships among variables are lost during automata

construction. A multi-track DFA, which we define below, is a generalization of a DFA

that accepts tuples of strings. Hence, a multi-track DFA can represent relations among

different variables. We enhance the algorithms discussed in the previous chapter by us-

ing multi-track DFA in order to obtain better precision in constraint solving. We first

introduce several definitions and then we revisit the automata construction algorithms

using multi-track DFA.

A multi-track DFA A is a 5-tuple (Q, (Σ∪{λ})k, δ, q0, F ), where Q is the set of states,

~Σ = (Σ ∪ {λ})k is the k-track input alphabet, where λ /∈ Σ is a special padding symbol

that appears only at the end of a string in each track, δ : Q × ~Σ → Q is the transition

relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting states. Multi-track

DFAs are closed under intersection, union and complement [43]. We associate with each
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track of A a unique identifier vi, which we refer to as the variable for track i. The set of

track variables for A is denoted as V(A). The language of all strings recognized by A is

denoted as L(A) where L(A) ⊆ ~Σ∗. Given a word w ∈ L(A), we use w[vi] ∈ Σ∗ to denote

the value of track i. Hence, w ∈ L(A) denotes a tuple of values (w[v1], w[v2], . . . , w[vk]),

one value for each variable in V(A).

Given a formula ϕ, our goal is to construct an automaton A, such that L(A) = JϕK,

where the tracks of A correspond to the variables of ϕ. We call such a DFA the solution

automaton for ϕ. As some mixed constraints and even some pure string constraints admit

non-regular truth sets [43], we provide a sound over approximation as an automaton A

such that JϕK ⊆ L(A) when exact truth sets are not precisely representable with DFA.

As we shall see, our method relies on carefully combining solution automata for

subformulas with possibly different variable sets. Doing so requires that automata which

are to be combined have the same tracks (sets of variable labels). Hence, we define an

operation [ ] such that, given an automaton A and a variable set V , A[V ] is an automaton

A′ where V(A′) = V . Let x1, . . . , xn ∈ V \ V(A) be the variables in V but not in V(A)

and y1, . . . , ym ∈ V(A)\V be the variables in V(A) but not in V . That is, we wish to add

new unconstrained xi tracks to A and remove yi tracks from A. Then, we define A[V ] to

be a multi-track DFA A′ with V(A′) = V such that w′ ∈ L(A′) ⇐⇒ ∃w ∈ L(A), ∀v ∈

V(A′) ∩ V(A), w[v] = w′[v].

Finally, some parts of our algorithms work by iteratively updating a set of current

solutions for the variables, which we denote by Acontext. Before processing any part of

the given constraint, any variable can take any value, so initially L(Acontext) = ~Σ∗, and

we write A~Σ∗ to indicate such an unconstrained automaton.

Note that a multi-track automaton is equivalent to a single track automaton when

there is only one track. We use the same notation for both automata (A) in the rest of

the dissertation. We now revisit the automata construction algorithms, this time using
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multi-track automata instead of using a dictionary of single track automata.

Given a formula ϕ, the automata constructor function A (Algorithm 6) recursively

constructs automata for sub-formulae of ϕ, combining them to return an automaton A

such that JϕK ⊆ L(A).

Function A uses the string automata constructor function AS (line 5) and integer

automata constructor function AZ (line 7) to construct automata for atomic string and

integer constraints, which are discussed in the following sections. Both AS and AZ

compute sound over-approximations and can handle negated atomic constraints. Both

functions accept an atomic constraint (ϕS or ϕZ) and an automaton Acontext (initially

A~Σ∗) and return a solution automaton that encodes the relations between variables in

the given formula.

Conjunctions and disjunctions are handled with automata intersection and union

(implemented using automata product operation) as described in the previous chapter.

In both cases, we apply [ ] operator in order to ensure that variable tracks are compatible

for the automata which are to be combined. We still need to apply function Refine at

line 11 as there might still be over-approximations.

Algorithm 6 Relational automata constructor function
Input: Formula ϕ: input formula
Output: Multi-track DFA A : a solution automaton
1: function A(ϕ)
2: if ϕ ≡ ¬ϕ then
3: return A(ToNegationNormalForm(¬ϕ))
4: else if ϕ ≡ ϕS or ϕ ≡ ¬ϕS then
5: return AS(ϕ,A~Σ∗)
6: else if ϕ ≡ ϕZ or ϕ ≡ ¬ϕZ then
7: return AZ(ϕ,A~Σ∗)
8: else if ϕ ≡ ϕ1 ∨ ϕ2 then
9: return A(ϕ1)[V(ϕ)] ∪ A(ϕ2)[V(ϕ)]

10: else if ϕ ≡ ϕ1 ∧ ϕ2 then
11: return Refine(ϕ,A(ϕ1)[V(ϕ)] ∩ A(ϕ2)[V(ϕ)])
12: end if
13: end function
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Algorithm 7 Relational automata refinement
Input: Formula ϕ: a formula, Automaton A : initial values of the variables where V(A) = V(ϕ)
Output: Automaton A : updated values of the variables
1: function Refine(ϕ,A)
2: for each φ ∈ {atomic sub constraint of ϕ with possible over-approximation} do
3: A← A ∩ Aφ(ϕφ, A[V(ϕφ)])[V(ϕ)]
4: end for
5: return A
6: end function

Examples. Let us consider the following examples:

charat(v, i) = "a" ∧ i = 2× j (5.1)

begins(v, t) ∧ x = length(v) + 1 (5.2)

Example 5.1 is a conjunction of an atomic string constraint ϕ1 ≡ charat(v, i) = "a"

and a numeric constraint ϕ2 ≡ i = 2 × j. String constraint ϕ1 is also a mixed con-

straint as it contains both a string and an integer variable. Given the string formula ϕ1

and Acontext = A~Σ∗ , string automata constructor AS constructs an automaton A1 where

V(A1) = {v, i, cv} where cv is an auxiliary variable added for charat term appearing in the

string predicate =. An example accepting tuple for the automaton A1 is ("bab", 1,"a").

Similarly, AZ constructs an automaton A2 where V(A2) = {i, j}. An example accepting

tuple for the automaton A2 is (−2,−1). Function π extends both automata A1 and A2 to

the variable set {v, i, j, cv}. Integer variable i appears on both constraints. Intersection

of the both automata generates a new automaton A. As a result of the intersection,

variable i represents non-negative even integers and variable j represents non-negative

integers. However, intersection does not refine the values of the variables v and cv as

the automaton A1 cannot encode the relation between string variable v and integer vari-

able i. An example accepting tuple of the intersection automaton is ("bab", 2, 1,"b").
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Function Refine executes the string automata constructor function AS once more for

the mixed string constraint ϕ1, this time by passing the automaton that represents the

current values of the variables (Acontext) as second parameter to refine the values of the

string variable v based on the values of the integer variable i. An example accepting

tuple of the final refined automaton is ("aba", 2, 1,"a").

Example 5.2 is handled in the same way Example 5.1 is handled. The only difference

is that Example 5.2 contains a mixed integer constraint whereas Example 5.1 contains

a mixed string constraint. Automata constructor function A constructs an automaton

A where V(A) = {v, t, x, lv}. Integer automata constructor function adds auxiliary vari-

able lv to represent values of the length. An example accepting tuple for the resulting

automaton is ("ab","a", 3, 2).

Next, we discuss the algorithmic details of the functions AS, AZ, and how we handle

the mixed constraints.

5.1 String Constraint Solving

For a given atomic string formula ϕS and Acontext, string automata constructor func-

tion AS (Algorithm 8) constructs a multi-track DFA A where JϕSK ⊆ L(A). Function

AS first constructs an automaton for each string term appearing in string predicate

(?, where ? ∈ {=, <,>,match, contains, begins, ends}) using the function ATermCons de-

scribed in Algorithm 9. Then, it constructs an automaton for the string predicate (?)

using the corresponding automaton construction function. We provide the semantics of

the relational automata constructions for string predicate operations which is the one of

the main improvements over the Algorithm 3. And finally, if necessary, it propagates the

result of the string predicate operation to the variables appearing in the formula using

the function ATermProp described in Algorithm 10.
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Term propagation is necessary when we construct a single-track solution automaton

for the term τ . This means that the relation between the term value and the values of

variables in V(τ) is lost (i.e., over-approximated) during term automata construction.

Once the multi-track automaton for ϕS or ϕZ is constructed, ATermProp propagates the

result to each variable of V(τ).

Algorithm 8 Relational string automata constructor
Input: Formula ϕ: an atomic constraint, Automaton Acontext : initial values of the variables where
V(A) = V(ϕ)

Output: Automaton AS : updated values of the variables
1: function AS(ϕ,Acontext)
2: if ϕ ≡ γ1 ? γ2 then . ? ∈ {=, <,>,match, contains,begins, ends}.
3: AS ← A?(ATermCons(γ1, Acontext),ATermCons(γ2, Acontext))
4: else if ϕ ≡ ¬(γ1 ? γ2) then
5: AS ← A?(ATermCons(γ1, Acontext),ATermCons(γ2, Acontext))
6: end if
7: for each (v, τ) ∈ {(a, b) | b ∈ {γ1, γ2} ∧ a ∈ V(b) \ V(AS) ∧ ϕ ≡ γ1 ? γ2} do
8: AS ← AS[V(ϕ)] ∩ ATermProp(v, τ, AS[vτ ], Acontext)[V(ϕ)]
9: end for

10: return AS
11: end function

Before going into the details of the algorithm, let us define the relational automata

construction semantics for the string predicate operations (Table 5.1). Encoding seman-

tics of the string predicate operations in multi-track automata allows us to keep relations

among the variables that appear in the predicate.

Let us consider the atomic string constraint ϕS ≡ charat(v, i) = "a" from Exam-

ple 5.1. First, an automaton A1 where L(A1) = ~Σ is constructed for the string term

γ1 ≡ charat(v, i) and an automaton A2 where L(A2) = {"a"} is constructed for the

string term γ2 ≡ "a" at line 3 using the term automata constructor function ATermCons

presented in Algorithm 9. Next, function AS calls an automaton construction function

based on the string predicate. In our example, the string predicate ? is an equality (=)

constraint on string terms. Function AS calls A= at line 3 to construct an automaton

AS given the automata A1 and A2 constructed for the terms γ1 and γ2. We provide the
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Operation Automata Construction Semantics

A=(Aγ1 , Aγ2) L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ s1 = s2}
A6=(Aγ1 , Aγ2) L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ s1 6= s2}
A<(Aγ1 , Aγ2) L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ s1 < s2}
A≤(Aγ1 , Aγ2) L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ s1 ≤ s2}
A>(Aγ1 , Aγ2) L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ s1 > s2}
A≥(Aγ1 , Aγ2) L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ s1 ≥ s2}
Amatch(Aγ, Aρ) L(A) = {s | s ∈ L(Aγ) ∧ s ∈ L(Aρ)}
Amatch(Aγ, Aρ) L(A) = {s | s ∈ L(Aγ) ∧ s /∈ L(Aρ)}
Abegins(Aγ1 , Aγ2) L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ ∃t ∈ Σ∗ : s1 =

s2t}
Abegins(Aγ1 , Aγ2) L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ @t ∈ Σ∗ : s1 =

s2t}
Aends(Aγ1 , Aγ2) L(A) = {(s1, s2)|s1 ∈ L(Aγ1)∧ s2 ∈ L(Aγ2)∧ s1 ∈ Σ∗L(Aγ2)∧

s2 ∈ L(suffixes(Aγ1))}
Aends(Aγ1 , Aγ2) L(A) = {(s1, s2)|∃t1 ∈ L(Aγ1), t2 ∈ L(Aγ2) : s1 ∈ L(Aγ1)∧s2 ∈

L(Aγ2) ∧ s1 /∈ Σ∗t2 ∧ s2 /∈ L(suffixes(t1))}
Acontains(Aγ1 , Aγ2) L(A) = {(s1, s2)|s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ s1 ∈

Σ∗L(Aγ2)Σ∗ ∧ s2 ∈ L(suffixes(prefixes(Aγ1)))}
Acontains(Aγ1 , Aγ2) L(A) = {(s1, s2)|∃t1 ∈ L(Aγ1), t2 ∈ L(Aγ2) : s1 ∈ L(Aγ1)∧s2 ∈

L(Aγ2) ∧ s1 /∈ Σ∗t2Σ∗ ∧ s2 /∈ L(suffixes(prefixes(t1)))}

Table 5.1: Relational automata constructions semantics for Asop and Asop.

