Lecture 23 More NP-Complete Problems

23.1 Planar Graph Colorability

Often in problems with a parameter & like k-CNFSat and k-colorability, larger
values of k make the problem harder. This is not always the case. Consider the
problem of determining whether a planar graph has a k-coloring. The problem
is trivial for k = 1, easy for k = 2 (check by DFS or BFS whether the graph is
bipartite, i.e. has no odd cycles), and trivial for £ = 4 or greater by the Four
Color Theorem, which says that every planar graph is 4-colorable. This leaves
k = 3. We show below that 3-colorability of planar graphs is no easier than
3-colorability of arbitrary graphs. This result is due to-Garey, Johnson, and
Stockmeyer [40]; see also Lichtenstein [72] for some other NP-completeness
results involving planar graphs. ‘

We will reduce 3-colorability of an arbitrary graph to the planar case.
Given an undirected graph G = (V, E), possibly nonplanar, embed the graph
in the plane arbitrarily, letting edges cross if necessary. We will replace each
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edge crossing with the planar widget W shown below.

A
¥

The widget W is a planar graph with the following interesting properties:

(i) in any legal 3-coloring of W, the opposite corners are forced to have the
same color;

(ii) any assignment of colors to the corners such that opposite corners have
the same color extends to a 3-coloring of all of W.

To see this, color the center of W red; then the vertices'a.djacent to the center
must be colored blue or green alternately around the center, say
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Now the northeast vertex can be colored either red or green. In either case,
the colors of all the remaining vertices are forced (proceed counterclockwise to
obtain the left hand coloring and clockwise to obtain the right hand coloring):
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All other colorings are obtained from these by permuting the colors.

For each edge (u,v) in E, replace each point at which another edge crosses
(u,v) in the embedding with a copy of W. Identify the adjacent corners of
these copies of W and identify the outer corners of the extremal copies with u
and v, all except for one pair, which are connected by an edge. The following
diagram illustrates an edge (u,v) with four crossings before and after this
operation. In this diagram, the copy of W closest to v is connected to v by
an edge, and all other adjacent corners of copies of W are identified.

- oo

The resulting graph G' = (V’, E’) is planar. If

x:V' — {red, blue, green}

is a 3-coloring of G’, then property (i} of W implies that x restricted to V is
a 3-coloring of G. Conversely, if x : V — {red, blue, green} is a 3-coloring of
G, then property (ii) of W allows x to be extended to a 3-coloring of G'.

We have given a reduction of the 3-colorability problem for an arbitrary
graph to the same problem restricted to planar graphs. Thus the latter prob-
lem is as hard as the former.

23.2 NP-Completeness

The following definitions lay the foundations of the theory of NP-complete-
ness. More detail can be found in {3, 39).

We fix once and for ;%a finite alphabet ¥ consisting of at least two symbols.
From now on, we take ¥'to be the problem domain, and assume that instances
of decision problems are encoded as strings in £* in some reasonable way.

Definition 23.1 The complexity class NP consists of all decision problems
A C T* such that A is the set of input strings accepted by some polynomial-
time-bounded nondeterministic Turing machine. The complexity class P con-
sists of all decision problems A C X* such that A is the set of input strings
accepted by some polynomial-time-bounded deterministic Turing machine. O

Note that P C NP since every deterministic machine is a nondeterministic
one that does not happen to make any choices. It is not known whether
P = NP; this is arguably the most important outstanding open problem in
computer science.
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Definition 23.2 The set A is NP-hard (with respect to the reducibility rela-
tion <B ) if B <P A for all B € NP. |

Theorem 23.3 If A is NP-hard and A € P, then P = NP.

Proof. For any B € NP, compose the polynomial-time algorithm for A
with the polynomial-time function reducing B to A to get a polynomial time
algorithm for B. m]

Definition 23.4 The set A is NP-complete if A is NP-hard and A € NP. O
Theorem 23.5 If A is NP-complete, then
AeP & P=NP.

Definition 23.6 The complexity class coNP is the class of sets A C T*
whose complements A = £* — A are in NP. A set B is coNP-hard if every
problem in coNP reduces in polynomial time to B. It is coNP-complete if in
addition it is in coNP. : |

The following theorem is immediate from the definitions.