52



Relational Constraint Solving Chapter 5

details of the automata constructions for string predicate operations in Table 5.1. The

resulting automaton AS where L(A) = {"a"} represents the values of the terms that sat-

isfies the predicate. Automaton AS includes tracks for the terms that are not constant;

term γ1 ≡ charat(v, i) is represented with an auxiliary variable vγ1 , and term γ2 does not

appear in the tracks since it represents a constant value. Line 7 iterates over the terms

and collects the variables that appear in the term, but not in the automaton constructed

so far. In our example, since V(AS) = {vγ1} and V(γ1) = {v, i, vγ1}, for loop at line 7

collects tuples (v, γ1) and (i, γ1) and executes the function ATermProp to propagate the

result of the string predicate operation back to the variables. Executions of the line 8

adds tracks for the variables v and i to the automaton AS. Finally, automaton AS where

V(AS) = V(ϕS) is returned.

We now discuss the functions ATermCons and ATermProp that are used during string

automata construction. Given a term τ and Acontext, the function ATermCons generates an

automaton by recursive decomposition into subformulas (Algorithm 9). If τ is a regular

expression term ρ, an automaton Aρ is constructed using standard regular expression DFA

constructions extended to multi-track DFA. If τ is an integer constant, An is constructed

to recognize all strings of length n. For string variable terms, the current set of values

for the variable is extracted from Acontext using π.

Integer variable terms are encoded as binary strings in our automata representation.

One of our contributions in this dissertation is to provide a function ToStrEncoding that

converts binary encoded set of values of an integer variable into a unary encoded set

of values. Function ToStrEncoding enables us to compute an automaton for the mixed

constraints and we discuss the details of the function in Section 5.3.

If τ corresponds to a term operation (� ∈ {length, . . . , replaceall}), the corresponding

term automata construction function A� is called. Term automata constructor functions

are discussed in Chapter 4.3.2.

53



Relational Constraint Solving Chapter 5

Algorithm 9 Term automata constructor
Input: Term τ : target term, Automaton A : values of variables where V(A) = V(τ)
Output: Automaton A : constructed as a result of term τ
1: function ATermCons(τ,Acontext)
2: if τ ≡ ρ then
3: return Aρ where L(Aρ) = {s | s ∈ L(ρ)}.
4: else if τ ≡ n then
5: return An where L(An) = {s | |s| = n}.
6: else if τ ≡ vs then
7: return Acontext[{vs}]
8: else if τ ≡ vi then
9: return ToStrEncoding(Acontext[{vi}])

10: else if τ ≡ �(τ1, . . . , τn) then . � ∈ {length, . . . , replaceall}.
11: return A�(0,ATermCons(τ1, Acontext), . . . ,ATermCons(τn, Acontext))
12: end if
13: end function

Let us consider the running example again. For the string term γ1 ≡ charat(v, i),

function ATermCons first generates an automaton Av for the variable term v using the

automaton that accepts strings represented by the variable (line 7). Next, it generates

an automaton Ai for the variable term i at line 9. Next, for the term γ1 ≡ charat(v, i),

Acharat (where � = charat) constructs an automaton A1 given the automata Av and Ai

as parameters at line 11. Initially variables v and i are unconstrained, hence the resulting

automaton A1 accepts all characters. Similarly, ATermCons generates an automaton A2

where L(A2) = {"a"} for the string term γ2 ≡ "a".

Now, we discuss the details of the functionATermProp. Given a variable v, a term τ that

contains the variable v, an automaton Aτ that characterizes the values of the term τ , and

Acontext, function ATermProp recursively computes the values of the variable v that results

in the values accepted by the automaton Aτ when the term operation that corresponds

to τ is applied. When a term τ corresponds to a string variable, the updated set of

values for the variable is computed by intersecting the propagated automaton Aτ with

Acontext. Since values of integer variables are encoded as binary strings, we need to convert

the unary encoded set of values into binary encoded set of values using the function

ToBinEncoding. We discuss the details of the function ToBinEncoding in Section 5.3.
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If a term τ corresponds to a term operation (� ∈ {length, . . . , replaceall}), the corre-

sponding term automata propagator function A� is called to construct an automaton for

the sub terms that contain the variable v given the automata for the term τ and other

sub terms. Term automata constructor functions are discussed in Chapter 4.3.2.

Algorithm 10 Term automata propagator
Input: Variable v: target variable, Term τ : current term, Automaton Aτ : result of term τ , Automaton

A : values of variables where V(A) = V(τ)
Output: Automaton Av : solutions to variable v
1: function ATermProp(v, τ, Aτ , A)
2: if τ ≡ vs then
3: return Aτ ∩A[{vs}]
4: else if τ ≡ vi then
5: return ToBinEncoding(Aτ ) ∩A[{vi}]
6: else if τ ≡ �(τ1, . . . , τn) then . � ∈ {length, . . . , replaceall}.
7: for all i ∈ {k | 1 ≤ k ≤ n ∧ v ∈ V(τk)} do
8: Aτi ← A�(i, Aτ ,ATermCons(τ1, A), . . . ,ATermCons(τn, A))
9: A← A ∩ ATermProp(v, τi, Aτi , A)[V(A)]

10: end for
11: return π(A, {v})
12: end if
13: end function

Let us consider the running example again for discussion of the Algorithm 8. Function

ATermProp is called twice at line 8, once for string variable v (ATermProp(v, γ1, π(AS, vγ1)))

and once for integer variable i (ATermProp(i, γ1, π(AS, vγ1))). For the string variable v

and the term γ1 ≡ charat(v, i), Acharat (where � = charat) constructs an automaton

Av where L(Av) = {s | s = ∃s1, s2 ∈ Σ∗ : s = s1as2}. Informally, automaton that

corresponds to the charat term accepts only character a. Since integer variable i is

unconstrained, we only say that variable v must contain character a. Note that, this

is an over-approximation. Next, the automaton Av is intersected with the automaton

that represents the initial values of the variable v. Similarly, for the integer variable i,

Acharat constructs an automaton Ai where L(Ai) = {n | n ≥ 0} since character indexes

in a string start from 0. In the last step, Ai is converted into an automaton that accepts

binary strings for the integers and intersected with the initial values of the variable i.
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To sum up, function ATermProp restricts the values of the variables v and i based on the

result of the charat operation.

5.2 Integer Constraint Solving

Integer automata constructor AZ (Algorithm 11) handles arithmetic formulae ϕZ

consisting of linear equalities (=), disequalities (6=), and inequalities (<,≤, >,≥).

Given an atomic numeric constraints ϕZ, function AZ first extracts the coefficients

of the of the integer terms in the form
∑n

i=1 ci · βi + c0⊗ 0 where ci denotes integer

coefficients and βi denotes atomic integer terms and ⊗ ∈ {=, 6=, >,≥,≤, <}. Then, the

automata construction techniques that rely on a binary adder state machine construction

is used to construct an automaton for the arithmetic constraint [44]. An integer term

may correspond to an operation between strings and integers, such as x = length(v) + 1.

In such cases, an auxiliary integer variable, say ls = v, is used to track the values of

the result of the term operation corresponding to satisfying assignments of the variables

appearing in the term. The loop condition at line 4 checks if there is any term operation

involved in the integer constrain. When the loop evaluates to true, the generated integer

automaton is first refined further and then extended with the variables that appear in the

term. Note that, if the term operation contains a string variable, ϕZ is a mixed integer

constraint.

Let us consider the Example 5.2 again. It contains an atomic integer constraint

ϕZ ≡ x = length(v) + 1. Function CollectCoeffs in Algorithm 11 extracts the coefficients

c0 = −1, c1 = 1, c2 = −1 for the integer terms β1 ≡ x, β2 ≡ length(v) where ⊗ is equality

(=). An automaton AZ is constructed where V(AZ) = {x, vl} and vl is an auxiliary

variable used for the length term. An example accepting tuple for the automaton is

(−1,−2). Next, the for loop at line 4 identifies the tuple (v, length(v)). First, ATermCons

56



Relational Constraint Solving Chapter 5

Algorithm 11 Relational integer automata constructor
Input: Formula ϕ: an atomic constraint, Automaton Acontext : initial values of the variables where
V(A) = V(ϕ)

Output: Automaton AZ : updated values of the variables
1: function AZ(ϕ,Acontext)
2: ⊗, c0, c1, β1, . . . , cn, βn ← CollectCoeffs(ϕ)
3: AZ ← A⊗(c0, c1, β1, . . . , cn, βn) . construction based on the techniques in [44].
4: for all (v, τ) ∈ {(a, b) | b ∈ {β1, . . . , βn} ∧ a ∈ V(b) \ V(AZ)} do
5: AZ ← AZ ∩ ToBinEncoding(ATermCons(τ,Acontext))[V(AZ)]
6: AZ ← AZ[V(ϕ)] ∩ ATermProp(v, τ,ToStrEncoding(AZ[vτ ], Acontext)[V(ϕ)]
7: end for
8: return AZ
9: end function

is called to restrict the integer constraint further based on the length of the variable v.

Since variable v can represent strings with any length, it restricts the variable as vl ≥ 0.

At this point, an accepting tuple for the automaton AZ is (2, 1). Next, ATermCons is called

to propagate back the values of the vl to the string variable v. After that, the automaton

AZ is extended with a track for the string variable v. An example accepting tuple for the

final automaton is (2, 1,"a"). Note that, functions ToBinEncoding and ToStrEncoding

are used for conversion between different encodings in order to represent the relation

between string and integer variables. In the next section, we discuss the details of both

of these functions.

5.3 Mixed Constraint Solving

During automata construction, the ToStrEncoding function is used to convert binary

integer automata to length automata to refine string solutions, and the ToBinEncoding

function is used to convert length automata to binary integer automata to refine integer

solutions. Note that, both functions are always called on an automaton that is projected

onto a single track in the algorithms discussed in the previous subsections.

A linear set Li is given by {ai+ bik : k ∈ Z}, for some ai, bi ∈ Z. A semilinear set S is
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a finite union of linear sets S = ∪iLi. For any single-track binary integer DFA A, L(A)

forms a semilinear set S [4]. Given a binary integer DFA A constructed from linear integer

arithmetic constraints, we wish to recover the semilinear set that it represents. We adopt

algorithms proposed in [4] but further propose BinToSemSet function (Algorithm 12) to

construct semilinear sets of binary integer automata (instead of approximating them as

in [4]).

Algorithm 12 Semilinear set extraction from a binary encoded integer automaton
Input: Automaton A: a binary encoded integer automaton, Number i : bit bound
Output: Semilinear set S : union of linear sets
1: function BinToSemSet(A, i)
2: if L(A) is a finite set then
3: return S where S = {n | n ∈ L(A)}
4: else if i > 2× |A| then
5: return S where S = {n | (n < 2i ∧ n ∈ L(A)) ∨ n > 2i}
6: else
7: N ← GetValues(A, i)
8: while N 6= ∅ do
9: a← RemoveMin(N), N ′ ← N

10: while N ′ 6= ∅ do
11: b← RemoveMin(N ′)
12: construct S where S = {n | n = a+ (b− a)× k ∧ k ≥ 0}
13: if S ⊆ L(A) then
14: return S ∪ BinToSemSet(A \ A(S), 1)
15: end if
16: end while
17: end while
18: return BinToSemSet(A, i+ 1)
19: end if
20: end function

Given an automaton A and a bit-width bound i on recursion (initially i = 1),

BinToSemSet(A, i) recursively constructs a semilinear set S, s.t., L(A) = S if L(A)

is a semilinear set; L(A) ⊆ S, otherwise. At recursive steps, once a linear set S is found

from a given automaton A, we add the set S to the result of the next recursive call where

we pass a new automaton A \ A(S) such that L(A \ A(S)) = L(A) \ S and the new

bit-width bound is reset to 1. In that recursive step, the algorithm tries to find a linear

set that forms from a minimal pair of accepting values in L(A).
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The procedure conducts an exhaustive search by enumerating all potential pairs in the

set of accepting values that have their bit-width bounded by i. GetValues(A, i) returns

the set {n | n < 2i∧n ∈ L(A)}. If we cannot find a linear set given the bit-width bound i,

we increase i by one and recurse the procedure. If the recursion ends at line 3, we return a

semilinear set S where S = L(A). If the recursion returns because that bit-width bound

is greater than a threshold, we return a semilinear set that over approximates L(A). The

threshold is set as 2× |A| to ensure that before the termination at least two numbers of

any linear set in L(A) have been checked.

Example Let us consider the following example:

i = 2× j ∧ length(v) = i (5.3)

Example 5.3 is a conjunction of an atomic integer constraints ϕ1 ≡ i = 2 × j and

ϕ2 ≡ length(v) = i. The constraint ϕ2 is also a mixed constraint as it contains both a

string and an integer variable. The automaton constructed for the atomic constraint ϕ1

(A(i,j)) is shown in Figure 5.1. That construction happens with the call to Algorithm 11

at line 7 in Algorithm 6. Atomic constraint ϕ2 is a mixed constraint, Figure 5.1 shows

the automata (A(vl,i), Av) constructed for the it. The automata constructed for ϕ2 refers

to the constructions that happened before handling the mixed constraints at line 4 in

Algorithm 11. To better explain the algorithm visually, we will keep string and integer

variables in separate automata.

Let vl be an auxiliary variable that represents bitwise encodings of the lengths of the

strings that are represented with the variable v. As shown in Figure 5.1, the automaton

A(vl,i) accepts negative integers however, string lengths cannot be negative integers. In

order to refine the integer automaton based on the string automaton we need to handle

the mixed constraint. Let vu be an auxiliary variable that represents the unary encod-
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i = 2× j ∧ length(v) = i

0

1

2 3

(0, 0)

(0, 1)

(0, 0)

(0, 1)

(1, 0)
(1, 1)

(1, 0)

(1, 1)

(i, j)

0 1

(0, 0),
(1, 1)

(0, 0),
(1, 1)

(vl, i)

length

0

a, bv

Figure 5.1: Automata constructed for the atomic constraints ϕ1 ≡ i = 2 × j and
ϕ2 ≡ length(v) = i before handling the mixed constraint.

ing of the lengths of the the strings that are represented with the variable v. A unary

encoding can be obtained by mapping string alphabet Σ to a symbol λ where λ /∈ Σ.

Figure 5.2 shows the details of conversions between string and integer automata while

handling mixed constraints. Figure 5.2a shows the steps of the string to integer automa-

ton conversion which is called at line 5 in Algorithm 11. Figure 5.2b shows the steps of

the integer to string automaton conversion which is called at line 6 in Algorithm 11.

Figure 5.3a shows the automata constructed after handling the mixed constraint

ϕ2. After constructing automata for the atomic constraints ϕ1 and ϕ2, the resulting

automata are conjuncted as presented in Algorithm 6. Figure 5.3b shows the result of

the conjunction before applying the refine function at line 11 in Algorithm 6. Note that,

the resulting integer automaton now accepts positive even numbers for the variables vl

and i due to atomic constraint ϕ1. However, string automaton for the variable v still

accepts any string.

The result of a mixed constraint is over-approximated as a multi-track automaton

cannot encode the relation between an unbounded string variable and an unbounded in-
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Figure 5.2: Handling mixed constraint ϕ2 ≡ length(v) = i: (a) string to integer
automaton conversion , and (b) integer to string automaton conversion.
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i = 2× j ∧ length(v) = i
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Figure 5.3: (a) result of the mixed constraint handling step , and (b) result of the
conjunction without applying Refine step.
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Figure 5.4: Handling mixed constraint ϕ2 ≡ length(v) = i inside Refine: (a) string to
integer automaton conversion , and (b) integer to string automaton conversion.

teger variable (in bitwise encoding). Refine function (Algorithm 7) takes the constructed

automata in Figure 5.3b as input and generates refined automata by re solving the mixed

constraint ϕ2 again. Figure 5.4a and Figure 5.4b shows string to integer automaton and

integer to string automaton steps, respectively. String automaton for the variable v does

not change after handling the conjunction. As a result of that, string to integer conver-

sion does not result in any changes in the integer automaton. However, integer to string

conversion updates the string automaton based on the update in integer automaton.

Figure ??hows the final automata constructed for the input formula ϕ ≡ i = 2× j ∧

length(v) = i.

The example formula i = 2× j ∧ length(v) = i contains a mixed constraint where an

atomic integer constraint involves a string and an integer variable. Similarly, an atomic

string constraint can involve an integer variable and a string variable. Consider the

example i = 2 × j ∧ charat(v, i) = “a”. Figure 5.6 shows automata constructed for the

example i = 2 × j ∧ charat(v, i) = “a” where the mixed constraint charat(v, i) = “a”

handled using the conversion functions for the string and integer automata.
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0 1 2
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Figure 5.5: Automata constructed for the formula ϕ ≡ i = 2× j ∧ length(v) = i.
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Figure 5.6: Automata constructed for the formula ϕ ≡ i = 2× j ∧ charat(v, i) = “a”.
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Chapter 6

Constraint Simplification Heuristics

In this chapter we present a set of heuristics for improving both the precision and the

efficiency of of our constraint solver.

Term Re-Write Rules: All terms are first reduced with respect to a re-write system

based on a set of rules (Fig. 6.1). These rules include both term normalization rules and

tautological simplifications of atomic constraints. Here, i, j are distinct integer constants,

t, v are distinct string constants and γ1, γ2, γ3 are (not necessarily distinct) string terms.

Dependency Analysis: To reduce the amount of work required to solve a constraint,

ϕ ∧ ϕ→ ϕ ϕ ∨ ϕ→ ϕ ϕ ∨ > → >
ϕ ∧ > → ϕ ϕ ∨ ⊥ → ϕ ϕ ∧ ⊥ → ⊥

|ε| → 0
0× β → 0 β − 0→ β β = β → > i 6= j → >
1× β → β −(−β)→ β β 6= β → ⊥ |vs1 .vs2| → |vs1|+ |vs2|
β + 0→ β ¬(¬β)→ β i = j → ⊥

t.γ1 = t.γ2 → γ1 = γ2

γ.ε→ γ γ = γ → > t.γ1 6= v.γ2 → > γ1.t = γ2.t→ γ1 = γ2

ε.γ → γ γ 6= γ → ⊥ t.γ1 = v.γ2 → ⊥ ends(γ2.γ1, γ1)→ >
t1.t2 → t1t2 t = v → ⊥ γ1.t 6= γ2.v → > begins(γ1.γ2, γ1)→ >
γ ∈ t→ γ = t t 6= v → > γ1.t = γ2.v → ⊥ contains(γ2.γ1.γ3, γ1)→ >

Figure 6.1: Term reduction rules.
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we note that not all variables of a constraint need be counted together. We define the

constraint graph of a formula ϕ to be the graph defined on the set of variables of ϕ

where an edge exists between any two variables if they appear in the same clause of ϕ.

This constraint graph can be decomposed into a finite set of connected components. A

connected component C is a maximal subgraph such that if u, v ∈ C then there exists a

path between u and v in C.

Constraints on any given variable depend only on variables within its connected com-

ponent. This allows us to decompose a formula based on connected components, solve

and count each component individually, and then take the product of the results to ob-

tain accurate counts for tuples of variables. This results in smaller automata and faster

computation.

Equivalence Classes: The variables of a formula ϕ can be partitioned into equiva-

lence classes so that any pair of given variables x, y are in the same equivalence class only

if the have the same solution set. In our implementation, we construct these equivalence

classes based on equality clauses. Every term, variable or otherwise, begins in its own

equivalence class and for every equality clause, the equivalence classes of the left and

right sides are merged.

From each equivalence class, we choose a representative. Priority in this choice is

given to constant terms then to variables. Each variable in the equivalence class is then

replaced by this representative in the formula ϕ. This optimization can result in the

elimination of variables from ϕ, and hence tracks from its DFA, without any loss of

precision in counting.

Implication Rules: As noted previously, our automata construction for some con-

straints can be imprecise. However, precision can be improved for some of these con-

straints by augmenting the original formula ϕ with clauses implied by ϕ. We present a

set of implication rules which define the augmenting clauses added to ϕ in the presence
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γ1.contains(γ2)→ |γ1| ≥ |γ2| ¬γ.contains(t)→ ¬γ.begins(t) ¬γ.ends(t)→ γ 6= t
γ1.begins(γ2)→ |γ1| ≥ |γ2| γ1.γ2 = γ3.γ4 → |γ1|+ |γ2| = |γ3|+ |γ4|
γ1.ends(γ2)→ |γ1| ≥ |γ2| γ1.γ2 = γ3 → |γ1|+ |γ2| = |γ3| ∧ γ3.begins(γ1)

Figure 6.2: Implication rules.

of certain imprecise constraints in Fig. 6.2.
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Chapter 7

Automata-based Model Counting

In this chapter, we describe how to perform parameterized model counting by making use

of the automata constructed by our constraint solving procedure. The model counting

problem is to determine the size of JϕK, which we denote #JϕK. A formula can have

infinitely many models. However, we can count the number of models within an infinite

space of solutions restricted to a finite range for the free variables. Hence, we perform

parameterized model counting for string and integer constraints, in which #JϕK(bS, bZ) is

a function over parameters bS, which bounds the length of string solutions, and bZ, which

bounds the bit-length representation of integer solutions.

The constraint solving procedure described in Chapter 4 produces a final automaton,

A, for each variable in a given formula. The constraint solving procedure in Chapter 5

produces a final DFA, A, that contains multi-track solution sub-automata AS and AZ.

The model counting techniques we discuss here works for any DFA whether it is a single-

track or multi-track. The only difference is in the interpretation of the count results; the

former counts solutions to a single variable, whereas the latter counts solutions to tuples

of variables. When counting for tuples, the separation of string and integer automata

may lose some relational information between string and integer variables, but we can
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multiply the model counts for each automaton in order to give a sound upper bound on

the number of models for tuples of integer and string variables. We make use of two

functions #FAS(k) and #fAZ(k) to count string and integer models respectively. The

functions #FAS(k) works identical for single-track (#FA(k)) and multi-track automata.

We rely on the observation that counting the number of strings of length k in a

regular language, L, is equivalent to counting the number of accepting paths of length

k in the DFA that accepts L. That is, by using a DFA representation, we reduce the

parameterized model counting problem to counting the number of paths of a given length

in a graph. In a DFA, there is exactly one accepting path for every recognized string.

Thus, if we are interested in computing only string models or only integer models, there

is no loss of precision due to the the model counting procedure; any loss of precision

for strings comes from the over-approximations of non-regular constraints in the solving

phase, and for pure integer constraints, the model counting procedure is precise because

relational integer solution automata construction is precise.

We employ algebraic graph theory [45] and analytic combinatorics [46] to perform

model counting. In our method, model counting corresponds exactly to counting the

accepting paths of the constraint DFA up to a given length bound k. This problem can

be solved using dynamic programming techniques in O(k · |δ|) time where δ is the DFA

transition relation [47, 48]. However, for each different bound, the dynamic programming

technique requires another traversal of the DFA graph.

A preferable solution is to derive a symbolic function that given a length bound k

outputs the number of solutions within bound k. One way to achieve this is to use the

transfer matrix method [49, 46, 50] to produce an ordinary generating function which in

turn yields a linear recurrence relation that is used to count constraint solutions. The

transfer matrix T of A is a matrix where Ti,j is the number of transitions from state i

to state j. We will briefly review the necessary background and then describe the model
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counting algorithm.

Given a DFA A, consider its corresponding language L. Let Li = {w ∈ L : |w| =

i}, the language of strings in L with length i. Then L =
⋃
i≥0 Li. Define |Li| to be

the cardinality of Li. The cardinality of L can be computed by the sum of a series

a0, a1, . . . , ai, . . . where each ai is the cardinality of the corresponding language Li, i.e.,

ai = |Li|.

For example, recall the final DFAA for the formula ϕ ≡ ¬match(x, (01)∗)∧length(x) ≥

1 in Figure 4.2. Let L(A) (L(A) = Jϕ, xK = JϕK ) be the language over Σ = {0, 1}

that satisfies the formula ϕ. Then L(A) is described by the expression Σ∗ − (01)∗. In

the language L(A), we have zero strings of length 0 (ε 6∈ L(A)), two strings of length

1 ({0, 1}), three strings of length 3 ({00, 10, 11}), and so on. The sequence is then

a0 = 0, a1 = 2, a2 = 3, a3 = 8, a4 = 15, etc. For any length i, |L(A)i|, is given by a 3rd

order linear recurrence relation:

a0 = 0, a1 = 2, a2 = 3

ai = 2ai−1 + ai−2 − 2ai−3 for i ≥ 3
(7.1)

In fact, using standard techniques for solving linear homogeneous recurrences, we can

derive a closed form solution to determine that

|L(A)i| = (1/2)(2i+1 + (−1)i+1 − 1). (7.2)

In the following discussion we give a general method based on generating functions

for deriving a recurrence relation and closed form solution that we can use for model

counting.