Theorem 23.7

1. A<® Bif A<y B.

9. A is NP-hard iff A is coNP-hard.

3. A is NP-complete iff A is coNP-complete.

4. If A is NP-complete then A € coNP iff NP = coNP.

1t is unknown whether NP = coNP.

We will show later that the problems CNFSat, 3CNFSat, Clique, Vertex
Cover, and Independent Set, which we have shown to be =P -equivalent, are
all in fact NP-complete.

23.3 More NP-complete problems

Before we prove the NP-completeness of the problems we have been consider-
ing, let us consider some more problems in this class. Some of these problems,
such as Traveling Salesman, Bin Packing, and Integer Programming, are very
natural and important in operations research and industrial engineering. We
start with the exact cover problem. :

Definition 23.8 (Exact Cover) Given a finite set X and a family of subsets
S of X, is there a subset S’ C S such that every element of X lies in exactly
one element of S'? ‘ a
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We show that the problem Exact Cover is NP-hard by reduction from
the problem of 3-colorability of undirected graphs. See [39] for a different
approach involving the 3-dimensional matching problem.

Lemma 23.9 3-Colorability <P, Ezact Cover.

Proof. Suppose we are given an undirected graph G = (V, E). We show
how to produce an instance (X, S) of the exact cover problem for which an
exact cover exists iff G has a 3-coloring.

Let C = {red, blue, green}. For each u € V, let N(u) be the set of
neighbors of 4 in G. Since G is undirected, u € N(v) iff v € N(u).

For each u € V, we include u in X along with 3(|N(u)| + 1) additional
elements of X. These 3(|N(u)| + 1) additional elements are arranged in three
disjoint sets of |N(u)| + 1 elements each, one set corresponding to each color.
Call these three sets SI*d, Shlue  Gereen  For each color ¢ € C, pick a special
element p{ from S and associate the remaining |N(u)| elements of S with
the elements of N(u) in a one-to-one fashion. Let ¢¢, denote the element of
S¢ associated with v € N(u).

The set S will contain all two element sets of the form

{u,pi} (31)

forue V and ce€ C, as well as all the sets SSforu € Vandc€ C. Hereis a
picture of what we have so far for a vertex u of degree 5 with v € N(u). The
ovals represent the three sets S and the lines represent the three two-element
sets (31).

To complete S, we include all two element sets of the form

{50, aCu} (32)

for all (u,v) € F and ¢,d € C with ¢ # ¢. Here is a picture showing a part
of the construction for two vertices u and v of degrees 5 and 3 respectively,
where (u,v) in E. The six lines in the center represent the two-element sets
(32).
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We now argue that the instance (X, S) of Exact Cover just constructed is
a “yes” instance, i.e. an exact cover ' C S of X exists, iff the graph G has
a 3-coloring. Suppose first that G has a 3-coloring x : V — C. We construct
an exact cover S’ C S as follows. For each vertex u, let S’ contain the sets
{u,pX™} and S¢ for ¢ # x(u). This covers everything except points of the
form gX*), where (u,v) € E. For each edge (u,v), let S’ also contain the set
{gX®), @)}, This set is in S since x(u) # x(v). This covers all the remaining
points, and each point is covered by exactly one set in S'.

Conversely, suppose §’ is an exact cover. Each u is covered by exactly one
set in §’, and it must be of the form {u,pc} for some c. Let x(u) be that c;
we claim that x is a valid coloring, i.e. that if (u,v) € E then x(u) # x(v).
For each u, since {u, pX} € §’, we cannot cover p for ¢ # x(u) by any set
of the form (31), since u is already covered; therefore they must be covered
by the sets S¢, which are the only other sets containing the points p§. The
sets {u,pX™} and S¢, ¢ # x(u) cover all points except those of the form
@), (u,v) € E. The only way S’ can cover these remaining points is by the
sets (32). By construction of S, these sets are of the form {gX®,gX"} for
(u,v) € E and x(u) # x(v). a