Generating Functions: Given the representation of the size of a language L as a sequence

{ai} we can encode each |Li| as the coefficients of a polynomial, an ordinary generating
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function (GF). The ordinary generating function of the sequence a0, a1, . . . , ai, . . . is the

infinite polynomial [49, 46]

g(z) =
∑
i≥0

aiz
i (7.3)

Although g(z) is an infinite polynomial, g(z) can be interpreted as the Taylor series

of a finite rational expression. I.e., we can also write g(z) = p(z)/q(z), where p(z) and

q(z) are finite degree polynomials. If g(z) is given as a finite rational expression, each ai

can be computed from the Taylor expansion of g(z):

ai =
g(i)(0)

i!
(7.4)

where g(i)(z) is the ith derivative of g(z). We write [zi]g(z) for the ith Taylor series

coefficient of g(z). Returning to our example, we can write the generating function for

| Lxi | both as a rational function and as an infinite Taylor series polynomial. The reader

can verify the following equivalence by computing the right hand side coefficients via

equation (7.4).

g(z) =
2z − z2

1− 2z − z2 + 2z3
= 0z0 + 2z1 + 3z2 + 8z3 + 15z4 + . . . (7.5)

Generating Function for a DFA: Given a DFA A and length k we can compute the

generating function gA(z) such that the kth Taylor series coefficient of gA(z) is equal to

| Lk(A)| using the transfer-matrix method [49, 46].

We first apply a transformation and add an extra state, sn+1. The resulting automa-

ton is a DFA A′ with λ-transitions from each of the accepting states of A to sn+1 where

λ is a new padding symbol that is not in the alphabet of A. Thus, L(A′) = L(A) · λ and

furthermore |L(A)i| = |L(A′)i+1|. That is, the augmented DFA A′ preserves both the

70



Automata-based Model Counting Chapter 7

language and count information of A. Recalling the final automaton from Figure 4.2, the

corresponding augmented DFA is shown in Figure 7.1b. (Ignore the dashed λ transition

for the time being.)

1 2 31

0

1

0 0, 1

(a)

1 2 3

4

1
0

1

0 0, 1

λ λ

λ

(b)

Figure 7.1: (a) The original DFA A, and (b) the augmented DFA A′ used for model
counting (sink state omitted).

From A′ we construct the (n + 1) × (n + 1) transfer matrix T . A′ has n + 1 states

s1, s2, . . . sn+1. The matrix entry Ti,j is the number of transitions from state si to state

sj. Then the generating function for A is

gA(z) = (−1)n
det(I − zT : n+ 1, 1)

z det(I − zT )
, (7.6)

where (M : i, j) denotes the matrix obtained by removing the ith row and jth column

from M , I is the identity matrix, detM is the matrix determinant, and n is the number

of states in the original DFA A. The number of accepting paths of A with length exactly

k, i.e. |L(A)k|, is then given by [zk]gA(z) which can be computed through symbolic

differentiation via equation 7.4.

For our running example, we show the transition matrix T and the terms (I − zT )

and (I − zT : n, 1). Here, T1,2 is 1 because there is a single transition from state 1 to

state 2, T3,3 is 2 because there are two transitions from state 3 to itself, T2,4 is 1 because

there is a single (λ) transition from state 2 to state 4, and so on for the remaining entries.
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T =



0 1 1 0

1 0 1 1

0 0 2 1

0 0 0 1


, I−zT =



1 −z −z 0

−z 1 −z −z

0 0 1− 2z −z

0 0 0 1


, (I−zT : n, 1) =


−z −z 0

1 −z −z

0 1− 2z −z



Applying equation (7.6) results in the same GF that counts  Li(A) given in (7.5).

gA′(z) = −det(I − zT : n, 1)

z det(I − zT )
=

2z − z2

1− 2z − z2 + 2z3
. (7.7)

Suppose we now want to know the number of solutions of length six. We compute

the sixth Taylor series coefficient to find that |L(A)6| = [z6]g(z) = 63.

Deriving a Recurrence Relation: We would like a way to compute [zi]g(z) that is more

direct than symbolic differentiation. We describe how a linear recurrence for [zi]g(z)

can be extracted from the GF. Before we describe how to accomplish this in general, we

demonstrate the procedure for our example. Combining equations (7.3) and (7.7) and

multiplying by the denominator, we have

2z − z2 = (1− 2z − z2 + 2z3)
∑
i≥0

aiz
i.

Expanding the sum for 0 ≤ i < 3 and collecting terms,

2z − z2 = a0 + (a1 − 2a0)z + (a2 − 2a1 − a0)z2 +
∑
i≥3

(ai − 2ai−1 − ai−2 + 2ai−3)zi.

Comparing each coefficient of zi on the left side to the coefficient of zi on the right side,

we have the set of equations
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a0 = 0

a1 − 2a0 = 2

a2 − 2a1 − a0 = −1

ai − 2ai−1 − ai−2 + 2ai−3 = 0, for i ≥ 3

One can see that this results in the same solution given in equation (7.1).

This idea is easily generalized. Recall that g(z) = p(z)/q(z) for finite degree polyno-

mials p and q. Suppose that the maximum degree of p and q is m. Then

g(z) =
bmz

m + . . .+ b1z + b0

cmzm + . . .+ c1z + c0

=
∑
i≥0

aiz
i.

Multiplying by the denominator, expanding the sum up to m terms, and comparing

coefficients we have the resulting system of equations which can be solved for {ai : 0 ≤

i ≤ m} using standard linear algebra:

i∑
j=0

cjai−j =

 bi, for 0 ≤ i ≤ m

0, for i > m

For any DFA A, since each coefficient ai is associated with |L(A)k|, the recurrence

gives us an O(kn) method to compute |L(A)k| for any string length bound k. In addition,

standard techniques for solving linear homogeneous recurrence relations can be used to

derive a closed form solution for |L(A)i| [51].

Counting All Solutions within a Given Bound: The above described method gives a

generating function that encodes each |L(A)i| separately. Instead, we seek a generating

function that encodes the number of all solutions within a bound. To this end we define
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the automata model counting function

#fA(k) =
k∑
i≥0

|L(A)i|. (7.8)

The method described above computes #fA(k), the number of string solutions of

length exactly k. It is of interest to compute #FA(k), the number of solutions within a

given bound. This is accomplished easily by using a common “trick” that is often used to

simplify graph algorithms. We add a single λ-cycle (the dashed transition in Figure 7.1b)

to the accepting state of the augmenting DFA A′. Then L(A′)k+1 =
⋃k
i=0 L(A)i · λk−i

and the accepting paths of strings in L(A′)k+1 are in one-to-one correspondence with the

accepting paths of strings in
⋃k
i=0 L(A)i. Consequently, |L(A′)k+1| =

∑k
i=0 |L(A)i|. Then

one can see that #FA(k) = #fA′(k+ 1), and so we apply the transfer matrix method on

A′.

Let T be the transfer matrix of a DFA A. Another way to compute the number

of paths of length k accepted by A can be computed using matrix multiplication. We

compute uT kv, where u is the row vector such that ui = 1 if and only if i is the start state

and 0 otherwise, and v is the column vector where vi = 1 if and only if i is an accepting

state and 0 otherwise. Matrix multiplication based counting method is also parameterized

in the following sense: after a constraint is solved, we can count the number of solutions

of any desired size k by computing uT kv, without re-solving the constraint. The matrix

multiplication method described above computes #fA(k). We can use the same λ-cycle

trick to compute #FA(k).

The matrix multiplication method relies on computing uT kv and so we seek to im-

plement an efficient method for computing this product. The time and space com-

plexity trade-offs between various methods of computing uT kv for counting are well-

studied [49, 50]. We note that one may compute T k using matrix-matrix multiplication
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with successive squaring, or one may perform left-to-right vector-matrix multiplication.

While successive squaring has a better worst-case time complexity bound, we found that

due to typically high sparsity of DFA transfer matrices, it is both faster and less memory

intensive to use repeated vector-matrix multiplication.

First, we observe that in practice, the transfer matrix of the solution DFA is typically

sparse–nodes are typically connected to very few other nodes. One may compute T k

first using matrix exponentiation and then multiply by u and v. T k is computed by

a method of successive squaring, using the recurrence T k = (T k/2)2 if k is even and

T k = (T (k−1)/2)2 + T if k is odd. This gives us an O(nα log2 k) algorithm, where O(nα)

is the complexity of performing a single matrix multiplication. Typically, α = log2 7,

using a practical implementation of Strassen’s algorithm. The upshot of this method is

that it requires only logarithmically many matrix-matrix multiplications. However, even

for reasonably small bounds, the resulting matrix T k will contain very large values. In

addition, T k, as well as many intermediate matrix powers, will become dense. That is,

many steps require operations on quadratically many large integers.

Rather than performing successive squaring, the value of uT kv may simply be com-

puted left to right: uT kv = (uT )T k−1v. This prevents us from using a divide and conquer

technique, but with the benefit that at each step we are multiply a 1 × n vector by a

sparse n×n matrix. Hence, we need only keep track of the sparse matrix T and a single

n-dimensional vector of large integers at each step. In our exploration of model counting

algorithms for DFA, we have found this to be the best approach.

We have shown model counting methods for counting strings of a given length. The

same methods allows us to perform model counting for linear constraints as well. How-

ever, we must interpret the bound k in a slightly different manner. A solution DFA AZ

for a set of integer tuples encodes the solutions as bit-strings. Thus, paths of length k

in an integer automaton correspond to bit string of length k. Since we are using a 2’s
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complement representation with leading sign bits, bit strings of exactly length k corre-

spond to integers in the range [−2k−1, 2k−1). Thus, the transfer matrix method allows us

to perform model counting over integer domains parameterized by intervals of this form

by computing #fAZ(k). To count models for arbitrary intervals (a, b), we intersect AZ

with the DFA representing a ≤ xi ≤ b for any variable xi, and then count paths in the

resulting DFA.

The methods described above allow us to compute #FAS(k) and #fAZ(k) indepen-

dently. Now, we can compute #ϕ(bS, bZ) = #FAS(bS) · #fAZ(bZ) for model counting

mixed constraints.
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Chapter 8

ABC Tool

In this chapter we discuss the tool ABC (Automata-Based model Counter) that im-

plements the automata construction and model counting techniques described in this

dissertation. We refer to the implementation of the algorithms described in Chapter 4 as

ABC single-track and we refer the implementation of the algorithms described in Chap-

ter 5 as ABC multi-track. We demonstrate the effectiveness of our approaches on a large

set of string and numeric constraints extracted from real-world web applications. ABC

source code is available online 1 along with the experimental data.

8.1 Architecture

Figure 8.1 represents high-level architecture of ABC. We can divide ABC into two

main components: 1) A compilation module which performs syntactic operations, 2)

automata constructor module for constraint solving and model counting.

ABC aims to supports SMTLIB language specification as an input language in order

to support different types of symbolic execution tools. However, there is no standard

1https://github.com/vlab-cs-ucsb/ABC
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Figure 8.1: ABC architecture.

language syntax for string theory in SMTLIB specifications. Hence, ABC follows the

syntax that CVC4 SMT solver uses for the string theory [52]. Once an input constraint

is given to ABC it first parses it and Formula Transformer pushes negations down into

the boolean connectives. It also checks for syntactic level optimizations that can be done

such as constant folding and constant propagation. Next, Formula Optimizer optimizes

the input formula based on equivalence relations. It also generates implied numeric con-

straints for the string constraints that have non-regular truth sets. Next, Dependency

Analyzer checks for the dependencies between variables and divides the input constraint

into groups that does not share any common variable. At the end of compilation phase

an Abstract Syntax Tree (AST) of the input constraint along with the additional in-

formation on variables are passed to automata-construction module. Constraint Solver

is responsible for managing automata construction for different theories. Integer Con-

straint Solver and String Constraint Solver modules implements the algorithms described
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in Chapter 5. ABC also provides an automata manipulation library that models string

operations from different programming languages. ABC automata manipulation library

is extended from LibStranger2 library and depends on Mona3 automata manipula-

tion library. Model Counter implements the automata-based model counting algorithms

described in Chapter 7. We specifically added support for matrix exponentiation based

model counting using big number libraries available to C++ and symbolic model counting

using Mathematica4.

We used C++ as a main development language. ABC is implemented as an auto-

tools project to support portability among different systems. It can be installed as an

executable or as a C++ shared library. ABC also provides a Jni interface which makes

it easily available for Java applications.

8.2 Experimental Evaluation

We first evaluate ABC single-track version on a wide range of benchmarks including

set of Java application benchmarks, SMTLIB translation of Kaluza JavaScript bench-

marks, and several examples from the SMC (String Model Counter) distribution. Next,

we evaluate ABC multi-track version on a wide range of constraints that are extracted

from real world applications and compare its performance against string model counter

SMC, integer model counter LattE, and ABC single-track version.

8.2.1 ABC Single-track Evaluation

In our experiments we compared model counting performance of ABC to SMC [42]

and satisfiability check performance to CVC4 [52]. We ran all the experiments on an

2https://github.com/vlab-cs-ucsb/LibStranger
3https://github.com/cs-au-dk/MONA
4https://www.wolfram.com/mathematica/
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Frequency of Operations Per 1000 Formulas
Benchmarks # Constraints match · = length replaceall indexof contains begins ends substring
ASE 116164 0.42 386.10 129.39 382.54 639.28 4.11 7.52 16.91 7.51 41.17
Kaluza Small 368433 30.29 93.89 224.87 46.84 0 0 0 0 0 0
Kaluza Big 5138323 38.12 129.53 164.64 60.46 0 0 0 0 0 0

Table 8.1: Constraint characteristics.

Intel I5 machine with 2.5GHz X 4 processors and 32 GB of memory running Ubuntu

14.045.

Table 8.1 shows the frequency of string operations from our string constraint gram-

mar that are contained in the ASE, Kaluza Small, and Kaluza Big benchmark sets. ASE

benchmarks are from Java programs and represent server-side code [53]. The Kaluza

benchmarks are taken from JavaScript programs and represent client-side code [54]. All

three benchmarks have regular expression membership (∈), concatenation (.), string

equality (=), and length constraints. However, the ASE benchmark contains addi-

tional string operations that are typically used for input sanitization, like replaceall and

substring.

Java Benchmarks. String constraints in these benchmarks are extracted from 7

real-world Java applications: Jericho HTML Parser, jxml2xql (an xml-to-sql converter),

MathParser, MathQuizGame, Natural CLI (a natural language command line tool),

Beasties (a command line game), HtmlCleaner, and iText (a PDF library) [53]. These

benchmarks represent server-side code and employ many input-sanitizing string opera-

tors such as replaceall and substring as seen in Table 8.1. These string constraints were

generated by extracting program path constraints through dynamic symbolic execution

[53].

Java benchmarks are generated to do an empirical evaluation of several string con-

straint solvers. As a part of this empirical evaluation, the authors use the symbolic

string analysis library of Stranger [3, 55, 29] to construct automata for path constraints

5Results of our experiments are available at http://vlab.cs.ucsb.edu/ABC/
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on strings. In order to evaluate the model counting component of ABC, we ran their tool

on the 7 benchmark sets and output the resulting automata whenever the constraint is

satisfiable. Out of 116,164 string path constraints, 66,236 were found to be satisfiable and

we performed model counting on those cases. The constraints in Java benchmarks are

all single-variable or pseudo-relational constraints. The resulting automata do not have

any over-approximation caused by relational constraints. As a measure of the size of the

resulting automata, we give the number of BDD nodes used in the symbolic transition

relation representation of MONA. The average number of BDD nodes for the satisfiable

path constraints is 69.51 and the size of the each BDD node is 16 bytes. For these bench-

marks our model-counter is efficient; the average running time of model counting per

path constraint is 0.0015 seconds and the resulting model-counting recurrence is precise,

i.e., gives the exact count for any given bound.

SMC is not able to handle the constraints in this data set since it does not support

sanitization operations such as replaceall.

SMC Examples. For a comparative evaluation of our tool with SMC, we used the

examples that are listed on SMC’s web page. We translated the 6 example constraints

listed in Table 8.2 into SMTLIB language format that we support. We inspected the

examples to confirm that they have regular truth sets, i.e., our analysis generates a

precise model-counting function for these constraints. We compare our results with the

results reported in SMC’s web page. The first column of the Table 8.2 shows the file

names of these example constraints. The second column shows the bounds used for

obtaining the model counts. The next two columns show the log-scale SMC lower and

upper bound values for the model counts. The last column shows the log-scale model

upper bound value produced by ABC. We omit the decimal places of the numbers to

fit them on the page. For all the cases ABC generates a precise count given the bound.

ABC’s count is exactly equal to SMC’s upper bound for four of the examples and is
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Benchmark bound lsmc usmc uabc

nullhttpd 500 3752 3760 3760
ghttpd 620 4880 4896 4896
csplit 629 4852 4921 4921
grep 629 4676 4763 4763
wc 629 4281 4284 4281
obscure 6 0 3 2

Table 8.2: Log scaled ABC upper bound (uabc) and SMC lower and upper bounds
(lsmc, usmc) comparison on SMC case studies.

exactly equal to SMC’s lower bound for one example. For the last example ABC reports

a count that is between the lower and upper bound produced by SMC. Note that these

are log scaled values and actual differences between a lower and an upper-bound values

are huge. Although SMC is unable to produce an exact answer for any of these examples,

ABC produces an exact count for each of them.

JavaScript Benchmarks. We also experimented with Kaluza benchmarks which

were extracted from JavaScript code via dynamic symbolic execution [54]. These bench-

marks are divided to a small and large set based on the sizes of the constraints. These

benchmarks have been used by both SMC and CVC4 tools. ABC handles 19,731 bench-

mark constraints in the satisfiable small set with an average of 0.32 seconds per constraint

for model counting, whereas SMC handles 17,559 constraints with an average of 0.26 sec-

onds per constraint. ABC handles 1,587 benchmark constraints in satisfiable big set with

an average of 0.34 seconds per constraint for model counting, whereas SMC handles 1,342

constraints with an average of 5.29 seconds per constraint. We were not able to do a

one-to-one timing and precision comparison between ABC and SMC for each constraint

due to an error in the SMC data file (the mapping between file names and results is

incorrect).

Satisfiability Checking Evaluation. We ran ABC on SMTLIB translation of the

full set of JavaScript benchmarks. We put a 20-second CPU timeout limit on ABC

for each benchmark constraint. Table 8.3 shows the comparison between ABC and the
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Benchmarks sat-sat unsat-unsat sat-unsat unsat-sat sat-timeout
sat/small 19728 3 0 0 0
sat/big 1587 0 0 0 0
unsat/small 8139 3013 74 0 0
unsat/big 3419 5904 2385 0 2359

Table 8.3: Constraint-solver comparison between ABC and CVC4.

CVC4 [52] constraint solver based on the CVC4 results that are available online. The

first column shows the initial satisfiability classification of the data set by the creators of

the benchmarks [54]. The next two columns show the number of results that ABC and

CVC4 agree. At each column header, left hand side corresponds to ABC’s answer and

right hand side corresponds to CVC4’s answer (e.g., unsat-sat means ABC returns unsat

and CVC4 returns sat for the same constraint). The last three columns show the cases

where ABC and CVC4 differ. Note that, since ABC over-approximates the solution set,

if the given constraint is not single-valued or pseudo-relational, it is possible for ABC to

classify a constraint as satisfiable even if it is unsatisfiable. However, it is not possible

for ABC to classify a constraint unsatisfiable if it is satisfiable. Out of 47,284 benchmark

constraints ABC and CVC4 agree on 41,793 of them. As expected ABC never classifies

a constraint as unsatisfiable if CVC4 classifies it as satisfiable. However, due to over-

approximation of relational constraints, ABC classifies 2,459 constraints as satisfiable

although CVC4 classifies them as unsatisfiable. A practical approach would be to use

ABC together with a satisfiability solver like CVC4, and, given a constraint, first use the

satisfiability solver to determine the satisfiability of the formula, and then use ABC to

generate its truth set and the model counting function.

The average automata construction time for big benchmark constraints is 0.44 seconds

and for small benchmark constraints it is 0.01 seconds. CVC4 average running times

are 0.18 seconds and 0.015 seconds respectively (excluding timeouts). CVC4 times out

for 2359 constraints, whereas ABC never times out. For those 2359 constraints, ABC
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reports satisfiable. ABC is unable to handle 672 constraints; the automata package we

use (MONA) is unable to handle the resulting automata and we believe that these cases

can be solved by modifying MONA. For these 672 constraints; CVC4 times out for 29 of

them, reports unsat for 246 of them, and reports sat for 397 of them. There are also a

few thousand constraints from the Kaluza benchmarks that CVC4 is unable to handle.

8.2.2 ABC Multi-track Evaluation

We compare ABC with two existing model counters: (1) SMC [42], a string model

counter, and (2) LattE [56, 57], a linear integer arithmetic solver with model counting

capabilities. All experiments were run on an Intel i5 machine with 2.5GHz X4 processors

and 32GB of memory running Ubuntu 14.04.

ABC-SMC Comparison for String Constraints: We ran ABC on two bench-

marks of satisfiable constraints which were generated via symbolic execution of JavaScript

and originally solved with the Kaluza string solver[54]. The authors of SMC translated

these benchmarks into their input format and separated them into two sets: SMCSmall

and SMCBig. We translated them from SMC format to ABC input format. The SM-

CSmall set contains 17533 test constraints and SMCBig contains 1327 test constraints.

ABC gives an upper bound on the model count for all tuples of string variables, while

SMC gives both a lower and upper bound. We compare two versions of ABC against the

upper bound SMC reports: the first version, ST ABC with only single-track automata,

implements the techniques described in [58] and the second version, MT is ABC with

multi-track automata that supports both string and numeric formulae based on the con-

structions we discussed in this thesis. Table 8.4 compares the bounds given by ST to SMC

while Table 8.4 compares the bounds given by MT to SMC. ST takes only 0.0023s and

0.396s per constraint for SMCSmall and SMCBig, respectively, but consistently reports
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Benchmark #Constraints uST < uSMC uST = uSMC uST > uSMC

SMCSmall 17533 1 (0.0%) 16555 (94.4%) 977 (5.6%)
SMCBig 1327 0 (0.0%) 281 (21.2%) 1046 (78.2%)

uMT < uSMC uMT = uSMC uMT > uSMC

SMCSmall 17533 862 (4.9%) 16669 (95.1%) 0 (0.0%)
SMCBig 1327 1046 (78.8%) 281 (21.2%) 0 (0.0%)

uMT < uST uMT = uST uMT > uST

SMCSmall 17533 977 (5.6%) 16556 (94.4%) 0 (0.0%)
SMCBig 1327 1046 (78.8%) 281 (21.2%) 0 (0.0%)

Table 8.4: ABC single-track (uST), ABC multi-track (uMT) and SMC (uSMC) upper
bounds comparison.

an upper bound showing little to no improvement compared to SMC. MT takes longer

to solve for SMCBig (0.012s and 17.8s per constraint for SMCSmall, SMCBig), but gives

a more precise upper bound than SMC for 4.9% of constraints in SMCSmall, and 78.8%

of constraints in SMCBig. SMC takes 0.42s for SMCSmall and 4.13s for SMCBig on

average.

ABC-LattE Comparison for Numeric Constraints: We compare ABC with

LattE in the context of program analysis using the benchmarks (Table 8.5) from relia-

bility analysis [59] and side-channel analysis [60, 61]. First nine applications, including

sorting algorithms, are benchmarks from reliability analysis [59]. We extended the reli-

ability analysis benchmarks by adding Merge sort, Quick sort, and Binary search exam-

ples. Password, LawDB, and CRIME are benchmarks from timing/space side-channel

analysis [60, 61].

Both analysis techniques require a symbolic execution tool to extract program path

constraints, and a model counting tool to enable quantitative analysis on the path con-

straints. The implementation of both analysis techniques uses SPF for symbolic exe-

cution. Some of the benchmarks, e.g., sorting algorithms, require a data structure with

certain size in order to enable symbolic execution. We fixed the size of the such structures

to 6. We collected path constraints from fifteen applications using SPF. We counted so-
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Application #PCs b1 = 4 b2 = 8 b3 = 16 b4 = 32 {b1, b2, b3, b4}
Alarm 2000 +0.002 +0.003 +0.003 +0.003 +0.039
Booking 2000 +0.003 +0.003 +0.003 +0.003 +0.043
DaisyChain 1434 +0.235 +0.023 +0.023 +0.022 +0.343
FlapController 641 +0.021 +0.021 +0.021 +0.021 +0.114
RobotGame 660 +0.137 +0.130 +0.130 +0.128 +0.560
Bubble sort 720 +0.004 +0.003 +0.001 −0.004 +0.061
Heap sort 1943 +0.005 +0.005 +0.004 +0.001 +0.066
Insertion sort 720 +0.004 +0.003 +0.001 −0.005 +0.061
Selection sort 1359 +0.005 +0.005 +0.003 −0.000 +0.065
Merge sort 720 +0.004 +0.003 +0.001 −0.005 +0.060
Quick sort 1134 +0.005 +0.005 +0.003 −0.001 +0.065
Binary search 13 +0.004 +0.000 −0.003 −0.015 +0.063
Password 7 +0.044 +0.044 +0.044 +0.044 +0.208
LawDB 8 −0.003 −0.005 −0.008 −0.008 +0.018
CRIME 1540 +0.182 +0.249 +0.252 +0.245 +0.972

Table 8.5: Average time differences in seconds between ABC and LattE. b is bit-length
bound for model counting. Positive means ABC is faster.

lutions to the path constraints given bit-length bounds 4, 8, 16, and 32. ABC and LattE

return identical counts for all constraints in all cases as both model counters are precise

in counting numeric constraints. We focus on the timing comparison between ABC and

LattE.

The LattE input format only supports conjunctions of linear equalities and inequal-

ities. In order to handle disequalities (6=) that can arise from path constraints, a pre-

processing step is required. LattE integration with SPF uses Omega [62] to convert

disequalities into inequalities, which comes with the benefit of constraint simplifications

whenever possible. LattE timing measurements includes Omega simplification time and

SPF simplification time. Details of the LattE integration can be found in [59, 60, 61].

Table 8.5 shows that in general ABC performs better than LattE. As bit-length bound

increases the timing differences between ABC and LattE decreases in most of the cases

and LattE performs better for some of the applications with the larger bounds. As bit-

length bound increases, ABC needs to perform more matrix multiplications which takes

more time.
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Notice that the timing difference between ABC and LattE, when we count for multiple

bounds, is largest. Note that even ABC does worse than LattE in some cases, it performs

better when counting is done for multiple bounds. Since ABC is a parameterized model

counter, it first solves a constraints without putting any bounds on it and then reuses

the generated automaton to count given multiple bounds. In contrast, LattE needs to

be called separately for each bound.

LattE performs better in counting for LawDB benchmark for all individual bound. It

also performs better for Binary search benchmark in general for the individual bounds.

In both cases, analysis of such benchmarks requires an initial constraint on the symbolic

input variables which increases the size of the formulae. The multi-track DFA generated

by ABC can be exponential in the size of the input constraints which affects both con-

straint solving and model counting times. In contrast, LattE implements a polynomial

time counting algorithm which is less sensitive to the size of the formula.

ABC Performance on Mixed String and Numeric Constraints: We evaluated

ABC performance on mixed constraints that neither SMC nor LattE can handle. We

created a benchmark for mixed constraints using SMCSmall benchmark. Out of 17554

test cases in SMCSmall, 6617 contained length constraints on string variables. Length

constraint in SMC benchmarks contains only integer constants. For every such length

constraint, we replaced the constant length with a symbolic integer, thus producing mixed

constraints. We ran ABC on all 6617 such constraints, and computed a projected count

similarly to the method used for the ABC-SMC comparison. ABC completed after 210

seconds (0.03 seconds per constraint) in comparison, ABC averaged 0.01 seconds per

constraint for the original SMCSmall benchmark.

Increasing ABC Performance and Precision with Heuristics: The sizes of

the multi-track DFA generated by ABC can be exponential in the size of the input

constraints. In our experiments we always use the equivalence class generation and
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Figure 8.2: Precision differences between different configurations for ABC.

dependency heuristics, since without these heuristics ABC runs out of memory for large

formulae. In order to evaluate the effectiveness of the implication heuristic, we run

different versions of our tool on the SMCBig benchmark: a version with the implications

heuristics and a version without. Both implementations used equivalence class generation

and dependency analysis. The results given by each version are shown in figure 8.2. The

version with added implications completed the benchmark after 6.60 hours (17.60 seconds

per constraint), while the version without implications took 0.39 hours (1.05 seconds per

constraint). Intuitively, adding implications tends to increase precision, often at the

expense of longer execution times. The results reinforce this intuition, at least for this

particular benchmark.
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Chapter 9

Automated Test Case Generation

via String Analysis

In this chapter, we present an automated testing framework that targets testing of input

validation and sanitization operations in web applications for discovering vulnerabilities.

In Chapter 1, we discuss the importance of of input validation and sanitization operations

for web applications. We also provided a running automata-based symbolic string analy-

sis technique to discover security vulnerabilities that are due to incorrect input validation

or sanitization.

Although static string analysis techniques are powerful, they are not always feasible

for analyzing real world applications due to various reasons such as cost of the analysis,

missing models for library functions, and the difficulty of statically resolving dynamic

behaviors of programs written in scripting languages. Moreover, since static string anal-

ysis is undecidable, these techniques use abstractions and approximations which lead to

false positives.
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Figure 9.1: Automated Test Generation from Vulnerability Signatures.

9.1 Motivation and Overview

The high-level flow of our automated testing framework for input validation and

sanitization functions is shown in Figure 9.1. This section explains different aspects of

our approach, before explaining the technical details in the following sections.

Our framework combines automated testing techniques with static string analysis

techniques for vulnerability analysis [63]. We use static string analysis to obtain an

over-approximation of all the input strings that can be used to exploit a certain type of

vulnerability. This set of strings is called a vulnerability signature, which could be an

infinite set containing arbitrarily long strings.

For specification of different types of vulnerabilities we use attack patterns devel-

oped by security researchers. These are regular expressions that characterize the strings

that would cause a vulnerability when sent to a security sensitive function. Given an

attack pattern and a web application, we use automata-based string analysis techniques

to generate an automaton that corresponds to the vulnerability signature for that appli-

cation for the type of vulnerability characterized by the attack pattern. As input web

applications, we use the deliberately insecure web applications that are developed by

security researchers to demonstrate different types of programming practices that lead
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to vulnerabilities.

Using the vulnerability signature automata generated by analyzing the deliberately

insecure web applications, we automatically generate test cases based on three coverage

criteria: state, transition and path coverage. Each test case corresponds to a string such

that, when that string is given as a text field input to a web application, it may exploit the

vulnerability that is characterized by the given vulnerability signature. Our automated

test generation algorithm tries to minimize the number of test cases while achieving the

given coverage criteria.

9.1.1 Automata-based Static String Analysis

Our automated testing framework generates test cases from vulnerability signatures.

A vulnerability signature is a characterization of all user inputs that can exploit a vul-

nerability. In our framework we use automata-based string analysis in which vulnerabil-

ity signatures are represented as automata. Automata-based string analysis is a static

program analysis technique. Given a set of input values represented as automata, it

symbolically executes the program to compute the set of string values that can reach to

each program point. Using a forward-analysis that propagates input values to sinks (i.e.,

security sensitive functions), it is possible to identify attack strings that can reach to a

given sink. Then, a backward analysis that propagates the attack strings back to user

input results in an automaton that corresponds to the vulnerability signature.

9.1.2 Generating Vulnerability Signatures from Deliberately In-

secure Applications

Security researchers have developed applications that are deliberately insecure to

demonstrate typical vulnerabilities. These applications are sometimes used to teach dif-
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ferent pitfalls to avoid in developing secure applications, and sometimes they are used as

benchmarks for evaluating different vulnerability analysis techniques. In our framework

we use static string analysis techniques to analyze deliberately insecure applications and

to compute a characterization of inputs that can exploit a given type of vulnerability.

In order to generate the vulnerability signature for an application, we need an attack

pattern (specified as a regular expression) that characterizes a particular vulnerability.

An attack pattern represents the set of attack strings that can exploit a particular vul-

nerability if they reach a sink (i.e., a security sensitive function). Attack patterns for

different types of vulnerabilities are publicly available and can be used for vulnerability

analysis.

Given an attack pattern and a deliberately insecure web application, we use automata-

based static string analysis techniques to generate a vulnerability signature automaton

that characterizes all the inputs for that application that can result in an exploit for

the vulnerability characterized by the given attack pattern. I.e., the vulnerability signa-

ture automaton only accepts the strings that are in the vulnerability signature. In the

next phase of our approach we automatically generate test cases from the vulnerability

signature automaton.

9.1.3 Automated Test Generation from Vulnerability Signatures

Given a vulnerability signature automaton, any string accepted by the automaton can

be used as a test case. Hence, any path from the start state of the vulnerability signature

automaton to an accepting state characterizes a string which can be used as a test case.

However, a vulnerability signature automaton typically accepts an infinite number of

strings since, typically, there are an infinite ways one can exploit a vulnerability. In

order to use vulnerability signature automata for testing, we need to somehow prune
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this infinite search space. Our overall goal is to minimize the number of test cases while

making sure that we cover all possible ways of exploiting a vulnerability.

The mechanism that allows an automaton to represent an infinite number of strings

is the loops in the automaton. So, in order to minimize the number of test cases, we have

to minimize the way the loops are traversed. We do this by identifying all the strongly-

connected components (SCCs) in an automaton and then collapsing them to construct a

directed acyclic graph (DAG) that only contains the transitions of the automaton that

are not part of an SCC and represents each SCC as a single node. Using this DAG

structure, we do test generation for three coverage criteria: 1) state coverage where the

goal is to cover all states of the automaton (including the ones in an SCC), 2) transition

coverage, where the goal is to cover all transitions of the automaton (including the ones

in an SCC), 3) path coverage, where the goal is to cover all the paths in the DAG that is

constructed from the automaton, while also covering all possible ways to enter and exit

from an SCC.

We implement the state and transition coverage using the min-cover paths algorithm

that we execute on the DAG representation followed by a phase where we ensure the

coverage of the states and transitions inside the SCC nodes. We implement the path

coverage using depth-first-traversal, where, when an SCC node is encountered, we ensure

that all entry and exit combinations are covered in the generated test cases.

9.1.4 A Sanitization Example

One of the well-known XSS attack strings is the following:

<script>alert(’XSS’)</script>

The script-tag indicates executable code and a malicious user might be trying to store a

malicious script to be executed on another user’s machine later on. Now, consider the
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1 <?php

2 if(!array_key_exists ("name", $_GET) || $_GET["name"] == NULL || $_GET["

name"] == "") {

3 $isempty = true;

4 } else {

5 $html .= "<pre>";

6 $html .= "Hello ";

7 $html .= str_replace( "<script>", "", GET["name"]);

8 $html .= "</pre>";

9 }

10 ?>

Figure 9.2: A sanitization example.

example code in Figure 9.2 extracted from a deliberately insecure web application. This

code is sanitizing the input provided by the user for the “name” field in line 7 by deleting

all appearances of the string <script> (it deletes it by replacing each appearance of

the string <script> with the empty string). Later on in the program, the variable

$html is used as an input for a security sensitive function, so if the sanitization is not

done properly this application would have a vulnerability.

We can try to check if the application is vulnerable by testing it with the above

attack string. As expected the sanitization code will correctly remove the script-tag and

sanitized input will be alert(’XSS’)</script>. So, this test input does not detect

a vulnerability. However, this application has a vulnerability and the sanitization used

in Figure 9.2 is incorrect.

One can generalize the attack strings for the XSS vulnerability as an attack pattern

using the following regular expression:

/.*<script.*>.*/

When we run the automata-based string analysis on the example shown in Figure 9.2,

we find out that the intersection of the set of strings that can reach the sink and the

above attack pattern is not empty, i.e., there are some inputs that will cause a string
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containing the script-tag reach the sink. So, we generate the vulnerability signature

for this application which results in an automaton that contains 59 states and 8530

transitions. Note that, this vulnerability signature automaton captures the fact that the

string-replace operation in line 7 will delete all appearances of the string <script> from

the input. The reason that there are thousands of transitions is due to the fact that there

is a transition for each ASCII character from each state.

When we use our automated test generation technique to generate a test string from

the vulnerability signature automaton, we obtain the following test input:

<scrip<script>t>

When we run the application with this input we discover an attack, i.e., the sink function

receives an input that contains the string <script>. This is due to the fact that the

incorrect sanitization function in Figure 9.2 deletes the substring <script> from the

above test input and creates the attack string.

In our framework, we use the test strings generated from vulnerability signatures of

deliberately insecure web applications to test other applications. If the applications we

test contain sanitization errors similar to the errors in deliberately insecure web applica-

tions or if they do not use proper sanitization, then the generated test cases can discover

their vulnerabilities without analyzing them statically. Note that the test inputs gener-

ated from vulnerability signatures can also be used for applications that are statically

analyzable in order to eliminate false positives and construct exploits (i.e., to generate

concrete inputs that demonstrate how a vulnerability can be exploited).
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9.2 Converting Vulnerability Signature Automata to

DAGs

Vulnerability signatures represents all the possible user inputs to an input field that

can exploit an attack.

A vulnerability signature V is a DFA such that V = (Q,Σ, δ, q0, F ), where Q is the

set of states, Σ is the input alphabet, δ ⊆ Q × Σ × Q is the transition relation, q0 ∈ Q

is the initial state, and F ⊆ Q is the set of final states. Each transition t ∈ δ is a tuple

t = (q, c, q′) where q = source(t), q′ = target(t) and c ∈ Σ.

A naive way to generate accepting strings (test cases) from a vulnerability signature

automaton is to exploring all possible accepting paths. If the alphabet size is large, the

number of transitions between two states can cause

an exponential blow up in the number of accepting paths in the automaton, and

this leads to a large search space for test generation. As an example, assume that the

alphabet Σ is ASCII alphabet. Consider state q2 in Figure 9.3. For this relatively

small automaton there are 128 × 128 accepting paths. Such cases can be common in

vulnerability signatures. Our solution to this problem is to collapse the transitions that

have the same source and target states into one transition as shown in Figure 9.4. The

label of the collapsed transition is a range of characters corresponding to each transition

that it represents. During test generation we only pick one character from the range

representing the all corresponding transitions. This allows us to avoid exponential blow

up in the number of accepting paths. For the rest of the chapter we assume that all

transitions with the same source and target states are collapsed.

Another difficulty with vulnerability signature automata is that they can contain

cycles which results in an infinite number of accepting paths. As an example, in Fig-

ure 9.5, states {q1, q2, q3} and {q4, q5} form cycles. In order to bound the number of
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Figure 9.3: Example case for large number of paths.
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Figure 9.5: Example of cycles in an automaton.

97



Automated Test Case Generation via String Analysis Chapter 9

SCC 1

SCC 2

SCC 0

SCC 3

6

o

1

2

c

3d

f
e

hg

4 5
i

n

k

m

0

a

b

Figure 9.6: High level DAG representation.

accepting paths and, therefore the search space for test generation, we extract a high

level representation of the given vulnerability signature automaton by identifying its

strongly connected components (SCC). The high level representation we obtain is a di-

rected acyclic graph DAG = (N,E) where N is the set of SCCs and E is the set of

edges between SCCs. At the automaton level each edge e ∈ E is a transition such that

source(e) ∈ sccx, target(e) ∈ sccy and sccx 6= sccy. We use Tarjan’s strongly connected

components algorithm to identify the cycles in the vulnerability signature automata [64].

The worst case time complexity of this algorithm is O(|Q| + |δ|). High-level DAG rep-

resentation for the automaton in Figure 9.5 is shown in Figure 9.6. It consists of four

strongly connected components N = {SCC0, SCC1, SCC2, SCC3}, and six edges among

them E = {ea, eb, ek, en, ef , eh}.
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9.3 State and Transition Coverage for Vulnerability

Signature Automata Using Min-Cover Paths Al-

gorithm

In this section we discuss generating test cases from vulnerability signature automata

based on state and transition coverage criteria. Given a vulnerability signature automa-

ton V , let L(V ) denote the set of strings accepted by V . Our aim is to find two sets

of strings Ssc, Stc ⊆ L(V ) that achieve state and transition coverage, respectively. The

state and transition coverage definitions are as follows:

• For each state in q ∈ Q there must be at least one string in Ssc such that the

accepting path for that strings visits q.

• For each (collapsed) transition t ∈ δ there must be at least one string in Stc such

that the accepting path for that string includes t.

Finally, we want to generate the sets Ssc and Stc in such a way that |Ssc| and |Stc| are

minimized.

The problem of finding minimum number of strings based on state and transition

coverage criteria is very similar to a well-known graph problem called minimum cover

paths. Given a directed acyclic graph, minimum cover paths is the least number of paths

that visits each edge of the graph at least once. Minimum cover paths problem has been

studied in different research areas and there are well known solutions to this problem [65,

66]. One known solution is to reduce minimum cover paths problem to the minimum flow

problem [65, 67, 66]. We follow this basic approach with some modifications. We can

divide the state and transition coverage algorithms into five main steps: 1) Initialization

of DAG, 2) Converting DAG into a flow network, 3) Minimum flow algorithm, 4) Finding
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minimum covering paths, 5) Extending paths with SCC Coverage.

9.3.1 Initialization of DAG

A vulnerability signature automaton V has one start state q0 and a set of final states

F . In order to apply flow algorithms and minimum covering paths algorithm, one virtual

final state qv is added to Q, for each q ∈ F , a virtual transition tv = (q, λ, q′) is added

to the transition relation δ where λ /∈ Σ. The modified automaton has one start state

q0 and one final state qv. A DAG representation DAG = (N,E) is constructed from the

modified automaton as described in the previous section. We use n0 ∈ N to denote the

start node of the DAG where n0 = SCC0 and q0 ∈ SCC0. Similarly, we use nv ∈ N to

denote the as final node of the DAG such that nv = SCCv and qv ∈ SCCv.

A vulnerability signature automaton always has a sink state that terminates non-

accepting paths corresponding to non-accepting strings. As a result, corresponding DAG

representation has a sink node that does not have any outgoing edges. We generate only

the strings that are accepted by vulnerability signature automaton. To do so we remove

the sink node and all incoming edges to the sink node from the DAG using a depth first

traversal with a worst case complexity of O(|E|).

9.3.2 Converting DAG into a Flow Network

A flow network is a DAG where each edge has a capacity and each edge receives a

flow. Capacity for each edge e ∈ E is a non-negative real value c(e) ≥ 0. Flow is a

function f : E → R that satisfies the following properties:

• ∀e ∈ E : f(e) ≤ c(e).

• ∀e ∈ E, e′ ∈ E : f(e) = −f(e′) ∧ source(e) = target(e′) ∧ target(e) = source(e′).
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• ∀n ∈ N : (
∑

e∈incoming(n)

f(e) +
∑

e′∈outgoing(n)

f(e′)) = 0.

Min-cover paths algorithm does not require an upper bound for the capacity of an

edge, and we assume that each edge has infinite capacity. We define a flow as the number

of required visits to an edge in order to take each path from the start node to the final

node. To apply the min-flow algorithm, we need an initial flow assignment for each

edge in the DAG. We use a pre-processing algorithm [65] to assign an initial flow to

each edge based on the number of input and output edges for each node. This is a two

phase algorithm that consists of a depth first traversal starting from start node (Phase

1) followed by a reverse depth first traversal (Phase 2) if necessary. The first phase of

the initialization for state coverage is shown in Algorithm 13.

Algorithm 13 Phase 1 for pre-processing of state coverage
1: function PreProcessRigthSC(node, queue)
2: updated ← false
3: for each edge ∈ outgoingEdges(node) do
4: nextnode ← targetnode(edge)
5: if flow(edge) = 0 then
6: if #incomingEdges(nextnode) = 1 or #outgoingEdges(nextnode) = 1 then
7: flow(edge)← 1, updated ← true
8: else
9: removeFromDag(edge)

10: end if
11: end if
12: end for
13: if ¬updated ∨ balanced(node) = 0 then
14: return
15: end if
16: if updated and balanced(node) < 0 then
17: queue.enqueue(node)
18: else if updated and balanced(node) > 0 then
19: distributeFlowsEvenly(node)
20: end if
21: for each edge ∈ outgoingEdges(node) do
22: nextnode ← targetnode(edge)
23: PreProcessRigth(nextnode, queue)
24: end for
25: end function

The statement at line 6 checks for the edges that can be removed safely. For example

101



Automated Test Case Generation via String Analysis Chapter 9

SCC 1

SCC 2

SCC 0

SCC 3

SCC V

6

o

v(2)

1

2

c 3

d

e
h(1)

g

4 5
i

n(1)

m

0

a(1)

b(1)

Figure 9.7: Initialized DAG for state coverage.

edges labeled with ′f ′ and ′k′ can be safely removed from Figure 9.6. The resulting high

level DAG is shown in Figure 9.7. Depending on the order that for loop retrieves the

edges at line 3, algorithm may remove different edges at different runs. However, this

does not affect the state coverage.

We can define the flow function flow(e) as number of visits for an edge e ∈ E. The

function balanced compares the total input flow and total output flow for a node n ∈ N

based on flows for each incoming and outgoing edges. A positive balance means that the

total input flow is larger than the total output flow. In that case line 19 distributes the

input flows to the the output flows by updating the flow values of outgoing edges. For the

case of a negative balance value, distribution is done in the reverse direction after Phase 1

finishes as described in [65]. Figure 9.7 also shows the initial flow values that are assigned

to the example DAG. For the example shown in Figure 9.7, reverse pre-processing (Phase

2) is not necessary since in the first phase flows are already distributed correctly.

Phase 1 of the pre-processing algorithm for transition coverage is shown in Algo-

rithm 14. The only modification compared to the algorithm shown in Algorithm 13 is

inside the if block at line 5. The resulting flows for transition coverage are shown in

Figure 9.8. Starting from the initial node, the algorithm first assigns a flow value of 1
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to the edges ′a′ and ′b′. When it comes to SCC2 during depth first traversal, it first

assigns a flow of 1 to the edges ′k′ and ′n′. As a result balance value of SCC2 becomes −1

and that SCC2 is queued for reverse pre-processing. Similarly when algorithm first visits

the SCC1 using edges ′a′ or ′k′, balance value for SCC1 becomes negative and SCC1 is

also queued for reverse pre-processing. However, when the algorithm visits SCC1 for the

second time, balance value becomes 0 and reverse pre-processing on SCC1 does not have

any effect.

Algorithm 14 Phase 1 for pre-processing of transition coverage
1: procedure PreProcessRigthTC(node, queue)
2: updated ← false
3: for each edge ∈ outgoingEdges(node) do
4: nextnode ← targetnode(edge)
5: if flow(edge) = 0 then
6: flow(edge)← 1, updated ← true
7: end if
8: end for
9: if ¬updated ∨ balanced(node) = 0 then

10: return
11: end if
12: if updated ∧ balanced(node) < 0 then
13: queue.enqueue(node)
14: else if updated and balanced(node) > 0 then
15: distributeFlowsEvenly(node)
16: end if
17: for each edge ∈ outgoingEdges(node) do
18: nextnode ← targetnode(edge)
19: PreProcessRigth(nextnode, queue)
20: end for
21: end procedure

9.3.3 Minimum Flow Algorithm

After we have initial flows calculated, Ford-Fulkerson algorithm is applied to the flow

network with some modifications [68, 65]. Modified Ford-Fulkerson algorithm computes

the minimum flows to visit each transition at least once. The algorithm finds paths from

the start node to the final node and removes the maximum amount of flow from each
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Figure 9.8: Initialized DAG for transition coverage.

path without reaching 0. Assume that our initialization phase calculated the flow for the

path “bkh” in Figure 9.8 as “b(4)k(3)h(3)” instead of “b(2)k(1)h(1)”. We can take away

2 flows from all the edges in the path “bkh”. Time complexity of the algorithm for a

DAG is O(|pmax| · (f0− fmin)) where |pmax| is the maximum length path from start node

to final node, f0 is initial flow set and fmin is the minimum flow [65].

9.3.4 Finding Minimum Covering Paths

After running Minimum Flow Algorithm we can start looking for minimum covering

paths. Minimum Covering Paths algorithm finds the edges that have flow(e) > 0 and

forms a path that ends at the final node (i.e., the virtual node). Algorithm 15 shows

the general loop and the recursive path finding function. For example, given the DAG

shown in Figure 9.8, the minimum covering paths for transition coverage are computed

as: “afev”, “bkhev”, and “bnev” where ev is the virtual edge.

Let Nk be the set of nodes that are k edges away from the start node. Let Ek be

the set of edges between Nk and Nk+1. Let Emax be the edge set with maximum size

among the sets E0, E1, E2, ...En. Finally, let Pmax be the maximum length path from start

node to final node. Then, worst case time complexity for state and transition coverage
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Algorithm 15 Minimum covering paths algorithm
1: minPaths ← [ ]
2: repeat
3: path ← FindMinPath(nodestart)
4: minPaths.add(path)
5: until path = [ ]
6: function FindMinPath(node)
7: for each edge ∈ outgoingEdges(node) do
8: if flow(edge) 6= 0 then
9: DecreaseFlowByOne(edge)

10: nextnode ← targetnode(edge)
11: path = FindMinPath(nextnode)
12: if path 6= [ ] ∨ nextnode = nodefinal then
13: path.add(edge)
14: return path
15: end if
16: end if
17: end for
18: return [ ]
19: end function

is O(|Pmax| × |Emax|) and the maximum size test set size for both coverage criteria is

O(|Emax|) which is equal to the number of minimum covering paths. For the DAGs that

are extracted from the same vulnerability signature automaton let |Emax|sc denote the size

of Emax for the DAG generated for state coverage and |Emax|tc denote the size of Emax for

the DAG generated for transition coverage. Then, we have |Emax|sc ≤ |Emax|tc. For the

sets of test cases generated for state and transition coverage (Ssc and Stc, respectively)

we have |Ssc| ≤ |Stc|.

9.3.5 Extending Paths with SCC Coverage

Once we have the results for minimum covering paths we do a pass on each path and

extend the SCC nodes n ∈ N that represent cycles. We can define a strongly connected

component as SCC = (QSCC,Σ, δSCC) where QSCC ⊆ Q and δSCC ⊆ δ. Assume there is a

state qx ∈ QSCC and a transition t ∈ δ. If q(x) = target(t) and source(t) /∈ QSCC, we say

state qx is an entry point. Similarly, assume there is an edge qy ∈ QSCC and a transition
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t ∈ δ. If q(x) = source(t) and target(t) /∈ QSCC, we say state qx is an exit point.

There are two different strategies for SCC coverage based on DAG coverage algorithm

in progress. Strategy for the state coverage algorithm is the following: Starting from an

entry point visit all states q ∈ QSCC at least once and end up in an exit point. Similarly,

for transition coverage starting from an entry point visit all transitions t ∈ δSCC at least

once and end up at an exit point. If |δSCC| is greater than zero, then SCC must contain

a cycle like SCC1, SCC2, and SCC3 in Figure 9.6. To terminate the algorithm we keep

a queue for unvisited states or unvisited transitions and use depth first search whenever

necessary. Algorithm 16 shows the algorithm we use for state coverage. DFS function at

line 7 starts a depth first search from the state given as its first argument and searches

for the state given as its second argument without being trapped in a cycle. Once it finds

the state given as its second argument, it returns a path that includes all the states it

visited. Algorithm for visiting all transitions t ∈ δSCC is the same except we keep a queue

for unvisited transitions instead of unvisited states. Both algorithms have a worst case

complexity of O(|δSCC|2) which depends on the overlapping cycles within a SCC. Worst

case complexity of length of the returned path is also the same as the time complexity.

Algorithm 16 SCC coverage
1: procedure VisitStates(SCC , qentry, qexit)
2: path ← [ ]
3: notVisited ← getAllStates(SCC )
4: q ← qentry

5: notVisited .remove(q)
6: while size(notVisited) 6= 0 do
7: visited ← DFS(q,notVisited .dequeu(
8: notVisited .removeAll(visited)
9: path.addAll(visited)

10: q ← visited .last()
11: end while
12: if q 6= qexit then
13: path.addAll(DFS(q, qexit))
14: end if
15: return path
16: end procedure
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Consider the example vulnerability signature automaton shown in Figure 9.7. Based

on state coverage algorithm it can produce a path .a.h. where each dot corresponds to a

node in the DAG. Starting from the first dot which is actually SCC0 we extend the path.

SCC0 returns an empty path and algorithm continues with next SCC in the path a.h..

SCC1 returns ce for entry point q1 and exit point q3 and algorithm extends the path as

aceh.. At the end the algorithm returns the extended path aceh.

9.4 Path Coverage for for Vulnerability Signature

Automata Using Depth First Traversal

A straight forward definition of path coverage would result in an infinite set of test

cases due to loops in automata. So, given a vulnerability signature automaton V , we

define Spc ⊆ L(V ) as follows:

• For each path p in the DAG generated from V there must be a set of strings in

Spc such that the accepting paths for those strings must correspond to p (i.e. they

must visit the same set of SCCs in the same order), and there must be an accepting

path for each combination of entry and exit nodes for all the SCCs in the path p.

Path Coverage algorithm traverses DAG representation of vulnerability signature au-

tomata using a depth-first traversal (DFT). It does not have any initialization phase. It

handles SCC entry-exit point coverage during path exploration. Assume current node in

the DFT is n and n corresponds to a SCC. Again assume qx is the entry point for the

SCC corresponding to node n. Path coverage algorithm calculates paths for all possible

combinations of qx with all exit points using the SCC coverage algorithm we have for

transition coverage. Then, it continues to explore paths in the high level DAG represen-

tation by following exit points in a DFT manner. By doing so, path coverage algorithm
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calculates all possible combinations of all entry and exit points of a SCC. The path

coverage algorithm generates 5 paths for the example shown in Figure 9.8.

Based on definitions we have in previous section the time complexity for path coverage

is O(|Ekmax|Pmax). Test size complexity is the same as the time complexity which is

basically all paths from start node to final nodes. As a result we have the following test

set size comparison for the three coverage criteria for the same vulnerability signature

|Ssc| ≤ |Stc| ≤ |Spc|.

9.5 Implementation and Experiments

In order to evaluate our automated testing framework, we used a deliberately insecure

web application called Damn Vulnerable Web Application (DVWA) to generate vulner-

ability signatures. DVWA is listed in OWASP Broken Web Applications Project which

lists deliberately insecure web applications. DVWA has several SQL injection, stored

XSS and reflected XSS attacks with different security levels provided by the application.

Security levels are no sanitization, custom sanitization, and incorrect use of built-in sani-

tization functions. We generated vulnerability signatures for each attack type considering

different security levels. We used the Stranger static string analysis tool [69] to generate

vulnerability signatures. We ran all the experiments on an Intel I5 machine with 2.5GHz

X 4 processors and 32 GB of memory running Ubuntu 12.04.

Table 9.1 shows the properties of 5 vulnerability signatures generated from DVWA.

We used the following well known attack patterns for vulnerability signature genera-

tion. Attack pattern /.*<script.*>.*/ is used for vulnerability signatures XSS 1,

XSS 2, and XSS 3. Attack pattern /.* or 1 = 1 .*/ is used for vulnerability sig-

nature SQLI 1 and attack pattern /.*’ or ’1’ = ’1 .*/ is used for vulnerability

signature SQLI 2. The sizes of the vulnerability signature automata depend on the
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complexity and number of string operations that application has on user inputs. We can

see that vulnerability signatures SQLI 1 and XSS 1 are larger than the other three vul-

nerability signature automata. That is because the corresponding application code has

more sanitization on user input. The application code that corresponds to vulnerability

signature SQLI 2 has no sanitization at all and the generated vulnerability signature

is similar to the attack pattern. For each vulnerability signature, we can see that there

is a big difference between the actual number of transitions that an automaton has and

the corresponding number of collapsed transitions which allows us to reduce the sizes

of the generated test sets. For a given vulnerability signature, the relation between the

sizes of the test sets for different coverage criteria follows the ordering we expect where

|Ssc| ≤ |Stc| ≤ |Spc|. For larger vulnerability signatures, path coverage algorithm pro-

duces a large number of strings as expected. For a given vulnerability signature, average

length of the strings generated for state coverage is the smallest. Since the number of

states are smaller than the number of transitions this is not surprising. The SCC cov-

erage algorithm for state coverage produces strings with smaller lengths for most of the

cases.

In order to evaluate the effectiveness of our automated test generation techniques

we experimented on five open-source applications 1) PHP-Fusion v7.02.05 2 (content

management system), 2) RuubikCMS v1.1.1 (website content management tool), 3) UL

Forum v1.1.7 (forum application), 4) Snipe Gallery v3.1.5 (image management system),

5) PHP Server Monitor v2.0.1 (server management script). We implemented a web appli-

cation driver to automatically execute the applications with the automatically generated

test strings. We executed each application by assigning the automatically generated

test strings to the selected vulnerable input fields. We enabled xdebug tool to record

the server-side function call traces for each request that our web application driver

sends. After each request, the web application driver extracts the sink function calls
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Vulnerability Automaton Size Coverage
#Strings

Avg. String
Signature #q #δ #δc #SCC Type Length

SQLI 1 118 16327 574 19
State 8 39
Transition 52 451
Path Cov 321 437

SQLI 2 16 2649 58 3
State Cov 1 15
Transition Cov 1 210
Path Cov 1 210

XSS 1 100 13540 481 19
State Cov 8 31
Transition Cov 44 312
Path Cov 229 299

XSS 2 59 8530 237 3
State Cov 1 146
Transition Cov 8 1,717
Path Cov 8 1,628

XSS 3 11 1718 37 4
State Cov 1 10
Transition Cov 2 73
Path Cov 2 73

Table 9.1: Vulnerability signature automata details where #q is the number of states,
#δ is the number of transitions, #δc is the number of collapsed transitions.

with values of parameters from the trace file. For the SQL injection attacks, each call

to mysql_query function is treated as a sink function call. For the XSS attacks, each

call to mysql_query function that executes INSERT or UPDATE statements is treated

as sink function call. If the web application driver finds a sink function call, it checks

the value of the query parameter of the sink function to confirm if it contains any type

of attack.

Table 9.2 shows the effectiveness of the test sets generated using different coverage

criteria on different applications. The sum of the third column and the fourth column

shows the total number of test strings in a test set generated from all vulnerability

signatures for a given coverage criteria. For example, there are a total of 19 test strings in

the test set generated from all vulnerability signatures using the state coverage criteria.

Third column shows the number of test strings that detected the vulnerability in the

given application (stated in the first column), and the fourth column shows the number

of test strings that missed the vulnerability. We can clearly say that path coverage and

transition coverage have better detection rates than state coverage. The vulnerability
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Application
Coverage

# Detected # Missed
Detection

Type Rate (%)

ulforum
State 8 11 42
Transition 79 28 74
Path 477 84 85

ruubik
State 4 15 21
Transition 28 79 26
Path 157 404 28

php fusion
State 2 17 11
Transition 42 65 39
Path 235 326 42

snipe
State 8 11 42
Transition 79 28 74
Path 477 84 85

phpservermon
State 8 11 42
Transition 79 28 74
Path 477 84 85

Table 9.2: Vulnerability detection performance per application.

detection rates for the applications php fusion and ruubik are lower compared to other

three applications for each coverage criteria. This is due to the fact that these applications

have more string manipulation operations than the other three. For the fields selected

from other three applications we observe the same detection rates. This is due to the

fact that these applications all have the same type of vulnerability.

Table 9.3 shows the vulnerability detection rates of test sets generated using differ-

ent coverage criteria for each vulnerability signature. It shows the distribution of the

test sets in Table 9.2 to different vulnerability signatures and different coverage criteria.

Path coverage criteria has better detection rates for vulnerability signatures XSS 1 and

SQLI 1 which are the larger vulnerability signature. For relatively small vulnerability

signatures, path coverage and transition coverage detection rates are the same. Vulnera-

bility signature SQLI 2 has the worst detection rate. As we described previously in this

section, that vulnerability signature is generated from a code that has no sanitization op-

erations, which is not good enough for detecting attacks for applications that have some

string operations. One interesting result is that state coverage for all XSS vulnerability
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Vulnerability Coverage
# Detected # Missed

Detection
Signature Type Rate (%)

SQLI 1
State 30 10 75
Transition 193 67 74
Path 1231 374 77

SQLI 2
State 0 5 0
Transition 0 5 0
Path 0 5 0

XSS 1
State 0 40 0
Transition 75 145 34
Path 553 592 48

XSS 2
State 0 5 0
Transition 30 10 75
Path 30 10 75

XSS 3
State 0 5 0
Transition 9 1 90
Path 9 1 90

Table 9.3: Vulnerability detection performance per vulnerability signature.

signatures has a detection rate 0%. The application that we used to generate the vulner-

ability signatures concatenates HTML tags to the user inputs. Resulting vulnerability

signature may include attack strings that has no closing tag >. State coverage generates

only strings that do not have closing tags, but path and transition coverage criteria are

able to handle that situation by visiting more transitions.

Overall, path coverage has better detection rates as expected. Transition coverage

detection rates are very close to path coverage detection rates, and transition coverage

generates smaller test sets. State coverage is not effective in generating attack strings for

the vulnerability signatures we used.
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Chapter 10

Conclusion

String constraint solving and model counting are crucial problems in vulnerability anal-

ysis. In this dissertation, we presented a model-counting string constraint solver that,

given a constraint, generates: 1) An automaton that accepts all solutions to the given

string constraint; 2) A model-counting function that, given a bound, returns the number

of solutions within that bound. We presented a novel approach to model counting both

string and numeric constraints and their combinations.

Our constraint solving approach does not assume a finite domain size during au-

tomata construction. We say that our model counting approach is parameterized since it

generates a model-counting function that takes the bound as a parameter and returns the

number of solutions within that bound. Our approach is able to perform model counting

for arbitrary bounds for a given constraint.

We have developed a tool called ABC that implements the automata-based constraint

solving and model counting techniques. ABC is publicly available and can be integrated

with symbolic execution tools via its SMTLIB interface. Our experiments on thousands of

constraints extracted from real-world web applications demonstrate the effectiveness and

efficiency of the proposed approach. Our experimental results indicate that, automata-
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based model counting approach is as efficient and as precise as domain specific model

counting methods, while it is able to handle a richer set of constraints.

We also presented an automated testing framework for testing input validation and

sanitization operations in web applications. In our framework, the tests are generated

from vulnerability signatures that are characterized as automata. Our experiments show

that vulnerability signatures generated from deliberately insecure web applications can

be used to generate effective tests for identifying vulnerabilities in other applications.

In the future, we plan to improve ABC in terms of expressiveness and precision. We

plan to extend our constraint language with quantifiers over string and integer variables.

We also plan to add support for regular expression variables in our constraint language.

In our current implementation we use multi-track automata for the string predicate

operations. We can use multi-track automata for the term operations as well by adding

an output track. That would enable us to handle relational constraints with better

precision in the future.
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